Download Data Analysis and Visualization

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Data Analysis and Visualization
Practical work
1. STAR (STate of the Art) in Data Analysis and Visualization
STAR in Data Analysis and Visualization in one of these areas:






Bioinformatics: Genomics.
Bioinformatics: Proteomics.
Neuroscience.
Advertisement.
Census.
Any other scientific area justified by the student.
For the selected area, it will be necessary to present possible future research lines
focused on data analysis and visualization.
The report will have at least the following sections:

Introduction.

Summary of the collected papers.

Methodologies and techniques used.

Application to datasets.

Results achieved.

Future works.

Other relevant information.

References.
 Personal discussion.
Contact: Santiago González ([email protected])
([email protected])
and
Angel
Rodríguez
2. Data Analysis using a Stereo Viewer
The student must implement a data mining application with a 3D interactive viewer
running on a portable PC with a standard graphics card. No specific hardware devices
will be required for implementing the system.
Data Analysis
The Breast Cancer dataset collects data about 286 patients of this disease
checking if the cancer reappears after its diagnosis and treatment. The dataset has 9
attributes and the reference class. The required system will:

Represent in 3D the instances of the dataset. It will be necessary to transform a
problem with dimension 9 (attributes) to a 3D space. This transformation following
Data analysis and visualization. Advanced computing for science and engineering.
any of the simple transformation techniques presented in class or more complex
techniques like the one described by Kandogan.
 Implement and use the KNN (K Nearest Neighbour) method for estimating the class
of the instance considering the K nearest patients.
 Interactively select X instances and compute the percentage of well classified
according to the estimated class and the correct class.
Contact: Santiago González ([email protected])
Visualization
For the development of the user interface and the visualization engine, the
student will be able to use any high level graphic tool like Unity3D, Qt, Coin3D, etc.
The student will be able to choose the OS where the application will run (Windows,
Mac, Linux). For the evaluation, portable code will be very well considered, although
this fact is not a requirement for the implementation. Another feature to be considered
in the evaluation will be the interactive reconfiguration of the 3D viewer parameters.
Contact: Angel Rodríguez ([email protected])
Documentation
The documentation will include:

Introduction, including a general description of how works the application.

Data Mining techniques or Technologies used in the case study.

Mathematical models used.

Application description.

Libraries used.

Other relevant information.

References.

Personal discussion.
References
1. Breast
Cancer
Data
Set.
UCI
Machine
http://archive.ics.uci.edu/ml/datasets/Breast+Cancer
Learning
Repository.
2. Eser Kandogan: “Star Coordinates: A Multi-dimensional
Technique with Uniform Treatment of Dimensions”
Visualization
3. Paul Bourke: Stereo rendering.
http://local.wasp.uwa.edu.au/~pbourke/projection/stereorender/
4. Stereo tutorial: http://www.captain3d.com/stereo/html/tutorial.html
Data analysis and visualization. Advanced computing for science and engineering.