Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Compound Physiological concentration Reference Table 1. Physiological concentrations of endogenous compounds studied Amino Acids and Derivatives, Peptides L-arginine Carnosine (β-alanyl-l- 80 ± 20 µmol/L (plasma) [1] 125 ± 5.5 µmol/L (plasma) [2] 60 - 120 μmol/L (serum) [3] 123.3 ± 44.6 μmol/L (plasma) [4] 80–120 μmol/L (plasma) [5] 40-120 μmol/L (plasma) [6] 87 ± 3 μmol/L (plasma; Swedish population) [7] 69 ± 3 μmol/L (plasma; Guatemalan population) [7] 137 ± 8 μmol/L (plasma) [8] 5 mmol/kg (human skeletal muscle) [9] 60 - 130 μmol/L (serum) [10] 115.2 ± 48.8 μmol/L (men; serum) [11] 94.6 ± 39.3 μmol/L (women; serum) [11] 52 ± 11 μmol/L (plasma) [1] 25.2 ± 1.5 μmol/L (erythrocyte) [12] 239 ± 40 μmol/L (plasma) [13] 100-330 μmol/L (plasma) [6] 248 ± 13 μmol/L (plasma; Swedish population) [7] 210 ± 17 μmol/L (plasma; Guatemalan population) [7] 514.7 ± 33.1 μmol/L (erythrocyte) [12] 1.6 ± 0.5 μmol/L (plasma) [14] 2.4 ± 1.0 μmol/L (plasma) [15] 6.75 ± 0.47 μmol/g Hb (erythrocytes) [12] 8.46 ± 0.175 μmol/g Hb (erythrocytes) [16] 0.11 ± 0.05 μmol/L (plasma) [14] 0.2 ± 0.2 μmol/L (plasma) [15] 0.0132 ± 0.004 μmol/gHb (erythrocytes) [16] 82 ± 10 μmol/L (plasma) [1] histidine) Creatinine Cysteine Glycine GSH GSSG Histidine *This range is considered normal by the American Medical Association 30-150 μmol/L (plasma) [6] 87 ± 6 μmol/L (plasma; Swedish population) [7] 87 ± 3 μmol/L (plasma; Guatemalan population) [7] 188 ± 32 μmol/L (plasma) [1] 100-300 μmol/L (plasma) [6] 195 ± 9 μmol/L (plasma; Swedish population) [7] 150 ± 8 μmol/L (plasma; Guatemalan population) [7] Melatonin 0.042 ± 0.03 nmol/L (plasma) [17] Methionine 25 ± 4 μmol/L (plasma) [1] 25 ± 1 μmol/L (plasma; Swedish population) [7] 24 ± 1 μmol/L (plasma; Guatemalan population) [7] 114 ± 19 µmol/L (plasma) [1] 90-290 μmol/L (plasma) [6] 114 ± 4 μmol/L (plasma; Swedish population) [7] 102 ± 5 μmol/L (plasma; Guatemalan population) [7] 44 ± 7 μmol/L (plasma) [18] 73 μmol/L ± 14.9 (serum) H [6] 30-80 μmol/L (plasma) [7] 25 ± 1 μmol/L (plasma; Swedish population) [7] 24 ± 1 μmol/L (plasma; Guatemalan population) [7] 59 ± 12 μmol/L (plasma) [1] 35 -102 μmol/L (plasma) [19] 39- 89 μmol/L (plasma) [20] 30-120 μmol/L(plasma) [6] 60 ± 4μmol/L (plasma; Swedish population) [7] 54 ± 2 μmol/L (plasma; Guatemalan population) [7] 5300 ± 1080 µmol/L (men; plasma) [21] 4800 ± 1200 µmol/L (women; plasma) [21] 6500 ± 2500 (µmol/L) (plasma; Guatemalan [7] Lysine Serine Tryptophan Tyrosine Urea population) Organic acids Oxaloacetic acid 0.34 ± 0 02 µmol/L (blood) [22] Pantothenic acid Pyruvic acid Uric acid 1.1 - 12 µmol/L (blood) [23] 4.79 – 11.05 µmol/L (blood) [24] 29 ± 23 µmol/L (plasma) [25] 33 ± 14 µmol/L (erythrocytes) [26] 380 μmol/L (plasma) [27] 214- 494 µmol/L (plasma) * 119-375 µmol/L (women; serum) [28] 155-404 µmol/L (men; serum) [28] 0.074 ± 0.016 μmol/g Hb (women; erythrocytes) [29] 0.083 ± 