Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Cezary Szczylik Klinika Onkologii Wojskowy Instytut Medyczny. Warszawa IMMUNONKOLOGIA – SZANSE I ZAGROŻENIA W LECZENIU CZERNIAKA, RAKA NERKI I PŁUC Immunotherapy history in oncolgy Ipilimumab registartion in metastaic melanoma4 Burnets hypothesis of immune surveillance in cancer1 immunologic infiltrations described by Virchow 1857 1893 Coley toxin – American Journal of Medical Sciences5 1957 High dose IL-2 registered in metastatic melanoma2 1991 1995 1998 2010 2011 FDA sipuleucel registered in prostate cancer 1 Tumor specific antigens (Rosenberg i Boon)1 IFNα in melanoma 1.Lesterhuis WJ i wsp. Nat Rev Drug Discov. 2011;10:591-600 2.http://www.cancer.gov/cancertopics/pdq/treatment/melanoma/HealthProfessional/Page9#Section_457; 3. http://www.cancer.gov/cancertopics/pdq/treatment/melanoma/HealthProfessional/page1/AllPages#Section_363. 4. US Food and Drug Administration. http://www.fda.gov/newsevents/newsroom/pressannouncements/ucm1193237.htm. 5.Coley W. American Journal of Medical Sciences.1893; 105(5): 487-510. What is a role of immmunotherapy? What do we expext from todays therapeutic abilities? Long term survival Median OS PFS Responce rates I-O is an emerging therapeutic modality • I-O treatments are different from other treatment modalities • Rather than directly targeting the tumour itself, I-O agents use the natural capability of the patient’s own immune system to fight cancer Surgery I-O Radiation Cytotoxic & targeted therapies DeVita VT, Rosenberg SA. N Eng J Med 2012;366:2207–2214 Borghaei H, et al. Eur J Pharmacol 2009;625:41–54 The Role of the Immune System in Cancer and the Process of Immunoediting • The three E’s of cancer immunoediting describe the immune system’s roles in protecting against tumor development and promoting tumor growth[1] Elimination Equilibrium Escape* Cancer immunosurveillance Cancer dormancy Cancer progression Genetic instability Tumor heterogeneity Immune selection Tumors may avoid elimination by the immune system through outgrowth tumor cells that can suppress, disrupt, or “escape” the immune system Effective antigen processing/presentation Effective activation and function of effector cells ‒ CD8+ T cell T cell activation without co-inhibitory signals CD4+ T cell NK cell Treg Tumor cells Normal cells Adapted from Vesely et al 2011.[1] * Various mechanisms for immune “escape” exist (See Section IV. Mechanisms of Immune Escape in NSCLC). NK, natural killer; Treg, regulatory T cell. 1. Vesely MD et al. Annu Rev Immunol. 2011;29:235-271. Tumours use various mechanisms to escape the immune system Immune escape mechanisms are complex and frequently overlapping A. Ineffective presentation of tumour antigens to the immune system CD8+ T cell TCR VEGF APC B. Recruitment of immunosuppressive cells (Tregs, MDSCs, others) MHC CTLA-4 MDSC Treg PD-L1 Tumour cells PD-1 P-DL1 PD-1 D. T cell checkpoint dysregulation TGF-β IDO IL-10 TGF-β IL-10 CD4+ T cell TGF-β ARG1 iNOS CD8+ T cell C. Release of