Download スライド タイトルなし

Document related concepts
no text concepts found
Transcript
Introduction to
Embedded Data Converters
Akira Matsuzawa
Tokyo Institute of Technology
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
1
Contents
1.
Introduction
2.
Characterization of data converters
3.
Overview of high-speed A/D converters
4.
Overview of high-speed D/A converters
5.
Overview of over-sampling sigma-delta data converters
6.
Basic design considerations
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
2
1.
Introduction
• Mixed signal systems
– Software defined radio
– Digital read channel
– Mixed Signal SoC
• Progress of ADC and DAC
– Power and area
– Embedding
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
3
Basic mixed signal system
Mixed signal systems basically consist of DSP, ADC, DAC, and pre/post filters.
The signals are converted between continuous time and discrete time.
Continuous time
=Analog
AGC
Pre
Filter
Discrete time
=Digital
ADC
DSP
Continuous time
=Analog
DAC
Post
Filter
Clock
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
4
Software defined radio
Future wireless systems need powerful ADC and DAC for software defined radio.
Future cellular phone needs Multi-standards and multi chips
11 wireless standards!!
IMT-2000
RF
IMT-2000
BB
GSM
RF
GSM
BB
Bluetooth
RF
Bluetooth
BB
MCU
GPS
RF
GPS
BB
Power
Current
Multi-bands and Multi-standards on a single chip
Yrjo Neuvo, ISSCC 2004, p.32
Mixer
RF filter
Future
LNA
On a chip
PA
Filter
X
Filter
ADC
Frequency
Synthesizer
X
Filter
DSP
DAC
Mixer
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
5
Mixed signal tech. ; Digital read channel
DVD
Digital storage needs high speed mixed signal technologies.
For the reduction of error rate, high speed ADC is the key.
Variable
Gain Amp.
Analog
Filter
A to D
Converter
Digital
FIR Filter
Viterbi
Error
Correction Data
Out
7b 400MHz
Voltage
Controlled
Oscillator
Data In
(Erroneous)
Clock
Recovery
Pickup signal
Analog circuit
Digital circuit
Data Out
(No error)
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
6
Mixed signal SoC
Mixed signal SoC can realize full system integration for DVD application.
Embedded analog is the key.
0.13um, Cu 6Layer, 24MTr
CPU2
CPU1
System
Controller
Pixel
Operation
Processor
Front-End
Analog FE
+Digital R/C
VCO
ADC
PRML
Read
Channel
Servo DSP
Gm-C
Filter
AV
Decode
Processor
IO
Processor
Back -End
Analog
Front End
2006.06.14.
Okamoto, et al., ISSCC 2003
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
7
Progress of high-speed ADC
High speed ADC can be embedded in CMOS resulting in power reduction.
ISSCC 1991
6b, 1GHz ADC
2W,
1.5um Bipolar
ISSCC 2000
6b, 800MHz ADC
400mW, 2mm2
0.25umCMOS
Pd/ 2N Gsps [mW]
Matsuzawa, ISSCC 1991
Pd of high speed CMOS ADCs
10
1/8
1
This Work
Sushihara, et al, ISSCC 2000
0.1
ISSCC 2002
World lowest Pd HS ADC
1
10
Conversion rate [x100Msps]
7b, 400MHz ADC
50mW, 0.3mm2
0.18umCMOS Sushihara and Matsuzawa, ISSCC 2002
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
8
Progress of A/D converter; video-rate 10b ADC
1/2000 in Power and 1/200,000 in cost during past 20 years
ADC was the bottle-neck for the digital TV and Video systems
Technology progress has solved this problem.
1980
1982
1993
Now
Conventional product World 1st Monolithic World lowest power SoC Core
Board Level (Disc.+Bip)
20W
$ 8,000
Bipolar (3um)
2W
$ 800
T. Takemoto and A. Matsuzawa,
JSC, pp.1133-1138, 1982.
2006.06.14.
CMOS (1.2um) CMOS (0.15um)
10mW
30mW
$0.04
$ 2.00
K. Kusumoto and A. Matsuzawa,
ISSCC 1993.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
