* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download 120 Core Idea PS3 Energy PS3.A: DEFINITIONS OF
Survey
Document related concepts
Transcript
A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas By the end of grade 8. A stable system is one in which any small change results in forces that return the system to its prior state (e.g., a weight hanging from a string). A system can be static but unstable (e.g., a pencil standing on end). A system can be changing but have a stable repeating cycle of changes; such observed regular patterns allow predictions about the system’s future (e.g., Earth orbiting the sun). Many systems, both natural and engineered, rely on feedback mechanisms to maintain stability, but they can function only within a limited range of conditions. With no energy inputs, a system starting out in an unstable state will continue to change until it reaches a stable configuration (e.g., sand in an hourglass). By the end of grade 12. Systems often change in predictable ways; understanding the forces that drive the transformations and cycles within a system, as well as the forces imposed on the system from the outside, helps predict its behavior under a variety of conditions. When a system has a great number of component pieces, one may not be able to predict much about its precise future. For such systems (e.g., with very many colliding molecules), one can often predict average but not detailed properties and behaviors (e.g., average temperature, motion, and rates of chemical change but not the trajectories or other changes of particular molecules). Systems may evolve in unpredictable ways when the outcome depends sensitively on the starting condition and the starting condition cannot be specified precisely enough to distinguish between different possible outcomes. Core Idea PS3 Energy How is energy transferred and conserved? Interactions of objects can be explained and predicted using the concept of transfer of energy from one object or system of objects to another. The total energy within a defined system changes only by the transfer of energy into or out of the system. PS3.A: DEFINITIONS OF ENERGY What is energy? That there is a single quantity called energy is due to the remarkable fact that a system’s total energy is conserved. Regardless of the quantities of energy transferred 120 A Framework for K-12 Science Education Copyright © National Academy of Sciences. All rights reserved. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas between subsystems and stored in various ways within the system, the total energy of a system changes only by the amount of energy transferred into and out of the system. At the macroscopic scale, energy manifests itself in multiple phenomena, such as motion, light, sound, electrical and magnetic fields, and thermal energy. Historically, different units were introduced for the energy present in these different phenomena, and it took some time before the relationships among them were recognized. Energy is best understood at the microscopic scale, at which it can be modeled as either motions of particles or as stored in force fields (electric, magnetic, gravitational) that mediate interactions between particles. This last concept includes electromagnetic radiation, a phenomenon in which energy stored in fields moves across space (light, radio waves) with no supporting matter medium. Motion energy is also called kinetic energy; defined in a given reference frame, it is proportional to the mass of the moving object and grows with the square of its speed. Matter at any temperature above absolute zero contains thermal energy. Thermal energy is the random motion of particles (whether vibrations in solid matter or molecules or free motion in a gas), this energy is distributed among all the particles in a system through collisions and interactions at a distance. In contrast, a sound wave is a moving pattern of particle vibrations that transmits energy through a medium. Electric and magnetic fields also contain energy; any change in the relative positions of charged objects (or in the positions or orientations of magnets) changes the fields between them and thus the amount of energy stored in those fields. When a particle in a molecule of solid matter vibrates, energy is continually being transformed back and forth between the energy of motion and the energy stored in the electric and magnetic fields within the matter. Matter in a stable form minimizes the stored energy in the electric and magnetic fields within it; this defines the equilibrium positions and spacing of the atomic nuclei in a molecule or an extended solid and the form of their combined electron charge distributions (e.g., chemical bonds, metals). Energy stored in fields within a system can also be described as potential energy. For any system where the stored energy depends only on the spatial configuration of the system and not on its history, potential energy is a useful concept (e.g., a massive object above Earth’s surface, a compressed or stretched spring). It is defined as a difference in energy compared to some arbitrary reference configuration of a system. For example, lifting an object increases the stored energy in the gravitational field between that object and Earth (gravitational potential energy) Dimension 3: Disciplinary Core Ideas—Physical Sciences Copyright © National Academy of Sciences. All rights reserved. 