immunosuppressive factors Vesely MD, et al. Ann Rev Immunol 2011;29:235–271 Immune system checkpoints Immune responces, whether against tumor cells, infected cells, or as a result of autoimmunity, can damage healthy tissue if - left unchecked. To protect against this, the immune system has multiple mechsanisms to downregulate immune rsponses – collectively known as immune checkpoint pathways Davies M. Case Managment and Res.2014.6, 63-75 Numerous immune checkpoints control normal immune response Various ligand-receptor interactions occur between T cells and APCs PD-1 and CTLA-4 are 1 examples of inhibitory checkpoint receptors Pardoll DM. Nat Rev Cancer 2012;12(4):252–264 T-Cell Immune Checkpoints as Targets for Immunotherapy • There are several T-cell targets for immunotherapy[1] • Agonistic antibodies directed towards activating co-stimulatory molecules and blocking antibodies against co-inhibitory molecules may enhance T-cell stimulation to promote tumor destruction[1] Activating receptors Inhibitory receptors CTLA-4 CD28 PD-1 OX40 B7-1 GITR cell TTcell TIM-3 CD137 BTLA CD27 VISTA HVEM Agonistic antibodies LAG-3 Blocking antibodies T cell stimulation Adapted from Mellman et al 2011.[1] 1. Mellman I et al. Nature. 2011;480(7378):480-489. Role of PD-1/PD-L1 and PD-L2 in cancer • PD-1 expression is upregulated in activated T cells • PD-1 engages two known ligands: PD-L1 and PD-L2 • Associated with decreased cytokine production and effector function • PD-L1 (B7-H1): Expressed on a wide variety of solid tumours Expression upregulated by cytokines Expressed in approximately 40% of metastatic melanoma and 50% of NSCLC tissue samples by IHC Can also suppress immunity by binding to B7.1 (CD80) • PD-L2 (B7-DC): Expression in melanoma not well characterised but shown to be present on several solid tumours as a negative prognostic indicator Korman AJ, et al. Adv Immunol 2006;90:297–339 Butte MJ, et al. Immunity 2007;27:111–122 Zou W, et al. Nat Rev Immunol 2008;8:467–477 Role of PD-1 pathway in suppressing antitumour immunity Recognition of tumour by T cell through MHC/antigen interaction mediates IFN release and PD-L1/2 upregulation on tumour Priming and activation of T cells through MHC/antigen and CD28/B7 interactions with antigenpresenting cells IFN IFNγR MHC T cell receptor T cell receptor MHC PI3K NF Other Tumour cell PD-L1 Shp-2 PD-L2 PD-1 PD-1 CD28 B7 Dendritic cell T cell PD-1 PD-L1 Shp-2 PD-1 PD-L2 Nivolumab is a PD-1 receptor blocking antibody Ribas A. N Engl J Med 2012;366(26):2517–2519 Ipilimumab, a CTLA-4 blocking human monoclonal antibody, augments T-cell activation T-cell activation T-cell inhibition T-cell potentiation CTLA-4 T cell CD28 TCR MHC APC T cell T cell CD28 TCR B7 MHC APC CTLA-4 CTLA-4 B7 TCR Ipilimumab MHC B7 blocks CTLA-4 APC Adapted from Weber J. Cancer Immunol Immunother 2009;58:823 PD-L1 expression and evidence of poor prognosis RCC1 • Patients with ↑PD-L1 on tumours and TILs had 4.5x higher risk of death (P<0.001) NSCLC2 • ↑PD-L1 on tumour cells correlated