9
Power and area reduction of video-rate 10b ADCs
Power and area of ADC have been reducing continuously.
Currently, ADC can be embedded on a chip
Power reduction
2000
1000
500
200
100
50
Flash
Two-step
Subranging
Folding/Interpolating
Pipeline
Look-ahead Pipeline
Others
20
10
5
Flash
Two-step
Subranging
Folding/Interpolating
Pipeline
Look-ahead Pipeline
Others
50.0
20.0
10.0
5.0
2.0
1.0
0.5
2
1
1980 1985 1990 1995 2000 2005 2010
Year
2006.06.14.
100.0
Area size (mm2)
Power (mW)
10000
5000
Area reduction
0.2
0.1
1980
1985 1990
1995
Year
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
2000 2005
2010
10
Power and area reduction of video-rate 10b ADCs
100.0
50.0
100.0
20.0
10.0
Flash
Two-step
Subranging
Folding/Interpolating
Pipeline
Look-ahead Pipeline
Others
5.0
2.0
1.0
0.5
0.2
0.1
0.1
0.2 0.3 0.5 0.7 1
2
Process node (m)
3
5
7 10
Area size (mm2)
Power/MHz (mW/MHz)
50.0
20.0
10.0
5.0
Flash
Two-step
Subranging
Folding/Interpolating
Pipeline
Look-ahead Pipeline
Others
2.0
1.0
0.5
0.2
0.1
0.1
0.2 0.3 0.5 0.7 1
2
5
10
Process node (m)
M. Hotta et al. IEICE 2006. June
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
11
Embedding ADC on a CMOS chip
CMOS ADC and DAC has been embedded on a CMOS chip.
This has realized low cost and low power digital portable AV products.
1993 Model: Portable VCR with digital image stabilizing
6b Video ADC
Digital Video filter
A. Matsuzawa, JSC, pp. 470-480, 1993.
System block diagram
8b low speed ADC;DAC
2006.06.14.
8b CPU
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
12
2. Characterization of data converters
• Basic functions of ADC and DAC
• Static performance
– INL, DNL, monotonicity
– Quantization noise
• Dynamic performance
–
–
–
–
SNR, SFDR, THD, SNDR, ENOB
Sampling Jitter
ERB
Glitch
• Figure Of Merit
• Performances and applications
– Needed performances for wireless systems
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
13
Basic functions of ADC
Sampling: Sampling the analog signal with accurate timing.
Quantization: Express the converted data with certain accuracy.
Quantization
Voltage
Voltage
Sampling
Time
Time
ADC
Digital
0001
0010
0111
1000
1001
1000
0111
0101
0011
0010
0100
0111
0111
0111
0110
0110
0110
0110
Coding
Quantization
Sampling
Analog
Coding
CLK
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
14
Static performance
INL and DNL are the major static performance indicators of ADC and DAC.
DNL: Differential Non-Linearity
INL: Integrated Non-Linearity
DNL j 
Width ACTUAL , j  Width IDEAL
Width IDEAL
INL j  Transfer function ACTUAL , j  Transfer fuction IDEAL , j
INL j 
kj
 DNL
k
k 0
DNL j  INL j 1  INL j
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
15
DNL and INL
DNL profile
2006.06.14.
INL profile
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
16
Monotonicity in DAC
Binary coded DAC often degrades monotonicity.
The monotonicity stands for the qualitative characteristics of data converters of
which transfer function keep the monotonic increase or decrease.
If the converter can not guarantee the monotonicity,
The feedback loop doesn’t work properly and results
in backrush.
At the change of MSB bit
01111->10000
Binary weight
1/32
Out
Out
1/16
1/8
1/2
→
1/2
1/2
Large DNL
1/4
In
In
1/4
1/8
1/16
1/32
2006.06.14.
Keep monotonic
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
Degrade monotonicity
17
Quantization noise
Quantization causes noise
Higher SNR needs higher resolution
Quantization noise
Transfer characteristics
Pn  
/2
e P ( e )de  
 / 2
2
/2
e
 / 2
2
1