121 A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas compared to that for the object at Earth’s surface; when the object falls, the stored energy decreases and the object’s kinetic energy increases. When a pendulum swings, some stored energy is transformed into kinetic energy and back again into stored energy during each swing. (In both examples energy is transferred out of the system due to collisions with air and for the pendulum also by friction in its support.) Any change in potential energy is accompanied by changes in other forms of energy within the system, or by energy transfers into or out of the system. Electromagnetic radiation (such as light and X-rays) can be modeled as a wave of changing electric and magnetic fields. At the subatomic scale (i.e., in quantum theory), many phenomena involving electromagnetic radiation (e.g., photoelectric effect) are best modeled as a stream of particles called photons. Electromagnetic radiation from the sun is a major source of energy for life on Earth. The idea that there are different forms of energy, such as thermal energy, mechanical energy, and chemical energy, is misleading, as it implies that the nature of the energy in each of these manifestations is distinct when in fact they all are ultimately, at the atomic scale, some mixture of kinetic energy, stored energy, and radiation. It is likewise misleading to call sound or light a form of energy; they are phenomena that, among their other properties, transfer energy from place to place and between objects. Grade Band Endpoints for PS3.A By the end of grade 2. [Intentionally left blank.] By the end of grade 5. The faster a given object is moving, the more energy it possesses. Energy can be moved from place to place by moving objects or through sound, light, or electric currents. (Boundary: At this grade level, no attempt is made to give a precise or complete definition of energy.) 122 A Framework for K-12 Science Education Copyright © National Academy of Sciences. All rights reserved. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas ❚ At the macroscopic scale, energy manifests itself in multiple phenomena, such as motion, light, sound, electrical and magnetic fields, and thermal energy. ❚ By the end of grade 8. Motion energy is properly called kinetic energy; it is proportional to the mass of the moving object and grows with the square of its speed. A system of objects may also contain stored (potential) energy, depending on their relative positions. For example, energy is stored—in gravitational interaction with Earth—when an object is raised, and energy is released when the object falls or is lowered. Energy is also stored in the electric fields between charged particles and the magnetic fields between magnets, and it changes when these objects are moved relative to one another. Stored energy is decreased in some chemical reactions and increased in others. The term “heat” as used in everyday language refers both to thermal energy (the motion of atoms or molecules within a substance) and energy transfers by convection, conduction, and radiation (particularly infrared and light). In science, heat is used only for this second meaning; it refers to energy transferred when two objects or systems are at different temperatures. Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the total energy of a system depends on the types, states, and amounts of matter present. By the end of grade 12. Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single quantity called energy is due to the fact that a system’s total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms. At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy. “Mechanical energy” generally refers to some combination of motion and stored energy in an operating machine. “Chemical energy” generally is used to mean the energy that can be released or stored in chemical processes, and “electrical energy” may mean energy stored in a battery or energy transmitted by electric currents. Historically, different units and names were used for the energy present in these different phenomena, and it took some time before the relationships between them were recognized. These relationships are better understood at Dimension 3: Disciplinary Core Ideas—Physical Sciences Copyright © National Academy of Sciences. All rights reserved. 123 A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas the microscopic scale, at which all of the different manifestations of energy can be modeled as either motions of particles or energy stored in fields (which mediate interactions between particles). This last concept includes radiation, a phenomenon in which energy stored in fields moves across space. PS3.B: CONSERVATION OF ENERGY AND ENERGY TRANSFER What is meant by conservation of energy? How is energy transferred between objects or systems? The total change of energy in any system is always equal to the total energy transferred into or out of the system. This is called conservation of energy. Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. Many different types of phenomena can be explained in terms of energy transfers. Mathematical expressions, which quantify changes in the forms of energy within a system and transfers of energy into or out of the system, allow the concept of conservation of energy to be used to predict and describe the behavior of a system. When objects collide or otherwise come in contact, the motion energy of one object can be transferred to change the motion or stored energy (e.g., change in shape or temperature) of the other objects. For macroscopic objects, any such process (e.g., collisions, sliding contact) also transfers some of the energy to the surrounding air by sound or heat. For molecules, collisions can also result in energy transfers through chemical processes, which increase or decrease the total amount of stored energy within a system of atoms; the change in stored energy is always balanced by a change in total kinetic energy—that of the molecules present after the process compared with the kinetic energy of the molecules present before it. Energy can also be transferred from place to place by electric currents. Heating is another process for transferring energy. Heat transfer occurs when two objects or systems are at different temperatures. Energy moves out of higher temperature objects and into lower temperature ones, cooling the former and heating the latter. This transfer happens in three different ways—by conduction within solids, by the flow of liquid or gas (convection), and by radiation, which can travel across space. Even when a system is isolated (such as Earth in space), energy is continually being transferred into and out of it by radiation. The processes underlying convection and conduction can be understood in terms of models of the possible motions of particles in matter. 124 A Framework for K-12 Science Education Copyright © National Academy of Sciences. All rights reserved. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas Radiation can be emitted or absorbed by matter. When matter absorbs light or infrared radiation, the energy of that radiation is transformed to thermal motion of particles in the matter, or, for shorter wavelengths (ultraviolet, X-ray), the radiation’s energy is absorbed within the atoms or molecules and may possibly ionize them by knocking out an electron. Uncontrolled systems always evolve toward more stable states—that is, toward more uniform energy distribution within the system or between the system and its environment (e.g., water flows downhill, objects that are hotter than their surrounding environment cool down). Any object or system that can degrade with no added energy is unstable. Eventually it will change or fall apart, although in some cases it may remain in the unstable state for a long time before decaying (e.g., long-lived radioactive isotopes). Grade-Level Endpoints for PS3.B By the end of grade 2. Sunlight warms Earth’s surface. By the end of grade 5. Energy is present whenever there are moving objects, sound, light, or heat. When objects collide, energy can be transferred from one object to another, thereby changing their motion. In such collisions, some energy is typically also transferred to the surrounding air; as a result, the air gets heated and sound is produced. Light also transfers energy from place to place. For example, energy radiated from the sun is transferred to Earth by light. When this light is absorbed, it warms Earth’s land, air, and water and facilitates plant growth. Energy can also be transferred from place to place by electric currents, which can then be used locally to produce motion, sound, heat, or light. The currents may have been produced to begin with by transforming the energy of motion into electrical energy (e.g., moving water driving a spinning turbine which generates electric currents). By the end of grade 8. When the motion energy of an object changes, there is inevitably some other change in energy at the same time. For example, the friction that causes a moving object to stop also results in an increase in the thermal energy in both surfaces; eventually heat energy is transferred to the surrounding environment as the surfaces cool. Similarly, to make an object start moving or to keep it moving when friction forces transfer energy away from it, Dimension 3: Disciplinary Core Ideas—Physical Sciences Copyright © National Academy of Sciences. All rights reserved. 125 A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas energy must be provided from, say, chemical (e.g., burning fuel) or electrical (e.g., an electric motor and a battery) processes. The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature of the matter, the size of the sample, and the environment. Energy is transferred out of hotter regions or objects and into colder ones by the processes of conduction, convection, and radiation. By the end of grade 12. Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out of the system. Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems. Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g., relative positions of charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of energy to be used to predict and describe system behavior. The availability of energy limits what can occur in any system. Uncontrolled systems always evolve toward more stable states—that is, toward more uniform energy distribution (e.g., water flows downhill, objects hotter than their surrounding environment cool down). Any object or system that can degrade with no added energy is unstable. Eventually it will do so, but if the energy releases throughout the transition are small, the process duration can be very long (e.g., long-lived radioactive isotopes). PS3.C RELATIONSHIP BETWEEN ENERGY AND FORCES How are forces related to energy? When two objects interact, each one exerts a force on the other. These forces can transfer energy between the objects. Forces between two objects at a distance are explained by force fields (gravitational, electric, or magnetic) between them. Contact forces between colliding objects can be modeled at the microscopic level as due to electromagnetic force fields between the surface particles. When two objects interacting via a force field change their relative position, the energy in the 126 A Framework for K-12 Science Education Copyright © National Academy of Sciences. All rights reserved. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas force field between them changes. For any such pair of objects the force on each object acts in the direction such that motion of that object in that direction would reduce the energy in the force field between the two objects. However, prior motion and other forces also affect the actual direction of motion. Patterns of motion, such as a weight bobbing on a spring or a swinging pendulum, can be understood in terms of forces at each instant or in terms of transformation of energy between the motion and one or more forms of stored energy. Elastic collisions between two objects can be modeled at the macroscopic scale using conservation of energy without having to examine the detailed microscopic forces. Grade Band Endpoints for PS3.C By the end of grade 2. A bigger push or pull makes things go faster. Faster speeds during a collision can cause a bigger change in shape of the colliding objects. By the end of grade 5. When objects collide, the contact forces transfer energy so as to change the objects’ motions. Magnets can exert forces on other magnets or on magnetizable materials, causing energy transfer between them (e.g., leading to changes in motion) even when the objects are not touching. By the end of grade 8. When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object. For example, when energy is transferred to an Earth-object system as an object is raised, the gravitational field energy of the system increases. This energy is released as the object falls; the mechanism of this release is the gravitational force. Likewise, two magnetic and electrically charged objects interacting at a distance exert forces on each other that can transfer energy between the interacting objects. By the end of grade 12. Force fields (gravitational, electric, and magnetic) contain energy and can transmit energy across space from one object to another. When two objects interacting through a force field change relative position, the energy stored in the force field is changed. Each force between the two interacting objects acts in the direction such that motion in that direction would reduce the energy in the force field between the objects. However, prior motion and other forces also affect the actual direction of motion. Dimension 3: Disciplinary Core Ideas—Physical Sciences Copyright © National Academy of Sciences. All rights reserved. 127 A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas PS3.D: ENERGY IN CHEMICAL PROCESSES AND EVERYDAY LIFE How do food and fuel provide energy? If energy is conserved, why do people say it is produced or used? In ordinary language, people speak of “producing” or “using” energy. This refers to the fact that energy in concentrated form is useful for generating electricity, moving or heating objects, and producing light, whereas diffuse energy in the environment is not readily captured for practical use. Therefore, to produce energy typically means to convert some stored energy into a desired form—for example, the stored energy of water behind a dam is released as the water flows downhill and drives a turbine generator to produce electricity, which is then delivered to users through distribution systems. Food, fuel, and batteries are especially convenient energy resources because they can be moved from place to place to provide processes that release energy where needed. A system does not destroy energy when carrying out any process. However, the process cannot occur without energy being available. The energy is also not destroyed by the end of the process. Most often some or all of it has been transferred to heat the surrounding environment; in the same sense that paper is not destroyed when it is written on, it still exists but is not readily available for further use. Naturally occurring food and fuel contain complex carbon-based molecules, chiefly derived from plant matter that has been formed by photosynthesis. The chemical reaction of these molecules with oxygen releases energy; such reactions provide energy for most animal life and for residential, commercial, and industrial activities. Electric power generation is based on fossil fuels (i.e., coal, oil, and natural gas), nuclear fission, or renewable resources (e.g., solar, wind, tidal, geothermal, and hydro power). Transportation today chiefly depends on fossil fuels, but the use of electric and alternative fuel (e.g., hydrogen, biofuel) vehicles is increasing. All forms of electricity generation and transportation fuels have