with ↓TILs in same region Melanoma3 • Patients with ↑PD-L1 on TIL had 2x higher risk of death (P=0.01) • Patients with stage IV disease had ↑PD1 expression on peripheral CD8+/CD4+ T cells • ↑PD1 expression on CD8+ TILs with disease progression 1. Thompson RH, et al. Proc Natl Acad Sci 2004;101:17174–17179 2. Konishi J, et al. Clin Cancer Res 2004;10:5094–5100 3. Hino R, et al. Cancer 2010;116:1757–1766 ESMO 2013 Pooled Analysis of Long-term Survival Data From Phase II and Phase III Trials of Ipilimumab in Metastatic or Locally Advanced, Unresectable Melanoma Schadendorf D,1 Hodi FS,2 Robert C,3 Weber JS,4 Margolin K,5 Hamid O,6 Chen TT,7 Berman DM,8 Wolchok JD9 1University Hospital Essen, Essen, Germany; 2Dana-Farber Cancer Institute, Boston, MA, USA; 3Institute Gustave Roussy, Villejuif, France; 4Moffitt Cancer Center, Tampa, FL, USA; 5University of Washington, Seattle, WA, USA; 6The Angeles Clinic and Research Institute, Los Angeles, CA, USA; 7Bristol-Myers Squibb, Wallingford, CT, USA; 8BristolMyers Squibb, Lawrenceville, NJ, USA; 9Memorial Sloan-Kettering Cancer Center, New York, NY, USA. Abstract Number 24LBA 14 OS Relative to Historical Data Historical controls Phase II: 1278 patients in 42 cooperative group trials from 1975 to 2005 Phase III: 3739 patients in 10 trials from 1999 to 2011 Schadendorf et al., ESMO 2013,15 abs 24LBA Ipilimumab atypical responce kinetics Tydzień 96 Trwała i utrzymująca się odpowiedź bez oznak IRAE Ocena przesiewowa Tydzień 12 Wstępny wzrost łącznej objętości nowotworu (mWHO PD) Tydzień 16 Odpowiedź Dzięki uprzejmości K. Harmankaya, Wiedeń Harmankaya i wsp. Praca przedstawiona podczas EADO 2009, Wiedeń • Unmet Needs in NSCLC and SCLC Although there have been advances in NSCLC and SCLC management, the prognosis for patients with advanced NSCLC remains poor[1] – • • 75% of patients diagnosed with NSCLC have advanced/metastatic disease with a 1-year survival rate <16%[2,3] Treatment options for patients whose tumors have failed to respond to two or more conventional chemotherapy regimens are limited[4,5] Advancements in understanding the biology of NSCLC have elucidated disease characteristics (eg, histology, molecular Squamous Current pathology) that must be considered for Patients failing [1] therapies targeted therapeutic approaches targeted therapies – Patients failing conventional chemotherapies Over the past several years, immunotherapies have emerged as a new therapeutic approach in NSCLC[6] Unmet needs NSCLC, non-small cell lung cancer. 1. Bonomi PD. Cancer. 2010;116:1155-1164. 2. SEER Stat Fact Sheets: Lung and Bronchus. Available at: http://seer.cancer.gov/statfacts/html/lungb.html. Accessed April 4, 2013. 3. Cetin K et al. Clin Epidemiol. 2011;3:139-148. 4. NCCN Guidelines®. NSCLC. V3.2014. 5. Peters S et al. Ann Oncol. 2012;23(suppl 7):vii56-vii64. 6. Brahmer JR. J Clin Oncol. 