Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Donna e diabete in Regione Lombardia Palazzo della Regione, Grattacielo Pirelli (Milano), 9 Marzo 2016 Bruno Solerte Dip. Medicina Interna, Università degli Studi di Pavia [email protected] Donna e la forza della Fragilità Donna e la forza della Fragilità la forza della Fragilità Qual’è la forza della Fragilità nella donna la sua forza è nella sua biologia ESTROGENI / glicemia INSULINA GLP-1 GLUCAGONE HOMA-IR ESTROGENI / DECADIMENTO COGNITIVO ESTROGENI / OSSO ESTROGENI / MUSCOLO Sci Rep. 2015 May 13;5:10211. doi: 10.1038/srep10211. Effect of targeted estrogen delivery using glucagon-like peptide-1 on insulin secretion, insulin sensitivity and glucose homeostasis. Tiano JP1, Tate CR2, Yang BS3, DiMarchi R3, Mauvais-Jarvis F4. •1Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University School of Medicine, Chicago, IL 60611. •2Division of Endocrinology &Metabolism, Department of Medicine, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112. •3Department of Chemistry, Indiana University, Bloomington, IN, 47405. •41] Division of Endocrinology &Metabolism, Department of Medicine, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112 [2] Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University School of Medicine, Chicago, IL 60611. Abstract The female estrogen 17β-estradiol (E2) enhances pancreatic β-cell function via estrogen receptors (ERs). However, the risk of hormone dependent cancer precludes the use of general estrogen therapy as a chronic treatment for diabetes. To target E2 to β-cells without the undesirable effects of general estrogen therapy, we created fusion peptides combining active or inactive glucagon-like peptide-1 (GLP-1) and E2 in a single molecule (aGLP1-E2 and iGLP1-E2 respectively). By combining the activities of GLP-1 and E2, we envisioned synergistic insulinotropic activities of these molecules on β-cells. In cultured human islets and in C57BL/6 mice, both aGLP1 and aGLP1-E2 enhanced glucose-stimulated insulin secretion (GSIS) compared to vehicle and iGLP1-E2 without superior efficacy of aGLP1-E2 compared to GLP-1 alone. However, aGLP1-E2 decreased fasting and fed blood glucose to a greater extent than aGLP1 and iGLP1-E2 alone. Further, aGLP1-E2 exhibited improved insulin sensitivity compared to aGLP1 and iGLP1-E2 alone (HOMA-IR and insulin tolerance test). In conclusion, targeted estrogen delivery to non-diabetic islets in the presence of GLP-1 does not enhance GSIS. However, combining GLP-1 to estrogen delivers additional efficacy relative to GLP-1 alone on insulin sensitivity and glucose homeostasis in non-diabetic mice. Sci Rep. 2015 May 13;5:10211. doi: 10.1038/srep10211. Effect of targeted estrogen delivery using glucagon-like peptide-1 on insulin secretion, insulin sensitivity and glucose homeostasis. Tiano JP1, Tate CR2, Yang BS3, DiMarchi R3, Mauvais-Jarvis F4. •1Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University School of Medicine, Chicago, IL 60611. •2Division of Endocrinology &Metabolism, Department of Medicine, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112. •3Department of Chemistry, Indiana University, Bloomington, IN, 47405. •41] Division of Endocrinology &Metabolism, Department of Medicine, Tulane University Health Sciences Center, School of Medicine, New Orleans, LA 70112 [2] Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University School of Medicine, Chicago, IL 60611. Abstract The female estrogen 17β-estradiol (E2) enhances pancreatic β-cell function via estrogen receptors (ERs). However, the risk of hormone dependent cancer precludes the use of general estrogen therapy as a chronic treatment for diabetes. To target E2 to β-cells without the undesirable effects of general estrogen therapy, we created fusion peptides combining active or inactive glucagon-like peptide-1 (GLP-1) and E2 in a single molecule (aGLP1-E2 and iGLP1-E2 respectively). By combining the activities of GLP-1 and E2, we envisioned synergistic insulinotropic activities of these molecules on β-cells. In cultured human islets and in C57BL/6 mice, both aGLP1 and aGLP1-E2 enhanced glucose-stimulated insulin secretion (GSIS) compared to vehicle and iGLP1E2 without superior efficacy of aGLP1-E2 compared to GLP-1 alone. However, aGLP1-E2 decreased fasting and fed blood glucose to a greater extent than aGLP1 and iGLP1-E2 alone. Further, aGLP1-E2 exhibited improved insulin sensitivity compared to aGLP1 and iGLP1-E2 alone (HOMA-IR and insulin tolerance test). In conclusion, targeted estrogen delivery to non-diabetic islets in the presence of GLP1 does not enhance GSIS. However, combining GLP-1 to estrogen delivers additional efficacy relative to GLP-1 alone on insulin sensitivity and glucose homeostasis in non-diabetic mice. Diabetologia. 