1


P ( e )  
,e 

2
0, all other e
2006.06.14.
de 
2
12
Ps
  2 

N 1 2
2

Ps
  2N 1
SNR 

Pn
2
P
SNRdB  10 log  s
 Pn

2

12
2
 1.5  22N

  6.02  N  1.76

VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
18
Dynamic performance
Dynamic performance indicates the ratio between signal and noise or distortion.
We should use the suitable terms depending upon the type of application.
SNR = 10 log
Signal power
Total noisefloor power
Signal power
L arg est spurious power
SFDR = 10 log
THD = 10 log
Total harmonic distortion power
Signal power
SNDR = 10 log
Signal power
Noise and distortion power
SNDR - 1.76
ENOB =
6.02
2006.06.14.
Fc=40MHz, fin=4MHz
SFDR=49.8dB
SNDR=44.9dB, ENOB=7.17-bit
2ndHD=-49.8dB, 3rdHD=-56.7dB
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
19
Sampling jitter effect
Sampling jitter is converted to noise.
When the input frequency becomes higher, the SNR becomes lower.
SNDR( dB )  10 log
V 
dVsig
V sig
dt
1
2f in  t 2
120
t


SNDR  20 10  t
80
SNDR  50 10  t
60
SNDR  100 10  t
SNDR  200 10  t
40
Input signal
SNDR 10 106  t
100
6
V
6
6
6
t
t
2006.06.14.
t0
Time
20
13
1 10
1 10
12
1 10
11
t
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
20
Effective Resolution Bandwidth
ERB is the input frequency where the SNDR has dropped 3dB (or ENOB 0.5 bit)
6
SNR
ENOB (bit)
3dB (0.5bit) down
5
SNDR
4
ERB
3
100
2006.06.14.
200
Input frequency (MHz)
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
300
21
Glitch
Glitch is the spiky signal at code transition.
Caused by overlapping of signals
This appears within a few psec,
However, energy is not negligible.
Glitch causes the distortion of signal
State 1: [1000]=8
I/2
I/4
I/8
I/16
Pg ,max  2
State 2: [0111]=7
I/2
Pg ,max  PQN 
Glitch
I/4
15
I/8
2 N 2
I/16
Tg 
 
2
Tg
Ts
2
12
Ts
3  22N
Current
Xg
Intermediate: [1111]=15
I/2
2006.06.14.
I/4
I/8
8
7
Tg
I/16
Time
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
22
Figure Of Merit
Figure of merit shows energy efficiency for data conversion.
FOM 
1000
Pow er[m W ]
Power
2 ENOB  2 BW
JSSC ,ISSC C ,VLSI
12b 10b ,C IC C ,ESSC C
& Products
(≧1 0 Bit,≧
11995-2006
0 M Sps)
10000
Power
2 ENOB  f s

or 
Energy
Conversion step
H igh Speed A DC
[Sam pling Freq. VS Pow er]
10 bit
0.3 mW / MHz
100
 0.5 pJ / conv
12bit
1mW / MHz
10
 0.8 pJ / conv
1
1
10
100
1000
1 2 Bit(Paper)
1 0 Bit(Paper)
1 2 Bit Products
1 0 Bit Products.
10000
Sam pling Freq.[M Sps]
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
23
Performance and application
Needed resolution and conversion rate depending upon the application.
Conversion Rate (MHz)
1000
500
300
Graphics
HDD/DVD
Video/
Communication
100
50
30
DVC/DSC/Printer
10
5
Servo
Automobile
1
General
Purpose
0.5
(µ-Computer)
0.1
Audio
0.05
Meter
6
8
10
12
14
16
Resolution (bits)
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
24
Needed SNR for certain BER in wireless system
Lower Bit Error Rate in the digital modulation needs higher SNR.
16QAM
Q
2A
n-PSK


BER  erfc  SNR sin 
n

n-QAM
 2  SNR

1 
erfc 
BER  2 1 
 2 n 1
n



10





I
1
QPSK
0.1
16QAM
256QAM
0.01
BER q( SNR  16)
Noise distribution
“0”
“1”
BER q( SNR  64)
BER q( SNR  256)
BER p( SNR  4)
1 10
4
1 10
5
1 10
6
1 10 7
1 10
8
1 10
9
1 10
BER
2006.06.14.
64QAM
1 10 3
10
0
10
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
20
SNR
30
40
25
BER requirement
The lower the bit error rate the higher the required ADC/DAC resolution.
Resolution (quantization noise) affects BER.
DAC requirement for QAM
2006.06.14.
ADC requirement for digital read-channel
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
26
Signal intensity in wireless system
Wireless system has strong unwanted signals.
Also, electric circuits generate distortion and noise.
Filter
A
Intensity (dB)
Filter
B
C
ADC
Far
signal
> Needed dynamic range to the blocker
Adjacent
signal
B
C
> Needed SNR
Wanted
signal
Due to aliasing
Due to
distortion of ADC
Thermal noise
Frequency
2006.06.14.
Amp.
A
Thermal noise
Thermal Noise
+ Quantization noise
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
27
Needed ADC dynamic range
Existence of strong blockers results in the need for high dynamic range ADC.
DCS1800
WCDMA
Blocker -26dBm
signal
Wanted
signal
ADC
dynamic range
=86dB (14b)
-97dBm
15dB
Adjacent
channel
-52dBm
-33dB
Filter attenuation
Wanted
signal
-93dBm
Thermal noise
Quantization
noise
20dB
8dB
-85dB
ADC dynamic range
=36dB (6b)
Quantization
noise
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
28
3. Overview of high-speed A/D converters
•
•
•
•
•
•
•
•
Performance and ADC architecture
Integrating ADC
Successive approximation ADC
Flash ADC
Sub-ranging ADC
Interpolation method
Folding ADC
Pipelined ADC
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
29
ADC performance and architectures
There are many conversion architectures with varying performance parameters.
Conversion frequency (Hz)
10G
1G
Flash
Pipeline
100M
Sub-range
10M
Multi-bit
sigma-delta
1M
100k
10k
4
Successive
approximation
6
8
10
Single-bit sigma-delta
Integrating
12
14
16
18
20
Resolution (bit)
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
30
Integrating ADC
Integrating ADC achieves high resolution, but at low speed.
Recently it has been used as column-ADC in CMOS imager.
-vin S1
R
vref
Comparator
C
PhaseⅠ
+
vx
+
PhaseⅡ
-vin
-vin
vref
vref
・High resolution (20bit and more)
・Very low speed (DC measurement)
・Small DNL
・Can realize zero offset voltage
・Small analog elements and area
Going to 0 -> 1, when Vx becomes negative.
vx
vin 大
vx (T )  
0
T
2006.06.14.
Water clock
T