2013;31(8):1021-1028. Summary of the Prognostic Roles of Immune Cells in NSCLC and SCLC • Similar to other tumor types (eg, melanoma and renal cell carcinoma), data show that lung tumors are recognized by, and initiate a response from, the immune system Dendritic Cells Favorable prognosis[1]: Overall survival, disease-specific survival, and disease-free survival • Certain immune cells are associated with a better prognosis/improved outcome, while others suggest an unfavorable prognosis and disease outcome CD3+ Cells Favorable prognosis[2,3]: Disease-specific survival and lower risk of disease recurrence CD8+ Cells Favorable prognosis[4-8]: Overall survival CD4+ Cells Favorable prognosis[4,6,9]: Overall survival Macrophages Favorable prognosis[7]: Overall survival NK Cells Favorable prognosis[10]: Disease-specific survival NK Cells (Immature / Impaired) Unfavorable prognosis[11]: Disease progression Tumor Tregs Unfavorable prognosis[12,13]: Overall survival, relapse- and recurrence-free survival NK, natural killer; NSCLC, non-small cell lung cancer; Treg, regulatory T cell. 1. 2. 3. 4. 5. 6. Dieu-Nosjean MC et al. J Clin Oncol. 2008;26(27):4410-4117. Petersen RP et al. Cancer. 2006;107(12):2866-2872. Al-Shibli K et al. APMIS. 2010;118(5):371-382. Ruffini E et al. Ann Thorac Surg. 2009;87(2):356-372. Zhuang X et al. Appl Immunohistochem Mol Morphol. 2010;18(1):24-28. Hiraoka K et al. Br J Cancer. 2006;94(2):275-280. 7. 8. 9. 10. 11. 12. 13. Kawai O et al. Cancer. 2008;113(6):1387-1395. McCoy MJ et al. Br J Cancer. 2012;107(7):1107-1115. Wakabayashi O et al. Cancer Sci. 2003;94(11):1003-1009. Al-Shibli K et al. Histopathol. 2009;55(3):301-312. Jin J et al. PLoS One. 2013;8(4):e61024. Tao H et al. Lung Cancer. 2012;75(1):95-101. Shimizu K et al. J Thorac Oncol. 2010;5(5):585-590. Immune Escape in NSCLC/SCLC • Many tumors, including NSCLC, escape the immune response by creating an immunosuppressive microenvironment that prevents an effective antitumor response[1,2] A. Ineffective presentation of tumor antigens to the immune C. Release of system[2] Downregulation of MHC expression Suppression of APC Tumor cell APC immunosuppressive factors[2] Factors/enzymes directly or indirectly suppress immune response Tumor cells D. T cell checkpoint dysregulation[2] CTLA-4 PD-1 B7-1 CD28 B. Recruitment of immunosuppressive OX40 cells[1,2] GITR T cell TIM-3 CD137 CD27 HVEM Tregs MDSCs Tumor microenvironment Co-stimulatory receptors BTLA VISTA LAG-3 Co-inhibitory receptors Adapted from Mellman et al 2011.[3] • The mechanisms tumors use to escape the immune system provide a range of potential therapeutic targets for NSCLC[2] APC, antigen-presenting cell; BTLA, B and T lymphocyte attenuator; CTLA-4, cytotoxic T-lymphocyte antigen-4; HVEM, herpesvirus entry mediator; LAG-3, lymphocyte activation gene-3; MDSC, myeloid-derived suppressor cell; MHC, major histocompatibility complex; NSCLC, non-small cell lung cancer; PD-1, programmed death-1; Treg, regulatory T cell; TIM-3, T cell immunoglobulin and mucin protein 3; VISTA, V-domain immunoglobulin suppressor of T cell activation. 1. Bremnes RM et al. J Thorac Oncol. 2011;6(4):824-833. 