Download Compound Physiological concentration Reference Table 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Compound
Physiological concentration
Reference
Table 1. Physiological concentrations of endogenous compounds studied
Amino Acids and Derivatives, Peptides
L-arginine
Carnosine (β-alanyl-l-
80 ± 20 µmol/L (plasma)
[1]
125 ± 5.5 µmol/L (plasma)
[2]
60 - 120 μmol/L (serum)
[3]
123.3 ± 44.6 μmol/L (plasma)
[4]
80–120 μmol/L (plasma)
[5]
40-120 μmol/L (plasma)
[6]
87 ± 3 μmol/L (plasma; Swedish population)
[7]
69 ± 3 μmol/L (plasma; Guatemalan population)
[7]
137 ± 8 μmol/L (plasma)
[8]
5 mmol/kg (human skeletal muscle)
[9]
60 - 130 μmol/L (serum)
[10]
115.2 ± 48.8 μmol/L (men; serum)
[11]
94.6 ± 39.3 μmol/L (women; serum)
[11]
52 ± 11 μmol/L (plasma)
[1]
25.2 ± 1.5 μmol/L (erythrocyte)
[12]
239 ± 40 μmol/L (plasma)
[13]
100-330 μmol/L (plasma)
[6]
248 ± 13 μmol/L (plasma; Swedish population)
[7]
210 ± 17 μmol/L (plasma; Guatemalan population)
[7]
514.7 ± 33.1 μmol/L (erythrocyte)
[12]
1.6 ± 0.5 μmol/L (plasma)
[14]
2.4 ± 1.0 μmol/L (plasma)
[15]
6.75 ± 0.47 μmol/g Hb (erythrocytes)
[12]
8.46 ± 0.175 μmol/g Hb (erythrocytes)
[16]
0.11 ± 0.05 μmol/L (plasma)
[14]
0.2 ± 0.2 μmol/L (plasma)
[15]
0.0132 ± 0.004 μmol/gHb (erythrocytes)
[16]
82 ± 10 μmol/L (plasma)
[1]
histidine)
Creatinine
Cysteine
Glycine
GSH
GSSG
Histidine
*This range is considered normal by the American Medical Association
30-150 μmol/L (plasma)
[6]
87 ± 6 μmol/L (plasma; Swedish population)
[7]
87 ± 3 μmol/L (plasma; Guatemalan population)
[7]
188 ± 32 μmol/L (plasma)
[1]
100-300 μmol/L (plasma)
[6]
195 ± 9 μmol/L (plasma; Swedish population)
[7]
150 ± 8 μmol/L (plasma; Guatemalan population)
[7]
Melatonin
0.042 ± 0.03 nmol/L (plasma)
[17]
Methionine
25 ± 4 μmol/L (plasma)
[1]
25 ± 1 μmol/L (plasma; Swedish population)
[7]
24 ± 1 μmol/L (plasma; Guatemalan population)
[7]
114 ± 19 µmol/L (plasma)
[1]
90-290 μmol/L (plasma)
[6]
114 ± 4 μmol/L (plasma; Swedish population)
[7]
102 ± 5 μmol/L (plasma; Guatemalan population)
[7]
44 ± 7 μmol/L (plasma)
[18]
73 μmol/L ± 14.9 (serum) H
[6]
30-80 μmol/L (plasma)
[7]
25 ± 1 μmol/L (plasma; Swedish population)
[7]
24 ± 1 μmol/L (plasma; Guatemalan population)
[7]
59 ± 12 μmol/L (plasma)
[1]
35 -102 μmol/L (plasma)
[19]
39- 89 μmol/L (plasma)
[20]
30-120 μmol/L(plasma)
[6]
60 ± 4μmol/L (plasma; Swedish population)
[7]
54 ± 2 μmol/L (plasma; Guatemalan population)
[7]
5300 ± 1080 µmol/L (men; plasma)
[21]
4800 ± 1200 µmol/L (women; plasma)
[21]
6500 ± 2500 (µmol/L) (plasma; Guatemalan
[7]
Lysine
Serine
Tryptophan
Tyrosine
Urea
population)
Organic acids
Oxaloacetic acid
0.34 ± 0 02 µmol/L (blood)
[22]
Pantothenic acid
Pyruvic acid
Uric acid
1.1 - 12 µmol/L (blood)