0
 vin d
RC
v in

T
RC
Time
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
31
Successive-approximation ADC
Successive-approximation method is based on a binary search.
Comparator
Vin
S/H
b1 b2 b3
VDAC
Vref
MSB
LSB
b1 b2 b3 b4 b5b
6
VDAC
Vin
Bout
DAC
Binary search
VFS
Balance
Successive-approximation
resistor and control logic
Vin
1
1
VFS+ VFS
2
4
1
1
1
VFS+ VFS + VFS
2
8
16
1
1
VFS+ VFS
2
8
1
V
2 FS
CMPin
b1=1
V0
2006.06.14.
b1=1
b2=0
b1= b3= 1 b1= b3= b4= 1
b2=0
b2=0
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
32
Charge-redistribution ADC
Charge-redistribution ADC draws attention as a suitable ADC in the nanometer CMOS era. Because it needs no OP-Amp, but just needs capacitors and
comparator.
Vx=0
Q=-2CVin
1) Sampling
C
C
2
C
4
C
8
C
16
C
16
Binary weighted Capacitor array
Vin
Vref
Vx=-Vin
Q=-2CVin
2) Hold
C
C
2
C
4
C
8
Vin
2006.06.14.
C
16
C
16
Vref
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
33
Charge-redistribution ADC
3) Charge redistribution
C
2
C
Vx=-Vin+Vref/2
Q=-2CVin
C
4
C
8
C
16
C
16
If needed
Determine from MSB
Vin
Vref
Vref
Higher resolution
Easy calibration
Ultra low power
No OP amp
Resistor ladder for
higher resolution
Low conversion rate Needs multi clock
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
34
Flash ADC
Flash ADC is very fast, but area and power increase exponentially with resolution.
VDD
vin
Φ
R/2
Ultra fast operation: Several GHz
No sample and hold
Low resolution: <8 bit
Large input capacitance  difficult to drive
Scale
+
R
+
R
Digital
out Vref
+
+
R
+
R
+
Encoder
R
1
2N
10001
Input
voltage
01011
R
+
R
+
R/2
2006.06.14.
Comparator
Vref
0
D1D2D3D4D5
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
35
Sub-ranging ADC
Multi-step conversion can reduce the # of comparators.
However, it needs high precision comparators.
As a result, small power and area.
10bits : Flash ; 2 N  1  1023
 N

two step ; 2  2 2  1  62




Slide gauge
Upper
conversion
24
Lower
conversion
6
4
16
2
0
8
0
GN D
2006.06.14.
Input voltage
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
36
Interpolation method
Interpolation can generate accurate intermediate references which are between
two references. Thus step sizes are almost equal, even though mismatch
voltages are large.
Step size
Mismatch
voltage
Step size
Small
DNL
K. Kusumoto and A. Matsuzawa
JSC, pp. 1200-1206, 1993.
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
37
Folding ADC
Input signal is folded to the compressed signals of which phases are different.
Lower bits are obtained by comparing between these folded signals.
Low power and small size, yet still high speed.
However, not suitable for higher resolution. <10bit
vin
Folding Circuits
Comp
Folding Circuits
Comp
Folding Circuits
Comp
Folding Circuits
Comp
Analog signal
Digital signal
2006.06.14.
①
②
③
Lower bits
Logic
Folded signals
Upper bits
ADC
Parallel
Folded signals
④
Input signal
The signal is compressed
→The # of comparators can be reduced
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
38
Folding circuits
Output voltage
Output voltage
Composing the folding characteristics by the summation of currents
from differential transistor pairs.
VDD
VDD
V1
V
Input voltage in
VDD
VDD
V1
V2
V3
V4
Input voltage
Current summation
vout
Vout
Vin
V1
V2
V3
V4
V1
vin
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
39
Pipelined ADC
Pipelined ADC is the centerpiece of embedded ADCs for many applications,
such as digital cameras, digital TVs, ADSLs, VDSLs, and wireless LANs.
Suitable for CMOS
High resolution(<15bit)
Moderate speed(<200MHz)
Low power consumption
Switched capacitor operation
MSB
vin
LSB
M-bit
DAP
DAP
DAP
2nd
MSB
+Vref
DAP
-Vref
+Vref -Vref
0
S/H
Digital Approximater
(DAP)
ADC
(M bit)
DAC
(M bit)
+
×2M
+Vref
X2
0
1
-Vref
+Vref
X2
1
0
1
-Vref
Conventional M is 1 or 1.5
Amplifier
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
40
1.5-bit/stage Pipeline ADC
Amplification at each stage reduces the input referred thermal noise.
1.5b/stage architecture reduces the requirement for
the comparator offset drastically.
Transfer characteristics
+VR
S2
Cf
Vi
Cs
+
+
VR 
LATCH
V  R
4
4
SUB-ADC
+
S3
-VR
+VR
-
MUX
+VR
-VR
-VR
DAC
2X GAIN
Unit conversion stage
for 1.5-bit/stage pipeline ADC
2006.06.14.
Vo
Vo 