2. Jadus MR et al. Clin Dev Immunol. 2012;2012:160724. 3. Mellman I et al. Nature. 2011;480(7378):480-489. Immunotherapies in NSCLC Current immunotherapies target NSCLC through a variety of approaches: Novel vaccine approaches Targeting the tumor Belagenpumatucel-L and Tergenpumatucel-L[3,4,6] (Live engineered tumor cell vaccines) Bavituximab[1] (anti-PS) Reolysin®[2] (oncolytic virus) CimaVax-EGF[3,4,7] (EGF–EGFR vaccine) Tumor cells Enhancing antigen recognition/presentation Tumor cells Tumor cells Targeting T-cell checkpoint dysregulation Stimuvax®[3,4] (MUC-1) Nivolumab[3,4] (anti-PD-1) TG4010[3,4] (MUC-1) Ipilimumab[3,4] (anti-CTLA-4) Racotumomab[5] (anti-idiotype vaccine) Other mAbs[3,8] APC Tumor microenvironment • Anti-PD-1 • Anti-PD-L1 • Anti-PD-L2 APC, antigen-presenting cell; CTLA-4, cytotoxic T-lymphocyte antigen-4; EGF, 3. Brahmer JR. J Clin Oncol. 2013;31(8):1021-1028. epidermal growth factor; EGFR, epidermal growth factor receptor; MUC-1, mucin-1; 4. Dasanu CA et al. Expert Opin Biol Ther. 2012;12(7):923-937. NSCLC, non-small cell lung cancer; PD-1, programmed death-1; 5. Segatori VI et al. Front Oncol. 2012;2(160):1-7. PD-L1, programmed death ligand-1; PS, phosphatidylserine. 1. Bavituximab Oncology. First-in-Class PS-Targeting Monoclonal Antibody. 6. Available at: http://www.peregrineinc.com/pipeline/ bavituximaboncology.html. Accessed April 10, 2014. 7. 2. Oncolytics. Reolysin. Available at: http://www. oncolyticsbiotech.com/reolysin. Accessed May 17, 2013. 8. T cells NewLink Genetics [press release]. Available at: http://investors.linkp.com/releasedetail.cfm?ReleaseID=768475. Accessed March 28, 2014. Rodriguez PC et al. MEDICC Rev. 2010;12(1):17-23. Ceeraz S et al. Trends Immunol. 2013;34(11):556-565. CA209-003 OS of patients treated with nivolumab monotherapy by dose OS rate % (95% CI) [patients at risk] Group Died/Treated Median OS (95% CI) 1-year 2-year 1 mg/kg 26/33 9.2 (5.3, 11.1) 32 (16, 49) [8] 12 (3, 27) [2] 3 mg/kg 20/37 14.9 (7.3, —) 56 (38, 71) [17] 45 (27, 61) [9] 10 mg/kg 48/59 9.2 (5.2, 12.4) 40 (27, 52) [23] 19 (10, 31) [9] Censored 1.0 Overall Survival 0.8 1-year OS Rate 56% (17 patients at risk) 0.6 2-year OS Rate 45% (9 patients at risk) 0.4 0.2 0.0 0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 Months Since Treatment Initiation Brahmer JR, et al. Poster presented at ASCO 2014 (Abstract 8112) Response of Squamous NSCLC to BMS-936558 58-year-old former smoker with squamous NSCLC 4 prior treatments for stage IV disease Left flank pain (adrenal lesion) resolved within 2 months of starting BMS936558 Response ongoing after completing 2 years of BMS-936558 treatment in June of 2012 CA209-012 Summary of survival outcomes in patients treated with 1st-line nivolumab monotherapy Squamous (n=9) Nonsquamous (n=11) Total (N=20) 44 (14, 72) 73 (37, 90) 60 (36, 78) 15.1 (5.9, 63.3+) 47.3 (9.6, 80.7+) 36.1 (5.9, 80.7+) 1-year OS rate, % (95% CI) 67 (28, 88) 82 (45, 95) 75 (50, 89) Median OS, weeks (range) 68.0 (13.3, 73.1) NR (16.6, 89.1+) NR (13.3, 89.1+) PFS PFS rate at 24 weeks, % (95% CI) Median PFS, weeks (range) OS Gettinger SN, et al. Poster presented at ASCO 2014 (Abstract 8024) Phase II Study of Ipilimumab and Paclitaxel/Carboplatin: OS in the Squamous NSCLC Subset Data from trial CA184-041. 