2015 Mar;58(3):604-14. doi: 10.1007/s00125-014-3478-3. GLP-1-oestrogen attenuates hyperphagia and protects from beta cell failure in diabetes-prone New Zealand obese (NZO) mice. Schwenk RW1, Baumeier C, Finan B, Kluth O, Brauer C, Joost HG, DiMarchi RD, Tschöp MH, Schürmann A. •1Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany, [email protected]. AIMS/ HYPOTHESIS: Oestrogens have previously been shown to exert beta cell protective, glucose-lowering effects in mouse models. Therefore, the recent development of a glucagon-like peptide-1 (GLP-1)-oestrogen conjugate, which targets oestrogen into cells expressing GLP-1 receptors, offers an opportunity for a cell-specific and enhanced beta cell protection by oestrogen. The purpose of this study was to compare the effects of GLP-1 and GLP-1-oestrogen during beta cell failure under glucolipotoxic conditions. METHODS: Male New Zealand obese (NZO) mice were treated with daily s.c. injections of GLP-1 and GLP-1-oestrogen, respectively. Subsequently, the effects on energy homeostasis and beta cell integrity were measured. In order to clarify the targeting of GLP-1-oestrogen, transcription analyses of oestrogen-responsive genes in distinct tissues as well as microarray analyses in pancreatic islets were performed. RESULTS: In contrast to GLP-1, GLP-1-oestrogen significantly decreased food intake resulting in a substantial weight reduction, preserved normoglycaemia, increased glucose tolerance and enhanced beta cell protection. Analysis of hypothalamic mRNA profiles revealed elevated expression of Pomc and Leprb. In livers from GLP-1-oestrogen-treated mice, expression of lipogenic genes was attenuated and hepatic triacylglycerol levels were decreased. In pancreatic islets, GLP-1-oestrogen altered the mRNA expression to a pattern that was similar to that of diabetes-resistant NZO females. However, conventional oestrogen-responsive genes were not different, indicating rather indirect protection of pancreatic beta cells. CONCLUSIONS/INTERPRETATION: GLP-1-oestrogen efficiently protects NZO mice against carbohydrate-induced beta cell failure by attenuation of hyperphagia. In this regard, targeted delivery of oestrogen to the hypothalamus by far exceeds the anorexigenic capacity of GLP-1 alone. Diabetologia. 2015 Mar;58(3):604-14. doi: 10.1007/s00125-014-3478-3. GLP-1-oestrogen attenuates hyperphagia and protects from beta cell failure in diabetes-prone New Zealand obese (NZO) mice. Schwenk RW1, Baumeier C, Finan B, Kluth O, Brauer C, Joost HG, DiMarchi RD, Tschöp MH, Schürmann A. •1Department of Experimental Diabetology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-Scheunert-Allee 114-116, 14558, Nuthetal, Germany, [email protected]. AIMS/ HYPOTHESIS: Oestrogens have previously been shown to exert beta cell protective, glucose-lowering effects in mouse models. Therefore, the recent development of a glucagon-like peptide-1 (GLP-1)-oestrogen conjugate, which targets oestrogen into cells expressing GLP-1 receptors, offers an opportunity for a cell-specific and enhanced beta cell protection by oestrogen. The purpose of this study was to compare the effects of GLP-1 and GLP-1-oestrogen during beta cell failure under glucolipotoxic conditions. METHODS: Male New Zealand obese (NZO) mice were treated with daily s.c. injections of GLP-1 and GLP-1-oestrogen, respectively. Subsequently, the effects on energy homeostasis and beta cell integrity were measured. In order to clarify the targeting of GLP-1-oestrogen, transcription analyses of oestrogen-responsive genes in distinct tissues as well as microarray analyses in pancreatic islets were performed. RESULTS: In contrast to GLP-1, GLP-1-oestrogen significantly decreased food intake resulting in a substantial weight reduction, preserved normoglycaemia, increased glucose tolerance and enhanced beta cell protection. Analysis of hypothalamic mRNA profiles revealed elevated expression of Pomc and Leprb. In livers from GLP-1-oestrogen-treated mice, expression of lipogenic genes was attenuated and hepatic triacylglycerol levels were decreased. In pancreatic islets, GLP-1-oestrogen altered the mRNA expression to a pattern that was similar to that of diabetes-resistant NZO females. However, conventional oestrogen-responsive genes were not different, indicating rather indirect protection of pancreatic beta cells. CONCLUSIONS/INTERPRETATION: GLP-1-oestrogen efficiently protects NZO mice against carbohydrate-induced beta cell failure by attenuation of hyperphagia. In this regard, targeted delivery of oestrogen to the hypothalamus by far exceeds the anorexigenic capacity of GLP-1 alone. Biol Sex Differ. 