1  Cs

Cf


Vi  Ci Vref

Cf

if

1  Cs
 Cf


Vi


if


1  Cs

Cf


Vi  Ci Vref

Cf

if
Vi 
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
Vi  
Vref
4
Vref
4
 Vi 
Vref
4
Vref
4
41
Pipelining
Pipeline action relaxes settling time requirement.
Sample & Hold
1st stage
2nd stage
Cf
Cf
- +
- +
- +
Op amp
Op amp
Op amp
+ -
+ -
+ -
Cs
Amplify (Hold)
Cs Amplify
Sample
DAC
DAC
CMP
1st
stage
2nd Stage
2006.06.14.
Sample
CMP
Amp.
Sample
Sample
Amp.
Amp.
Sample
Amp.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
42
4. Overview of high-speed D/A converters
• Basic two concepts of DAC
• Binary method
– R-2R based DAC
– Capacitor array DAC
• Decoder method
– Resistor string DAC
– Current steering DAC
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
43
Basic two concepts of DAC
1. Binary method
Digital
2006.06.14.
1
 Di
i
i 1 2

Analog
D3
D2
D1
Digital
Small DNL
N 1
Small glitch Vana lg  Vq 
2 i Di
Large area
i 0

Vref
Decoder
D3
D2
D1
Binary Weight ckt.
Vref
N
111
110
101
100
011
010
001
000
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
Switch matrix
Not small DNL
Large glitch
Vana lg  Vref
Small area
2. Decoder method
Analog
44
Binary method
R-2R based DAC
R-2R resistor ladder can generate binary weighted current easily.
Resolution: 12b
Large DNL
Small area at high resolution
Moderate speed
Large power consumption
A0
A2
A1
2R
RF
A3
2R
2R
vout
+
2R
Virtual ground
-vref
R
R
R
2R
I
I
I


vout  RF  I r  A0  r  A1  r2  A1  r3  A1 
2
2
2


vref
Ir 
2R
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
45
Capacitor array DAC
Binary method
Capacitor array DAC is widely used in CMOS technology.
Low power and no sample & Hold
Q  vref C  A0  2C  A1  4C  A2  8C  A3 
vout
16C
Q

16C
Reset
8C
Ai= 0 or 1
Virtual ground
4C
2C
+
C
vout
16C
vref
Q
Enable
8C
4C
A3
2C
A2
+
C
A1
vout
A0
vref
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
46
Decoder method
Resistor string DAC
Decoder method can realizes small DNL,
however needs large area at high resolution.
Vref
111
110
101
Resolution limit: 10b
Good DNL
Low speed
Small glitch
R
R
R
R
Vout
100
R
+
011
R
010
001
000
R
large parasitic capacitance: 2N
Digital value
R
Decoder
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
47
Current steering DAC
Decoder method
Widely used for high speed DAC.
High speed, -- 1 GHz
Resolution – 14 b
Small DNL
Small glitch
Graphics, communications, etc.
Conventionally large area
VDD
Vout
Vout
Di=1
Di
Row decoder
Di
Bias
Di=0
Current source
Current cell with switch
2006.06.14.
R
Column decoder
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
48
5. Overview of over-sampling sigma-delta data converters
• Sigma-delta modulation method
–
–
–
–
–
–
–
2006.06.14.
Over sampling
Noise shaping
Sigma-delta modulator
SNR
Higher order system
Feed forward and feed back compensation
MASH (Multi-stage noise shaping)
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
49
Sigma-delta ADC, DAC
Sigma delta ADC and DAC are widely used in high resolution (14b-24b)
and not high speed ( <1MHz) applications.
Sigma delta ADC
Sigma delta DAC
Integrator
AVDD
Comparator
x(n)
+
z-1
+
Digital
Filter
1bit DAC
Analog
DAC out
Digital
C
Integrator
vin
Digital
Signal
Processing
LPF
Φ1 C Φ2
Φ1
Φ2
+
Implemented in CMOS, easily.
vref
2
2006.06.14.