[23]
4.79 – 11.05 µmol/L (blood)
[24]
29 ± 23 µmol/L (plasma)
[25]
33 ± 14 µmol/L (erythrocytes)
[26]
380 μmol/L (plasma)
[27]
214- 494 µmol/L (plasma)
*
119-375 µmol/L (women; serum)
[28]
155-404 µmol/L (men; serum)
[28]
0.074 ± 0.016 μmol/g Hb (women; erythrocytes)
[29]
0.083 ± 0.026 μmol/g Hb (men; erythrocytes)
[29]
Polyamines
Spermidine
Spermine
0.32 ± 0.07 µmol/L (serum)
[30]
72.9 ± 34.9 nmol/L (plasma)
[31]
14.7 (10–24) μmol/L(erythrocytes) H
[32]
0.039 ± 0.029 µmol/L (plasma)
[33]
30.7 ± 39.5 nmol/L (plasma)
[31]
B-group vitamins
Vit B1
0.064 ± 0.12 μmol/L (plasma)
[34]
Vit B2
0.0027 – 0.0425 μmol/L (plasma)
[35]
0.018 μmol/L (plasma)
[36]
0.0757 μmol/L (plasma)
[37]
Vit B6
Nucleotides
AMP
0.067 ± 0.02 μmol/L (human skeletal muscles)
[38]
ATP
1.02 ± 0.09 µmol/L (plasma)
[39]
NAD
24.3 µmol/L (whole blood)
[40]
References
[1] J. Le Boucher, C. Charret, C. Coudray-Lucas, J. Giboudeau, L. Cynober, Amino acid
determination in biological fluids by automated ion-exchange chromatography:
performance of Hitachi L-8500A, Clin. Chem. 43 (1997) 1421-1428.
[2] H. Hanssen, T.M. Brunini, M. Conway, A.P. Banning, N.B. Robert, G.E. Mann, J.C. Ellory,
A.C. Mendes Ribeiro, Increased L-arginine transport in human erythrocytes in chronic
heart failure, Clin. Sci. (Lond). 94 (1998) 43-48.
[3] C.V. Suschek, O. Schnorr, K. Hemmrich, O. Aust, L.O. Klotz, H. Sies, V. Kolb-Bachofen,
Critical role of L-arginine in endothelial cell survival during oxidative stress, Circulation
107 (2003) 2607-2614.
[4] T.S. Alvares, C.A. Conte-Junior, J.T. Silva, V.M. Paschoalin, Acute L-Arginine
supplementation does not increase nitric oxide production in healthy subjects, Nutr.
Metab. (Lond). 9 (2012) 54.
[5] S.M. Morris Jr, Arginine metabolism: boundaries of our knowledge, J. Nutr. 137 (2007)
1602S-1609S.
[6] K.J. Kingsbury, L. Kay, M. Hjelm, Contrasting plasma free amino acid patterns in elite
athletes: association with fatigue and infection, Br. J. Sports Med. 32 (1998) 25–33.
[7] P. Klassen, P. Fürst, C. Schulz, M. Mazariegos, N.W. Solomons, Plasma free amino acid
concentrations in healthy Guatemalan adults and in patients with classic dengue, Am. J.
Clin. Nutr. 73 (2001) 647-652.
[8] M.B. Moss, T.M. Brunini, R. Soares De Moura, L.E. Novaes Malagris, N.B. Roberts, J.C.
Ellory, G.E. Mann, A.C. Mendes Ribeiro, Diminished L-arginine bioavailability in
hypertension, Clin. Sci. (Lond). 107 (2004) 391-397.
[9] A. Baguet, Important role of muscle carnosine in rowing performance, J. Appl. Physiol. 109
(2010) 1096–1101.
[10] I. Sadowska-Bartosz, S. Galiniak, G. Bartosz, M. Rachel M, Oxidative modification of
proteins in pediatric cystic fibrosis with bacterial infections, Oxid. Med. Cell. Longev.