2016 Jan 16;7:6. doi: 10.1186/s13293-016-0059-9. Sex and estrogens alter the action of glucagon-like peptide-1 on reward. Richard JE1, Anderberg RH1, López-Ferreras L1, Olandersson K1, Skibicka KP1. •1Department of Physiology/Metabolic Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Medicinaregatan 11, PO Box 434, SE-405 30 Gothenburg, Sweden. BACKGROUND: Feeding behavior is regulated through an intricate array of anorexic and orexigenic hormones acting on the central nervous system (CNS). Some of these hormones may have differential effects in males and females, effects potentially attributed to actions of gonadal steroids, especially estrogens. Central stimulation of the glucagon-like peptide-1 (GLP-1) receptors reduces feeding and food-reward behavior by acting on CNS regions important for the anorexic actions of estrogens. Thus, we propose that the action of GLP-1 on food intake and reward may differ between sexes. METHODS: Male and female rats were centrally injected with the GLP-1 analog exendin-4 (Ex4) in a non-deprived or food-restricted state; reward behavior was measured in a progressive ratio operant conditioning task. Intake of chow and palatable food were also measured. To determine if sex differences in the actions of Ex4 are due to interactions with estrogens, Ex4 treatment was preceded by treatment with a nonselective estrogen receptor-α (ERα) and ERβ or ERα-selective antagonist. RESULTS: Central injection of Ex4 revealed increased reward behavior suppression in females, compared to males, in the operant conditioning task. This increase was present in both non-deprived and food-restricted animals with larger differences in the fed state. Intake of chow and palatable food, after Ex4, were similar in males and females. Food reward, but not food intake, effect of Ex4 was attenuated by pretreatment with ER antagonist in both sexes, suggesting that estrogens may modulate effects of Ex4 in both sexes. Furthermore, central pretreatment with ERα-selective antagonist was sufficient to attenuate effects of Ex4 on reward. CONCLUSIONS: Collectively, these data reveal that females display much higher sensitivity to the food reward impact of central GLP-1 receptor activation. Surprisingly, they also demonstrate that central ERα signaling is necessary for the actions of GLP-1 on food-reward behavior in both sexes. KEYWORDS: Estrogens; Exendin-4; GLP-1; Glucagon-like peptide-1; Obesity; Reward; Sex Nat Med. 2012 Dec;18(12):1847-56. doi: 10.1038/nm.3009. Targeted estrogen delivery reverses the metabolic syndrome. Finan B1, Yang B, Ottaway N, Stemmer K, Müller TD, Yi CX, Habegger K, Schriever SC, García-Cáceres C, Kabra DG, Hembree J, Holland J, Raver C, Seeley RJ, Hans W, Irmler M, Beckers J, de Angelis MH, Tiano JP, Mauvais-Jarvis F, Perez-Tilve D, Pfluger P, Zhang L, Gelfanov V, DiMarchi RD, Tschöp MH. •1Institute for Diabetes and Obesity, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany. Abstract We report the development of a new combinatorial approach that allows for peptide-mediated selective tissue targeting of nuclear hormone pharmacology while eliminating adverse effects in other tissues. Specifically, we report the development of a glucagon-like peptide-1 (GLP-1)-estrogen conjugate that has superior sex-independent efficacy over either of the individual hormones alone to correct obesity, hyperglycemia and dyslipidemia in mice. The therapeutic benefits are driven by pleiotropic dual hormone action to improve energy, glucose and lipid metabolism, as shown by loss-of-function models and genetic action profiling. Notably, the peptide-based targeting strategy also prevents hallmark side effects of estrogen in male and female mice, such as reproductive endocrine toxicity and oncogenicity. Collectively, selective activation of estrogen receptors in GLP-1-targeted tissues produces unprecedented efficacy to enhance the metabolic benefits of GLP-1 agonism. This example of targeting the metabolic syndrome represents the discovery of a new class of therapeutics that enables synergistic co-agonism through peptide-based selective delivery of small molecules. Although our observations with the GLP-1-estrogen conjugate justify translational studies for diabetes and obesity, the multitude of other possible combinations of peptides and small molecules may offer equal promise for other diseases. CALO ESTROGENICO MENOPAUSA POSTMENOPAUSA