vref
1bit DAC
2
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
50
Over sampling
Over sampling can reduce effective quantization noise.
Band limiting
filter
x(n)
y1(n)
Δ
H(f)
y2(n)
Quantization noise power
Pe 

fs /2
 fs /2
Se2 (
1
2  2 f b
f ) H ( f ) df 
 df 
 
 f b 12 f
12
s
 fs

2
fb
2
he(x)
H(f)
-fs/2
-fb
fb
 2
1
 

 12 OSR
OSR 
fs
2 fb
Total noise power is invariant
f
fs/2
In-band noise
Reduction of bandwidth by filter → Reduction of effective noise power
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
51
Noise shaping
Spectrum of quantization noise is shaped by differentiator.
In-band noise can be reduced.
Output signal
Input signal
Integrator
1.
2.
Signal intensity
Low pass filter
1.
Differentiator
Quantizer
4.
3.
Noise
2.
High pass filter
3.
4.
Noise
Noise
BW
fS
2
f
Signal: Low pass filter x High pass filter Flat
fS
2
In-band noise is reduced
Quantization noise: High pass filter Lower in low frequency
The spectrum of the quantization noise
increases with frequency increase.
Only quantization noise is shaped in frequency characteristics
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
52
Sigma-delta modulator
Sigma-delta modulator shapes the frequency characteristics of the quantization noise
The signal will overflow
Integrator
Differentiator
Quantizer
+
X(z)
Y(z)
+
Q(z)
z 1
z 1
X( z )
1  z 1
Y ( z )  X ( z )  ( 1  z 1 )Q( z )
Equivalent transform
Output Input
signal signal
Differentiator
Integrator
X(z)
+
+
z 1
Y(z)
Quantizer
Q(z)
X Q  Z
1
z 1
Quantization
noise
Differentiator
(High pass filter)
Y ( z )  X ( z )  ( 1  z 1 )Q( z )
No overflow
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
53
Generic expression of sigma-delta modulator
We can use not only LPF but also BPF and complex BPF.
This gives us an excellent opportunity for wireless applications.
X(z)
Quantizer
Filter
Input signal
+
H(z)
Q(z)
Output
signal
Y(z)
z 1
H( z )
1
Y( z) 
X( z ) 
Q( z )
1
1
1  H( z )z
1  H( z )z
STF (Signal Transfer)
Ex.
H( z ) 
1
1  z 1
STF( z )  1,
No filter
2006.06.14.
NTF (Noise transfer)
NTF ( z )  1  z 1
High pass filter
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
54
Noise power in sigma-delta modulator
fb
Lth order filter
0

Y ( z )  X( z )  1  z
 Q( z )
1 L
SNR = 113.8dB
-20
-40
f)
2
-60
dBFS
h q2 (
12 f s
-80
Digital Filter
-100
Nq 

 fb
 fb
h q2 ( f ) 1  z
fs=26MHz
1 2 L
z e j 2 f
-120
/fs
-140


 fb
2
 f b 12
2006.06.14.
fs
j 2f
fs
2L
2
1

  
df   


 2  3 2 L  1  OSR 
0
2
4
6
8
Frequency (MHz)
10
12
2 L 1
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
55
2nd order sigma-delta ADC
Q( z )
X( z )
++
-
Y( z)
++
1st order SD ADC
1
z
DAC
DAC
Q1 ( z )
1
z
1st
order SD ADC
Q( z )
X( z )
++
++
++
-
z1
Y( z)
++
DAC
DAC
Quantizer is replaced
by 1st order SD ADC
z1
z1
DAC
DAC
z1

2nd order SD ADC

Y ( z )  X ( z )  1  z 1 Q1( z )


Q1( z )  1  z 1 Q( z )

Y ( z )  X( z )  1  z
2006.06.14.
 Q( z )
1 2
X( z )
++
DAC
DAC
1
1
1 z
++
-
1
1
1z
Y( z)
2
DAC
DAC
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
56
Multi bit sigma-delta ADC
X( z )
++
a1
1
1
1 z
DAC
DAC
++
a2
1
1
1z
1
1
1 z
++
-
-
a3
DAC
DAC
DAC
DAC
++
1
1
1z
Y( z)
a4
DAC
DAC
Feedback type
NTF ( z )  (1  z 1 ) 4
X( z )
++
-
1
1
1 z
b1
1
1
1z
b2
1
1
1z
b3
1
1
1z
b4
Y( z)
++
DAC
DAC
Feedforward type
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
57
Dynamic range of sigma-delta ADC
Higher order SD modulator seems effective to increase the dynamic range.
However it is not easy, because of instability, signal saturation, and thermal noise.