2014 (2014) 389629.
[11] J.G. Wang, J.A. Staessen, R.H. Fagard, W.H. Birkenhäger, L. Gong, L. Liu, Prognostic
significance of serum creatinine and uric acid in older Chinese patients with isolated
systolic hypertension, Hypertension 37 (2001) 1069-1074.
[12] R.V. Sekhar, S.V. McKay, S.G. Patel, A.P. Guthikonda, V.T. Reddy, A.
Balasubramanyam, F. Jahoor, Glutathione synthesis is diminished in patients with
uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine,
Diabetes Care 34 (2011) 162-167.
[13] A.E. Evins, S.M. Fitzgerald, L. Wine, R. Rosselli, D.C. Goff, Placebo-controlled trial of
glycine added to clozapine in schizophrenia, Am. J. Psychiatry 157 (2000) 826–828.
[14] S. Ashfaq, J.L. Abramson, D.P. Jones, S.D. Rhodes, W.S. Weintraub, W.C. Hooper, V.
Vaccarino, D.G. Harrison, A.A.Quyyumi, The relationship between plasma levels of
oxidized and reduced thiols and early atherosclerosis in healthy adults, J. Am. Coll.
Cardiol. 47 (2006) 1005-1011.
[15] S.E. Moriarty, J.H. Shah, M. Lynn, S. Jiang, K. Openo, D.P. Jones, P. Sternberg P,
Oxidation of glutathione and cysteine in human plasma associated with smoking, Free
Radic. Biol. Med. 35 (2003) 1582-1588.
[16] D. Giustarini, I. Dalle-Donne, A. Milzani, P. Fanti, R. Rossi R, Analysis of GSH and GSSG
after derivatization with N-ethylmaleimide, Nat. Protoc. 8 (2013) 1660-1669.
[17] S. Caglayan, M. Ozata, G. Ozisik, M. Turan, E. Bolu, C. Oktenli, N. Arslan, K. Erbil, D.
Gul, I.C. Ozdemir, Plasma melatonin concentration before and during testosterone
replacement in Klinefelter's syndrome: relation to hepatic indolamine metabolism and
sympathoadrenal activity, J. Clin. Endocrinol. Metab. 86 (2001) 738-743.
[18] B. Widner, E.R. Werner, H. Schennach, H. Wachter, D. Fuchs, Simultaneous measurement
of serum tryptophan and kynurenine by HPLC, Clin. Chem. 43 (1997) 2424-2426.
[19] M.D. Armstrong, U. Stave, A study of plasma free amino acid levels. II. Normal values
for children and adults, Metabolism 22 (1973) 561-569.
[20] S.C. Grünert, C.M. Brichta, A. Krebs, H.W. Clement, R. Rauh, C. Fleischhaker, K.
Hennighausen, J.O. Sass, K.O. Schwab, Diurnal variation of phenylalanine and tyrosine
concentrations in adult patients with phenylketonuria: subcutaneous microdialysis is no
adequate tool for the determination of amino acid concentrations, Nutr. J. 12 (2013) 60.
[21] W.E. Waters, W.J. Greene, J.W. Keyser, Plasma urea concentrations in the general
population: comparison with 'hospital normal values', Postgrad. Med. J. 43 (1967) 695–
700.
[22] A. Laplante, B. Comte, C. Des Rosiers, Assay of blood and tissue oxaloacetate and alphaketoglutarate by isotope dilution gas chromatography-mass spectrometry, Anal.
Biochem. 224 (1995) 580-587.
[23] C.T. Wittwer, C. Schweitzer, J. Pearson, W.O. Song, C.T. Windham, B.W. Wyse, R.G.
Hansen, Enzymes for liberation of pantothenic acid in blood: use of plasma pantetheinase,
Am. J. Clin. Nutr. 50 (1989) 1072-1078.
[24] S.H. Cohenour, D.H. Calloway, Blood, urine, and dietary pantothenic acid levels of
pregnant teenagers, Am. J. Clin. Nutr. 25 (1972) 512-517.