associated economic, social, and environmental costs and benefits, both short and long term. Technological advances and regulatory decisions can change the balance of those costs and benefits. Although energy cannot be destroyed, it can be converted to less useful forms. In designing a system for energy storage, for energy distribution, or to perform some practical task (e.g., to power an airplane), it is important to design for maximum efficiency—thereby ensuring that the largest possible fraction of the energy is used for the desired purpose rather than being transferred out of the 128 A Framework for K-12 Science Education Copyright © National Academy of Sciences. All rights reserved. A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas system in unwanted ways (e.g., through friction, which eventually results in heat energy transfer to the surrounding environment). Improving efficiency reduces costs, waste materials, and many unintended environmental impacts. Grade Band Endpoints for PS3.D By the end of grade 2. When two objects rub against each other, this interaction is called friction. Friction between two surfaces can warm of both of them (e.g., rubbing hands together). There are ways to reduce the friction between two objects. By the end of grade 5. The expression “produce energy” typically refers to the conversion of stored energy into a desired form for practical use—for example, the stored energy of water behind a dam is released so that it flows downhill and drives a turbine generator to produce electricity. Food and fuel also release energy when they are digested or burned. When machines or animals “use” energy (e.g., to move around), most often the energy is transferred to heat the surrounding environment. The energy released by burning fuel or digesting food was once energy from the sun that was captured by plants in the chemical process that forms plant matter (from air and water). (Boundary: The fact that plants capture energy from sunlight is introduced at this grade level, but details of photosynthesis are not.) It is important to be able to concentrate energy so that it is available for use where and when it is needed. For example, batteries are physically transportable energy storage devices, whereas electricity generated by power plants is transferred from place to place through distribution systems. By the end of grade 8. The chemical reaction by which plants produce complex food molecules (sugars) requires an energy input (i.e., from sunlight) to occur. In this reaction, carbon dioxide and water combine to form carbon-based organic molecules and release oxygen. (Boundary: Further details of the photosynthesis process are not taught at this grade level.) Dimension 3: Disciplinary Core Ideas—Physical Sciences Copyright © National Academy of Sciences. All rights reserved. 129 A Framework for K-12 Science Education: Practices, Crosscutting Concepts, and Core Ideas Both the burning of fuel and cellular digestion in plants and animals involve chemical reactions with oxygen that release stored energy. In these processes, complex molecules containing carbon react with oxygen to produce carbon dioxide and other materials. Machines can be made more efficient, that is, require less fuel input to perform a given task, by reducing friction between their moving parts and through aerodynamic design. Friction increases energy transfer to the surrounding environment by heating the affected materials. By the end of grade 12. Nuclear fusion processes in the center of the sun release the energy that ultimately reaches Earth as radiation. The main way in which that solar energy is captured and stored on Earth is through the complex chemical process known as photosynthesis. Solar cells are human-made devices that likewise capture the sun’s energy and produce electrical energy. A variety of multistage physical and chemical processes in living organisms, particularly within their cells, account for the transport and transfer (release or uptake) of energy needed for life functions. All forms of electricity generation and transportation fuels have associated economic, social, and environmental costs and benefits, both short and long term. Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding environment. Machines are judged as efficient or inefficient based on the amount of energy input needed to perform a particular useful task. Inefficient machines are those that produce more waste heat while performing a task and thus require more energy input. It is therefore important to design for high efficiency so as to reduce costs, waste materials, and many environmental impacts. Core Idea PS4Waves and Their Applications in Technologies for Information Transfer How are waves used to transfer energy and information? Waves are a repeating pattern of motion that transfers energy from place to place without overall displacement of matter. Light and sound are wavelike phenomena. By understanding wave properties and the interactions of electromagnetic radiation with matter, scientists and engineers can design systems for transferring information across long distances, storing information, and investigating nature on many scales—some of them far beyond direct human perception. 130 A Framework for K-12 Science Education Copyright © National Academy of Sciences. All rights reserved.