Dynamic Range (dB)
2
3 N
 OSR 
DR 
2  1 2 L  1

2



5th
200
180
160
140
120
100
80
60
40
20
0
2 L 1
4th
3rd
n=1bit
2nd
1st
1
10
100
1000
OSR
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
58
Noise-shaping characteristics
Higher order sigma-delta modulator can realize higher dynamic range, theoretically.
0
0
SNDR = 99.5dB
-20 SNR = 100.1dB
-20
-60
dBFS
-80
1st
Dynamic Range (dB)
-40
order
20dB/dec
-100
-120
2nd order
-140
40dB/dec
-160
-80
4
10
5
10
10
6
5th order, 1bit
100dB/dec
-100
-120
-140
In-band
OSR=64
200kHz
Thermal noise
-180
fs=26MHz
Frequency (Hz)
2006.06.14.
-60
-160
-180
-200 3
10
-40
7
10
-200 3
10
10
4
10
5
6
10
7
10
Frequecy (Hz)
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
59
Cascade (MASH) sigma-delta modulator
Cascaded SD modulator can realize higher order noise shaping without stability
issues. However, high dynamic range is difficult, due to severe mismatch
requirement.
Q1 ( z )
X( z )
++
-
1
1
1 z
++
2
1
1
1z
Y1  Q1
DAC
+
 Q1( z )
H 1( z )
Y1( z )
++
-
Q2 ( z )
Y2 ( z )
1
1
1z
H2( z )
+
Y( z)
DAC


2
Y1( z )  X ( z )  1  z 1 Q1( z )
H 1( z )  1
Y2 ( z )  Q1( z )  1  z 1 Q2 ( z )
H 2 ( z )  1  z 1




2



2

2


3
Y ( z )  Y1H1  Y2 H 2  X ( z )  1  z 1 Q1( z )  1  z 1 Q1( z )  1  z 1 Q2 ( z )


3
Y ( z )  X ( z )  1  z 1 Q2 ( z )
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
60
6. Basic design considerations
• Accuracy
– Current mismatch and DAC accuracy
– VT mismatch
– Capacitor mismatch
• Comparator
– Offset compensation
• Op-Amp
– Gain and GBW
– kT/C noise
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
61
Current mismatch and DAC accuracy
Larger resolution requires smaller mismatch.
I  i1
I  i0
I  i 2
I  i2 N 1
INL yield
0.1
10%
50%
( I )
I

1
2C 2 N
N: resolution
90%
sigma( 3.0  N)
sigma( 2  N)
sigma( 1.3  N)
99.7%
0.01
sigma( 0.8  N)
C: constant determined by INL yield
1 10 3
2006.06.14.
6
8
10
N
12
14
Van den Bosch,.. Kluwer 2004
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
62
VT mismatch
Larger gate area is needed for smaller VT mismatch.
Technology scaling reduces VT mismatch if the gate area is equal.
100
VT ( mV )
VT 
Tox
LW
VT( LW) 10
0
VT( LW)
1
VT( LW)
2
1
0.4um Nch
0.13um Nch Boron, w. Halo
0.13um Nch In w/o Halo*
0.1
1
10
100
1 103
LW
LW ( m 2 )
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
63
Mismatch current and transistor size
Smaller mismatch requires larger L and W.
I ds
I ds 
I ds
I ds
 I ds

 I ds
2006.06.14.

W
 K'
Vgs  VT
L

I ds
I
I
W 
VT  ds K'  ds  
VT
K'
L
W 
   
L 
W 

 2 VT
K'
L


  
V gs  VT
K'
W 
 
L 

2
Mismatch
2
VT 
K'
K'

AVT
LW
AK '
LW
W 

1
1
L
 A

WL
W 
W 2 L2
 
L 

2

4 K' AVT
AK2
1 
2  1
  2

 AWL

 2
2 
WL
L
I
W
L



ds
V gs  VT 
2
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
I ds
W 
K'  
L 
64
Capacitor mismatch
Smaller capacitor mismatch requires larger capacitance
C
6  10 4
(3 ) 
C
C ( pF )
Coefficient depends on the Fab.
Typical MIM capacitor
10bit: 0.4pF
12bit: 4pF
14bit: 40pF
10bit, ¼ LSB
C
(3 )
C
12bit, ¼ LSB
14bit, ¼ LSB
Capacitance (pF)
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
65
CMOS comparators
There are many types of comparator circuits
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
66
Low power CMOS comparator
A CMOS comparator is low power because of no need of static current.
No static current
Differential comparison
Interpolation action
High speed
CLK
T.B.Cho., et al., J.S.C., Vol.30,
No.30, pp.166-172, Mar. 1995.
VDD
Interpolation action
m11m9
m10
m7
W

m6
Vin2+ Vin1
-
m1 m2
W1
W
1
Vin 1  Vth   2 Vin 2  Vth 
Out+ G1  K p 
L
L

Out-
W
W

G 2  K p  1 Vin 1  Vth   2 Vin 2   Vth 
L
L

m8
m5
Vin1+
m12
W2
Vin2m3 m4
W1
W2
m n n
:
m
m
then , m  n Vin 1  nVin 2  m  n Vin 1  nVin 2
if W1 : W2 
VSS
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
67
Design rule and Speed in Comparator
Gain bandwidth (=Speed) is inversely proportional to the L2 (channel length).
Technology scaling is still effective to increase the comparator speed,
if we don’t take care of the signal dynamic range.
gm
I sin k