[25] H. Okada, S. Araga, T. Takeshima, K. Nakashima, Plasma lactic acid and pyruvic acid
levels in migraine and tension-type headache, Headache 38 (1998) 39-42.
[26] S.F. Travis, A.D. Morrison, R.S. Clements Jr, A.I. Winegrad, F.A. Oski, Metabolic
alterations in the human erythrocyte produced by increases in glucose concentration. The
role of the polyol pathway, J. Clin. Invest. 50 (1971) 2104-2112.
[27] E.P. de Oliveira, R.C. Burini, High plasma uric acid concentration: causes and
consequences, Diabetol. Metab. Syndr. 4 (2012) 12.
[28] A. Hesse, H.G. Tiselius, A. Jahnen, Urinary Stones: Diagnosis, treatment, and prevention
of recurrence, second ed., S. Karger AG, Basel, Switzerland, 2002.
[29] R. Kanďár, X. Štramová, P. Drábková, J. Křenková, A monitoring of allantoin, uric acid,
and malondialdehyde levels in plasma and erythrocytes after ten minutes of running
activity, Physiol. Res. 63 (2014) 753-762.
[30] L.J. Marton, D.H. Russell, C.C. Levy, Measurement of putrescine, spermidine, and
spermine in physiological fluids by use of an amino acid analyzer, Clin. Chem. 19 (1973)
923-926.
[31] K. Igarashi, S. Ueda, K. Yoshida, K. Kashiwagi, Polyamines in renal failure, Amino
Acids 31 (2006) 477-483.
[32] G. Seghieri, R. Anichini, M. Ciuti, A. Gironi, F. Bennardini, F. Franconi, Raised
erythrocyte polyamine levels in non-insulin-dependent diabetes mellitus with great vessel
disease and albuminuria, Diabetes Res. Clin. Pract. 37 (1997) 15-20.
[33] H. Desser, G. Kleinberger, J. Kläring, Plasma polyamine levels in liver insufficiency, J.
Clin. Chem. Clin. Biochem. 19 (1981) 159-164.
[34] P.J. Thornalley, R. Babaei-Jadidi, H. Al Ali, N. Rabbani, A. Antonysunil, J. Larkin, A.
Ahmed, G. Rayman, C.W. Bodmer, High prevalence of low plasma thiamine
concentration in diabetes linked to a marker of vascular disease, Diabetologia 50 (2007)
2164–2170.
[35] S. Hustad, P.M. Ueland, J. Schneede, Quantification of riboflavin, flavin mononucleotide,
and flavin adenine dinucleotide in human plasma by capillary electrophoresis and laserinduced fluorescence detection, Clin. Chem. 45 (1999) 862-868.
[36] Ø. Midttun, S. Hustad, J. Schneede, S.E. Vollset, P.M. Ueland, Plasma vitamin B-6 forms
and their relation to transsulfuration metabolites in a large, population-based study, Am.
J. Clin. Nutr. 86 (2007) 131-8.
[37] A.C. Peeters, B.A. van Landeghem, S.J. Graafsma, S.E. Kranendonk, A.R. Hermus, H.J.
Blom HJ, M. den Heijer, Low vitamin B6, and not plasma homocysteine concentration,
as risk factor for abdominal aortic aneurysm: a retrospective case-control study, J. Vasc.
Surg. 45 (2007) 701-705.
[38] Y. Hellsten, D. Maclean, G. Rådegran, B. Saltin, J. Bangsbo, Adenosine concentrations in
the interstitium of resting and contracting human skeletal muscle, Circulation 98 (1998)
6-8.
[39] A.S. Lader, A.G. Prat, G.R. Jackson, K.L. Chervinsky, A. Lapey, T.B. Kinane, H.F.
Cantiello, Increased circulating levels of plasma ATP in cystic fibrosis patients, Clin.
Physiol. 20 (2000) 348-353.
[40] P.I. Creeke, F. Dibari, E. Cheung, T. van den Briel, E. Kyroussis, A.J. Seal, Whole blood
NAD and NADP concentrations are not depressed in subjects with clinical pellagra, J.
Nutr. 137 (2007) 2013-2017.
Related documents