Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
July22,2016 Attn:TerahLyons OfficeofScienceandTechnologyPolicy EisenhowerExecutiveOfficeBuilding 1650PennsylvaniaAve.NW, Washington,DC20504 Subject:(2016-15082;81FR41610)RequestforInformationonArtificial Intelligence;CommentsoftheAmericanCollegeofRadiology TheAmericanCollegeofRadiology(ACR)—aprofessionalorganizationrepresenting morethan35,000radiologists,radiationoncologists,interventionalradiologists, nuclearmedicinephysicians,andmedicalphysicists—appreciatestheopportunity torespondtotheWhiteHouseOfficeofScienceandTechnologyPolicy’s(OSTP) RequestforInformation(RFI)on“ArtificialIntelligence”(AI)publishedinthe FederalRegisteronJune27,2016(documentnumber2016-15082;81FR41610). TheACRsupportsthefederalgovernment’seffortstoleverageAIandmachine learningtoimprovegovernmentservicesingeneral,andweurgeadditionalfederal supportfor,andcollaborationwith,professionalassociationsandother stakeholderswithinspecificfieldsofinteresttoensureasafeandefficacioususeof thistechnology. ThefollowingcommentsonthequestionsenumeratedintheRFIwerecompiledby membersoftheACRClinicalDataScienceCommittee,ACRCommissionon Informatics,andACRResearch.Individualcontributingmembersarelistedatthe endofthissubmission. ACRResponsestoRFITopics 1. ThelegalandgovernanceimplicationsofAI: Healthcareinstitutions,radiologygroups,andvendorsplanningtodevelop algorithmsusingsourcedatasuchaselectronichealthrecordtechnologyand/or patientdiagnosticimagingdataneedguidancefromagenciesonissuesofpatient 1 consentandappropriatemethods/bestpractices.Moreover,AIincorporationinto clinicalradiologypracticecanintroducenewmedico-legalrisksanduncertainties. RelatedconcernscouldpotentiallydiscourageacceptanceandproliferationofAIby providers. 2.TheuseofAIforpublicgood: AIcouldoffervariousbenefitstomedicalimaginginthefuture,including augmentingthecapabilitiesofradiologiststoenhancetheirefficiencyandaccuracy, aswellasreducingcostsbyimprovingtheappropriatenessandcost-effectivenessof medicalimagingutilization. TheuseofAIandmachinelearninginhealthcareingeneralcouldbebestappliedto theareasofprecisionmedicine,predictiveanalytics,andoutcomesassessments.AI canstreamlinehealthcareworkflowandimprovetriageofpatients(especiallyin acutecaresettings),reduceclinicianfatigue,andincreasetheefficiencyandefficacy oftraining.Moreover,shortagesofmedicalexpertstomeettheneedsofvulnerable andunderservedpopulationsindomesticandinternationalsettingscould potentiallyberelieved,inpart,byAI. 3.ThesafetyandcontrolissuesforAI: Safetystandardsshouldbeidentifiedtofacilitatetheproperdevelopmentand monitoringofAI-driventechnologiesinmedicalimaging.Thiscouldbeaddressed throughacombinationofregulatoryoversightandprofessionalassociation validationorcertificationofalgorithms.Federalagenciescouldalsopartnerwith professionalandtradeassociationstodevelopstandardizeddatasetsforalgorithm trainingandtesting. Inadditiontooversightoverthetechnology,safetyissuesneedtobeaddressedvia trainingandbestpracticesforpractitionersonappropriateincorporationofAIinto clinicalradiology. 5.Themostpressing,fundamentalquestionsinAIresearch,commontomostor allscientificfields: ThemostuniversalAIresearchquestionishowtomeasuretheeffectivenessofthe technology;however,thespecificdefinitions/measuresofeffectivenessandtesting methodologieswouldlikelyvaryfromfieldtofield.Inmedicine,researchinto effectivenessshouldfocusonareassuchasdiagnosticerrorreduction,improved accuracy,workflowenhancement,andefficiencygains.Moreover,researchshould explorehowAItoolscanbeseamlesslyintegratedintoclinicalworkflowandto whatdegreethereisimpact,bothpositiveandnegative,onclinicaldecisionmaking andpatientcareoutcomes. 2 6.ThemostimportantresearchgapsinAIthatmustbeaddressedtoadvance thisfieldandbenefitthepublic: IntermsoftheapplicationofAItomedicalimaging,thereisaneedtodefine standardsbywhichimagesandcorrespondingdatashouldbestructuredto facilitateAIresearch.Asmentionedabove,researchneedstoalsoexploreimpact measurementofAItoolsonimage/datainterpretation,diagnosticaccuracy,and workflowefficiency. 