1.0 Proportion Alive 0.8 Regimen[1] Events/ Patients Median (mo) HR (95% CI) Control Concurrent Phased* 14/15 17/21 13/21 7.9 6.2 10.9 – 1.02 (0.50–2.08) 0.48 (0.22–1.03) 0.6 0.4 0.2 0 Patients at risk: Concurrent Phased* Control 0 3 6 9 12 15 Months 18 21 24 27 21 21 15 13 19 11 11 15 10 6 12 7 4 9 4 3 8 1 2 5 1 0 3 0 0 0 0 * Phased regimen: 2 doses of paclitaxel (175 mg/m2)/carboplatin (AUC=6) prior to start of ipilimumab. AUC, area under the curve; CI, confidence interval; HR, hazard ratio; NSCLC, non-small cell lung cancer; OS, overall survival. 1. 3 9 1 Reck M et al. Ann Oncol. 2012;23(suppl 8):viii28-viii34. RCC renal cell carcinoma molecular pathology RCC it is a heterogenous group of tumors Most of them has clear cell morphology Clear cell Histologic subtype (%) Non clear cell Papillary type I,II +II II) 75–85 Genetic mutation VHL 12–14 c-MET FH Chromopho Oncocytic Collecting b duct 4–6 2–4 BHD BHD BHD = Birt–Hogg–Dubé; FH = fumarate hydratase; VHL = von Hippel–Lindau 1 Molecular pathology of renal cell carcinoma Acquisition of secondary KIT mutation Proliferation Erk 1/2 PLC-γ Survival Akt PI3K Mutated KIT Recruitment of proangiogenic BMDCs Bone marrow derived cells PDGFR CXCR4 Vascular permeability VEGFR NOS Migration Src Sunitinib sorafenib PlG F TKI-MEDIATED BLOCKAGE OF VEGF- AND PDGFMEDIATED ANGIOGENESIS PATHWAY AXIS PDGFR FAK P38 MAPK VEGFR PDGF Immunomodulatory effect VEGF SDF-1 Stromal cells PDGF Alternalive signalling in condition of RCC resistance to TKIs TIE2 TGFβ VEGF Cell survival CXCR2 FGFR PDGF SDF-1 PlG F PlG F VEGF VEGFR PDGF VEGF Alternalive signalling in condition of RCC resistance to TKIs Ang-2 Ang-2 IL-8 sunitinib FGF IL-8 FGF FGF IL-8 FGF Lysosomal sequestration VEGF VEGF PDGFR Β-catenin VEGF TYRO3 MITF PlG F PDGF Ras VEGF MAPK Ang-2 Ang-2 IL-8 IL-8 FGF HIF-1β FF FGF upregulation PRKX TTBK2 RSK Gene CPB/p300 expression HIF-1β HIF-1α switch HRE TARGET GENES HIF-1α MET Erk 1/2 Pericyte Ras Alk1 JAK/STAT downregulation E3 Ligase Complex Rbx1 TCEB2 TGFRβ2 CXCR4 eIF-4E1 Mek 1/2 ESM1downregulation HOXA9 PECAM FGFR mTOR EGFR PI3K Erk 1/2 PDGFR S6K Akt EGFR Increased pericyte expression and coverage Ang-2 SDF-1 SDF-1 PDGF PDGF VEGF VEGF ? VEGFR Smad 2/3 Endothelial cell T cell B cell B cell T cell T cell B cellT cell B cell T cellB cell VEGFR PDGF PDGF RCC cytosol Tumour cell Increased migration and invasiveness/ EMT nucleus Cul2 HIF-1α TCEB1 VHL Ub Ub Ub Ub HIF-1α degradation Fig. by M. Buczek et al. Abstract 4505 CLINICAL ACTIVITY AND SAFETY OF ANTI-PD-1 (BMS-936558, MDX-1106) IN PATIENTS WITH PREVIOUSLY TREATED METASTATIC RENAL CELL CARCINOMA (MRCC) DF. McDermott, CG. Drake, M. Sznol, TK. Choueiri, J. Powderly, DC. Smith, J. Wigginton, D. McDonald, G. Kollia, A K.Gupta, MB. Atkins Abstract 5009 NIVOLUMAB