Survey							
                            
		                
		                * Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Lecture II Lecture II: • Linear circuit theory review • Amplifier basics • MOS small signal model A. Rivetti – INFN Sezione di Torino Nodal analysis R2 Is R1 R4 R3 Vs Nodal analysis provides a systematic and reliable method to calculate all voltages and currents in a linear circuit A. Rivetti – INFN Sezione di Torino Nodal analysis Writing nodal equations v1 Is R1 R2 v2 R3 R4 Vs   v v 1 1 v2  0 I s   R R 1 2   v2  v1  v2  v2 V s  0  R3 R 4  R2 A. Rivetti – INFN Sezione di Torino Nodal analysis Writing the circuit matrix R2 v1 Is 1  1    R1 R2  1   R2  R1 v2 R3 R4 Vs   I s     v1  R2       1 1 1    V s     v2    R4  R 2 R3 R 4   1 A. Rivetti – INFN Sezione di Torino Nodal analysis Solving the circuit matrix v1    v2  1 Is V R 1 s 4  1    R 1   R 1R 1  R  2 2  2 1 4 1  1 R 2 1  1 R R R 2 2 1  3 1  1 R R R 2 2 1  1 R R 1  1 R 2 3 4 Is 2 V R s 4 A. Rivetti – INFN Sezione di Torino Nodal analysis Another example Vs R2 Is R1 R3 R4 A. Rivetti – INFN Sezione di Torino Nodal analysis Lecture II Lecture II: • Linear circuit theory review • Amplifier basics • MOS small signal model A. Rivetti – INFN Sezione di Torino Amplifier characteristic  The input-output characteristic of an amplifier is usually a non-linear function  Over some interval of the input signal, this function can be approximated by a polynomial: 2 n y(t )  a  a x(t )  a x(t )  ...  a x(t ) 0 1 2 n  For narrow range of the input signal, we may write: y(t )  a  a x(t ) 0 1 The above expression does not obey the superposition principle A. Rivetti – INFN Sezione di Torino Amplifier basics Small signal model  If a0 does not depend on the signal, we can write: y(t )  a x(t ) 1  This is an expression that obeys the superposition principle  The small signal model takes into account only variations of signals within a circuit  The small signal equivalent circuit can be studied with the methods of linear circuit analysis A. Rivetti – INFN Sezione di Torino Amplifier basics Voltage amplifier Rs Vs(t) Vi(t) Ri Vout  AV = Vout/Vi  Input impedance high (ideally infinite)  Output impedance small (ideally zero) A. Rivetti – INFN Sezione di Torino Amplifier basics VA small signal model RS Vs(t) RO Vi(t) RI AVVi RL Vout Note: impedances may also be complex A. Rivetti – INFN Sezione di Torino Amplifier basics Current amplifier Is(t) Rs Ii(t) Ri Iout  AV = Iout/Ii  Input impedance small (ideally zero)  Output impedance high (ideally infinite) A. Rivetti – INFN Sezione di Torino Amplifier basics CA small signal model Is(t) Rs Ii(t) Ri Is(t) Ro Iout(t) RL Note: impedances may also be complex A. Rivetti – INFN Sezione di Torino Amplifier basics Transconductance amplifier Rs Vs(t) Vi(t) Ri Iout  AV = Iout/Vi  Input impedance high (ideally infinite)  Output impedance high (ideally infinite)  Important: the gain is not a number A. Rivetti – INFN Sezione di Torino Amplifier basics TCA small signal model RS Vs(t) Vi(t) RI Is(t) Ro Iout(t) RL Note: impedances may also be complex A. Rivetti – INFN Sezione di Torino Amplifier basics Transimpedance amplifier Is(t) Rs Ii(t) Ri Vout  AV = Vout/Ii  Input impedance small (ideally zero)  Output impedance small (ideally zero)  Note: Gain is not a number A. Rivetti – INFN Sezione di Torino Amplifier basics TA small signal model RO Is(t) Rs Ii(t) Ri AVVi RL Vout Note: impedances may also be complex A. Rivetti – INFN Sezione di Torino Amplifier basics Lecture II Lecture II: • Linear circuit theory review • Amplifier basics • MOS small signal model A. Rivetti – INFN Sezione di Torino Simplified small signal DC model The MOS transistor in saturation can be seen as a voltage controlled current source RS Vs(t) Vs(t) gm = IDS VGS gmVs W m C n (VGS – VTH) = OX = L 2 mn COX W IDS L A. Rivetti – INFN Sezione di Torino MOS small signal DC model Practical example What is the equivalent small signal model of this? Vdrain Vgate W=100 mm L=10 mm mnCOX=190 mA/V2 VTH=0.6 V Vdrain=2.5 V Vgate=1.25 V Vs A. Rivetti – INFN Sezione di Torino MOS small signal DC model current (mA) Gm simulation(1) 356.7 355.7 0 1 2 time (mS) Vs=1mV pk-pk A. Rivetti – INFN Sezione di Torino MOS small signal DC model current (mA) Gm simulation (2) 660 355 0 1 2 time (mS) Vs=250mV pk-pk A. Rivetti – INFN Sezione di Torino MOS small signal DC model Output impedance Vdrain r0 Vgate Vs A. Rivetti – INFN Sezione di Torino MOS small signal DC model Including the output impedance The MOS transistor in saturation can be seen as a voltage controlled current source with finite output impedance RS Vs(t) Vs(t) gm = ro = IDS VGS 1 gmVs ro W m C n (VGS – VTH) = OX = L 2 mn COX W IDS L lIDS A. Rivetti – INFN Sezione di Torino MOS small signal DC model Bulk transconductance For a more accurate model, the bulk effect must also be taken into account RS Vs(t) Vs(t) gmb = IDS VBS gmVs ro gmbvbs VTH W m (VGS – VTH) = n COX = L VSB gm g 2fF + VSB A. Rivetti – INFN Sezione di Torino MOS small signal DC model Small signal DC model The saturated MOS transistor is a voltage controlled current source with finite output impedance RS Vs(t) Vs(t) gmVs ro gmbvbs gm models the gate transconductance gmb models the bulk transconductance (the bulk effect) A. Rivetti – INFN Sezione di Torino MOS small signal DC model Some numbers… gm = IDS VGS = 2 mn COX W IDS L ro = 1 lIDS IDS = 100mA, W/L=50, mnCOX=190mA/V2 l=0.01V-1 gm = 1mS ro = 1MW A. Rivetti – INFN Sezione di Torino MOS small signal DC model