2
2




2  WC j  C ox LW  2  WC j  C ox LW Veff GBW 
3
3




I sin k 
R
Cox W
2
R
Isink
L
2
Veff
R
Cox 

L
R
Isink
Veff
2 Cj 

2 L2  
3 k 
20
Relative bandwidth
GBW 
15
10
5
0
0.1
0.2
0.3
0.4
0.5
Feature size ( m)
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
68
Offset compensation
Two ways for suppressing offset voltage.
Store the offset voltage in capacitors and subtract it from the signal.
Feedback= High gain type
Vin1
Vin2
+ Va A
- +
Va  VosA ( A )  Vo  Va
Vo
Latch
Vout
 Vo
 Va

CLK
A
VosA
1 A
VosA: Offset of the amplifier
a) Offset cancel at input nodes
VosL: Offset of the latch
Feed forward =Low gain type
Vin1
Vin2
+ A
- +
Latch
Vout
Vos _ in 
Vosl
A
CLK
b) Offset cancel at output nodes
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
69
Operational amplifier
Higher resolution requires higher open loop gain.
Higher conversion frequency requires higher closed loop GBW.
Sampling
DC gain
Cf
Vn
Vin
G error  
- +
Op amp
Amplify
Cs
Cf

 1

G


N:ADC resolution
M:Stage resolution
G (dB )  6N  10
Vout
- +
Vn

C
2  p

Cf

1

 N M 1
G 2
+ -
Vn
1
G
1

C
2  p

Cf





for 1.5b pipeline ADC
Op amp
+ -
Vn
Closed loop gain-bandwidth
Cp
Cs
VDAC
GBW_ close 
Equivalent circuit
Cf
gmβ N  fc

2πC L
3
β
1
Cs
2006.06.14.
Cpi
gm
s
1
ωp 2
Cpo
RL
COL
Cf
C f  Cs  C pi
C L  C po  CoL 
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
C f Cs  C pi 
C f  Cs  C pi
70
kT/C noise
Larger SNR requires larger capacitance and larger signal swing.
Low signal swing increases required capacitance.
nkT
φ
vn2 
n: configuration coefficient
C
2
 CVFS

SNR( dB )  10 log 
 8nkT
vn v
out
CL
95.918




100
VFS=5V
VFS=3V
n=2
90
14bit
VFS=2V
SNR (dB)
SNRC 1  2  C
R
SNRC 2  2  C
CL
VFS=1V
80
12bit
SNRC 3  2  C
SNRC 5  2  C
70
10bit
vn2  4kTR
1
 1  CR 
2
d kT

2
C
60
51.938 50
0.1
0.1
0.1
1
1
10
C
10
100
100
100
Capacitance (pF)
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
71
Basic design consideration
Very tough tradeoffs, so let’s keep up the design effort.
Small mismatch
Voff
C
1
or
 N
C
VFS
2
Solutions
Pipeline, Parallel
Increase Capacitance
C
1
1
1

or Voff 

C
C
LW
Cg
C  2 2N
2) Redundancy
3) Error compensation
4) Circuit design
However, kT/C issue remains
Pd V dI d  f s  C  f s  2 2 N
2006.06.14.
2
SNR  CVsig
 22N
Results in
Decrease speed and Increase Power
g
g
I
I
f s  GBW  m  2mN GBW  d  2dN
C
2
C
2
Id
fs  2N
2
1) Architecture
Pd  f s  2 2 N
 2N
C 
 Vsig





2
Solutions
1)
2)
Increase signal swing
Increase OSR
SNR  OSR
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
72
Acknowledgement
• The author thanks Mr. T. Matsuura from
Renesus for some slides provision.
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
73
Study-aid books
•
B. Razavi, “Data conversion system design,” IEEE press.
•
P. E. Allen and D. R. Holberg, “ CMOS Analog Circuit Design,” 2nd
Edition, OXFORD University Press.
•
D. A. Johns and K. Martin, “Analog integrated circuit design,” John
Wiley & Sons.
•
R. J. Baker, “ CMOS mixed-signal circuit design,” IEEE Press.
•
R.van de Plassche, “CMOS Integrated Analog-to-Digital and Digitalto-Analog Converters,” 2nd Edition, Kluwer Academic Publishers.
•
M. Gustavsson, J. J. Wikner and N. N. Tan, “CMOS data converters
for communications,” Kluwer Academic Publishers.
•
C. Shi and M. Ismail, ”Data converters for wireless standards,”
Kluwer Academic Publishers.
•
A. Rodriguez-Vazquez, F. Mederio, and E. Janssens, “CMOS Telecom
Data Converters,” Kluwer Academic Publishers.
2006.06.14.
VLSI symposia 2006, A. Matsuzawa, Tokyo Tech.
74