FOR METASTATIC RENAL CELL CARCINOMA (MRCC): RESULTS OF A RANDOMIZED, DOSE-RANGING PHASE II TRIAL R. Motzer, B. Rini, D. McDermott, B. Redman, T. Kuzel, M. Harrison, U. Vaishampayan, H. Drabkin, S. George, T. Logan, K. Margolin, E. R. Plimack, I. Waxman, A. Lambert, H. Hammers Progression-free survival in Phase II trial 100 Median PFS, months (80% CI) Progression-free survival (%) 90 80 0.3 mg/kg 2.7 (1.9, 3.0) 70 2 mg/kg 4.0 (2.8, 4.2) 60 10 mg/kg 4.2 (2.8, 5.5) 50 Stratified trend test P value 0.9 0.3 mg/kg (events: 48/60) 2 mg/kg (events: 43/54) 10 mg/kg (events: 45/54) 40 30 20 10 0 0 3 6 9 Number of patients at risk 12 15 18 Time (months) 21 24 0.3 mg/kg 60 24 17 13 12 11 3 0 0 2 mg/kg 54 27 15 9 7 6 1 0 0 10 mg/kg 54 30 18 10 8 7 3 1 0 Symbols represent censored observations. 33 2014 (suppl; abstr 5009) R. Motzer at all. J Clin Oncol 32:5s, Overall survival in Phase II trial Based on data cutoff of March 5, 2014; Symbols represent censored observations. 100 Overall survival (%) 90 0.3 mg/kg (events: 36/60) 2 mg/kg (events: 29/54) 10 mg/kg (events: 32/54) 80 70 60 50 Median OS, months (80% CI) 40 30 0.3 mg/kg 18.2 (16.2, 24.0) 20 2 mg/kg 25.5 (19.8, 28.8) 10 10 mg/kg 24.7 (15.3, 26.0) 0 0 3 6 9 12 15 18 21 24 27 30 33 Time (months) Number of patients at risk 0.3 mg/kg 60 56 50 41 37 35 31 27 24 13 0 0 2 mg/kg 54 52 45 42 38 35 32 28 26 12 0 0 10 mg/kg 54 50 47 45 38 32 29 29 26 8 1 0 34 2014 (suppl; abstr 5009) R. Motzer at all. J Clin Oncol 32:5s, Progression-free survival 1.0 S + N (n=33) 57.6% Tx-naïve P + N (n=20) 0% Tx-naïve 0.8 Proportion of PFS Median PFS, weeks (95% CI) 0.6 S + N (n=33) 48.9 (41.6-66.0) P + N (n=20) 31.4 (12.1-48.1) 0.4 0.2 0.0 BL 12 24 S+N 33 27 23 21 16 4 P+N 20 13 9 7 5 2 Number of patients at risk 36 48 60 72 Time since first dose (weeks) 84 96 1 1 0 2 2 1 Symbols represent censored observation. Number of patients at risk listed is number at risk before entering the time period. Tx, treatment A. Amin, ASCO 2014 Overall survival by MSKCC risk group and number of prior treatments Risk group 100 90 90 Overall survival (%) Overall survival (%) Number of prior treatments 100 80 70 60 50 40 30 Favorable (events: 25/56) Intermediate (events: 40/70) Poor (events: 32/42) 20 10 0 0 3 6 9 12 15 18 21 24 Time (months) Favorable Intermediate Poor 70 60 50 40 30 20 1 Prior treatment (events: 22/46) ≥2 Prior treatments (events: 75/122) 10 0 27 30 33 Median OS, months (95% CI) NR (24.9, NR) 20.3 (13.4, NR) 12.5 (8.1, 18.6) NR, not reached; Symbols represent censored observations. R. Motzer, ASCO 2014 80 0 3 6 9 12 15 18 21 Time (months) 24 Median OS, months (95% CI) 1 NR (19.8, NR) ≥2 18.7 (13.4, 26.0) 27 30 33 Immuno-checkpoints targeting (CTLA-4, PD1) – hopes & threats Hopes Durable responses (long-term survival) Off-treatment efficacy Potential cure Threats Delayed response to treatment No validated predictors Autoimmune AEs Eggermont A. et al., E J Cancer, 2013; Blank Ch. Curr Opin Oncol, 2014; Finn O, N Engl J Med, 2008 Finally –immunotherapy is back