8.Thespecificstepsthatcouldbetakenbythefederalgovernment,research institutes,universities,andphilanthropiestoencouragemulti-disciplinaryAI research: TheDepartmentsofHealthandHumanServices,VeteransAffairs,andDefense shouldincreasegrantopportunitiestostudyanddevelopAItechnologiesinmedical imaging.Federalagenciespartneredwithprofessionalassociations,academic institutions,patientadvocates,andotherorganizationscoulddevelopand/or disseminatepolicy,ethical,scientific,andindustrystandards,includingthose relatedtointeroperabilityandgeneralizabilityofAI-driventechnologies.Standards aroundsecurity,privacy,data-sharing,andtheuseofcommondatasetsfor researcherswouldfacilitatetheimprovedgeneralizabilityofalgorithms. Importantly,addedexpertiseindomainsoutsideoftraditionalcomputerscience andhealthinformationtechnology(e.g.,imageperception,humanfactors,and safety)shouldbeconsulted. 9.ThespecifictrainingdatasetsthatcanacceleratethedevelopmentofAIand itsapplication: TheclassofAItechnologiesthatutilizemachinelearningtechniques(neural networks,deeplearning,etc.)requirelargedatasetstolearnrelationshipsbetween inputsandoutputsofinformationprocessingchains,ortodiscoverandcategorize patterns.Thefeasibilityofacquiringandutilizingsuchlargedatasetsvaries tremendouslyacrossapplicationdomains.Thereareseveralsignificant impedimentstoacquiringsuchdataforhealthcareapplicationsofAI,includingthe needtoprotectpatientprivacy,collectdataacrossdistributedsitesandacross multiplemodalities(genomics,radiomics,pathology,etc.). However,theseproblemshavelongbeensolvedforclinicalresearchinitiatives,e.g., clinicaltrialsandregistries.Theinformaticsplatformsandprocessesdevelopedto collectandcreatesuchrepositoriescouldbereadilyadaptedforthehealthcareAI domain.Inaddition,datafromclosedinitiativescanberepurposedforAIresearch. TheACRhasalreadybeguntosupporttheAIresearchofitsmembersandpartners inacademiaandindustry,utilizingourTRIADandDARTplatformsusedforclinical imagingresearch. 3 De-identifiedtrainingsetsofvarioushealthcaredatatypes—includingmedical imagingdata(MRI,CT,X-Ray,Ultrasound,PET)—coveringthewholespectrumof pathologiesneedtobeaccessibleinthepublicdomainandvalidatedtoensurethat thesesetsmeetgovernment,academic,andindustrystandards.Thecreationand curationoflabeleddatasetsisatimeconsumingyetcriticalprocessinthe developmentofAItechnologiesinhealthcareandmedicalimaging. 11)AnyadditionalinformationrelatedtoAIresearchorpolicymaking,not requestedabove,thatyoubelieveOSTPshouldconsider: TheACRbelievesAIhasthepotentialtoalleviateadministrativeburdenand inappropriateutilization,anditcouldsomedayincreasetheprecisionandefficiency ofcertainmedicalservices,includingdiagnosticimaging.Thistechnologyhasthe potential,withappropriatetesting/validationandsafeguards,toimprovethevalue, safety,andappropriateutilizationofmedicalimaging.AIalsohasthepotentialto shiftmoremundanetasksfromradiologistsandotherphysicianstomachines, freeingradiologiststofocusonpatientcare,includinginterpretingimagesand providingclinicalconsultationstootherspecialists. TheAmericanCollegeofRadiologyappreciatesthisopportunitytoprovideinputto OSTPstaffandmembersoftheNationalScienceandTechnologyCouncil SubcommitteeonMachineLearningandArtificialIntelligence.Wewelcomefurther communicationsonthisandrelatedtopics.PleasecontactGloriaRomanelli,JD, SeniorDirector,LegislativeandRegulatoryRelations([email protected]),or MichaelPeters,DirectorofLegislativeandRegulatoryAffairs([email protected]),if interestedinreachingouttotheACR. Sincerely, JamesA.Brink,MD,FACR Chair,BoardofChancellors AmericanCollegeofRadiology KeithDreyer,DO,PhD,FACR Chair,CommissiononInformatics AmericanCollegeofRadiology 4 GarryChoy,MD,MBA Chair,ClinicalDataScienceCommittee AmericanCollegeofRadiology Contributors: ACRCommissiononInformatics-ClinicalDataScienceCommittee GarryChoy,MD,MBA,Chair SawfanHalabi,MD KathyAndriole,PhD KeithDreyer,DO,PhD ChristophWald,MD,MBA WoojinKim,MD MikeMcNitt-Gray,PhD BobNishikawa,PhD JamesStone,MD,PhD RaymGeis,MD,FACR TonyScuderi,MD LauraCoombs,PhD MikeTilkin,MSandACRCIO ACRResearch JohnPearson,PhD 5