0.026 μmol/g Hb (men; erythrocytes) [29] Polyamines Spermidine Spermine 0.32 ± 0.07 µmol/L (serum) [30] 72.9 ± 34.9 nmol/L (plasma) [31] 14.7 (10–24) μmol/L(erythrocytes) H [32] 0.039 ± 0.029 µmol/L (plasma) [33] 30.7 ± 39.5 nmol/L (plasma) [31] B-group vitamins Vit B1 0.064 ± 0.12 μmol/L (plasma) [34] Vit B2 0.0027 – 0.0425 μmol/L (plasma) [35] 0.018 μmol/L (plasma) [36] 0.0757 μmol/L (plasma) [37] Vit B6 Nucleotides AMP 0.067 ± 0.02 μmol/L (human skeletal muscles) [38] ATP 1.02 ± 0.09 µmol/L (plasma) [39] NAD 24.3 µmol/L (whole blood) [40] References [1] J. Le Boucher, C. Charret, C. Coudray-Lucas, J. Giboudeau, L. Cynober, Amino acid determination in biological fluids by automated ion-exchange chromatography: performance of Hitachi L-8500A, Clin. Chem. 43 (1997) 1421-1428. [2] H. Hanssen, T.M. Brunini, M. Conway, A.P. Banning, N.B. Robert, G.E. Mann, J.C. Ellory, A.C. Mendes Ribeiro, Increased L-arginine transport in human erythrocytes in chronic heart failure, Clin. Sci. (Lond). 94 (1998) 43-48. [3] C.V. Suschek, O. Schnorr, K. Hemmrich, O. Aust, L.O. Klotz, H. Sies, V. Kolb-Bachofen, Critical role of L-arginine in endothelial cell survival during oxidative stress, Circulation 107 (2003) 2607-2614. [4] T.S. Alvares, C.A. Conte-Junior, J.T. Silva, V.M. Paschoalin, Acute L-Arginine supplementation does not increase nitric oxide production in healthy subjects, Nutr. Metab. (Lond). 9 (2012) 54. [5] S.M. Morris Jr, Arginine metabolism: boundaries of our knowledge, J. Nutr. 137 (2007) 1602S-1609S. [6] K.J. Kingsbury, L. Kay, M. Hjelm, Contrasting plasma free amino acid patterns in elite athletes: association with fatigue and infection, Br. J. Sports Med. 32 (1998) 25–33. [7] P. Klassen, P. Fürst, C. Schulz, M. Mazariegos, N.W. Solomons, Plasma free amino acid concentrations in healthy Guatemalan adults and in patients with classic dengue, Am. J. Clin. Nutr. 73 (2001) 647-652. [8] M.B. Moss, T.M. Brunini, R. Soares De Moura, L.E. Novaes Malagris, N.B. Roberts, J.C. Ellory, G.E. Mann, A.C. Mendes Ribeiro, Diminished L-arginine bioavailability in hypertension, Clin. Sci. (Lond). 107 (2004) 391-397. [9] A. Baguet, Important role of muscle carnosine in rowing performance, J. Appl. Physiol. 109 (2010) 1096–1101. [10] I. Sadowska-Bartosz, S. Galiniak, G. Bartosz, M. Rachel M, Oxidative modification of proteins in pediatric cystic fibrosis with bacterial infections, Oxid. Med. Cell. Longev. 2014 (2014) 389629. [11] J.G. Wang, J.A. Staessen, R.H. Fagard, W.H. Birkenhäger, L. Gong, L. Liu, Prognostic significance of serum creatinine and uric acid in older Chinese patients with isolated systolic hypertension, Hypertension 37 (2001) 1069-1074. [12] R.V. Sekhar, S.V. McKay, S.G. Patel, A.P. Guthikonda, V.T. Reddy, A. Balasubramanyam, F. Jahoor, Glutathione synthesis is diminished in patients with uncontrolled diabetes and restored by dietary supplementation with cysteine and glycine, Diabetes Care 34 (2011) 162-167. [13] A.E. Evins, S.M. Fitzgerald, L. Wine, R. Rosselli, D.C. Goff, Placebo-controlled trial of glycine added to clozapine in schizophrenia, Am. J. Psychiatry 157 (2000) 826–828. [14] S. Ashfaq, J.L. Abramson, D.P. Jones, S.D. Rhodes, W.S. Weintraub, W.C. Hooper, V. Vaccarino, D.G. Harrison, A.A.Quyyumi, The relationship between plasma levels of oxidized and reduced thiols and early atherosclerosis in healthy adults, J. Am. Coll. Cardiol. 47 (2006) 1005-1011. [15] S.E. Moriarty, J.H. Shah, M. Lynn, S. Jiang, K. Openo, D.P. Jones, P. Sternberg P, Oxidation of glutathione and cysteine in human plasma associated with smoking, Free Radic. Biol. Med. 35 (2003) 1582-1588. [16] D. Giustarini, I. Dalle-Donne, A. Milzani, P. Fanti, R. Rossi R, Analysis of GSH and GSSG after derivatization with N-ethylmaleimide, Nat. Protoc. 8 (2013) 1660-1669. [17] S. Caglayan, M. Ozata, G. Ozisik, M. Turan, E. Bolu, C. Oktenli, N. Arslan, K. Erbil, D. Gul, I.C. Ozdemir, Plasma melatonin concentration before and during testosterone replacement in Klinefelter's syndrome: relation to hepatic indolamine metabolism and sympathoadrenal activity, J. Clin. Endocrinol. Metab. 86 (2001) 738-743. [18] B. Widner, E.R. Werner, H. Schennach, H. Wachter, D. Fuchs, Simultaneous measurement of serum tryptophan and kynurenine by HPLC, Clin. Chem. 43 (1997) 2424-2426. [19] M.D. Armstrong, U. Stave, A study of plasma free amino acid levels. II. Normal values for children and adults, Metabolism 22 (1973) 561-569. [20] S.C. Grünert, C.M. Brichta, A. Krebs, H.W. Clement, R. Rauh, C. Fleischhaker, K. Hennighausen, J.O. Sass, K.O. Schwab, Diurnal variation of phenylalanine and tyrosine concentrations in adult patients with phenylketonuria: subcutaneous microdialysis is no adequate tool for the determination of amino acid concentrations, Nutr. J. 12 (2013) 60. [21] W.E. Waters, W.J. Greene, J.W. Keyser, Plasma urea concentrations in the general population: comparison with 'hospital normal values', Postgrad. Med. J. 43 (1967) 695– 700. [22] A. Laplante, B. Comte, C. Des Rosiers, Assay of blood and tissue oxaloacetate and alphaketoglutarate by isotope dilution gas chromatography-mass spectrometry, Anal. Biochem. 224 (1995) 580-587. [23] C.T. Wittwer, C. Schweitzer, J. Pearson, W.O. Song, C.T. Windham, B.W. Wyse, R.G. Hansen, Enzymes for liberation of pantothenic acid in blood: use of plasma pantetheinase, Am. J. Clin. Nutr. 50 (1989) 1072-1078. [24] S.H. Cohenour, D.H. Calloway, Blood, urine, and dietary pantothenic acid levels of pregnant teenagers, Am. J. Clin. Nutr. 25 (1972) 512-517. [25] H. Okada, S. Araga, T. Takeshima, K. Nakashima, Plasma lactic acid and pyruvic acid levels in migraine and tension-type headache, Headache 38 (1998) 39-42. [26] S.F. Travis, A.D. Morrison, R.S. Clements Jr, A.I. Winegrad, F.A. Oski, Metabolic alterations in the human erythrocyte produced by increases in glucose concentration. The role of the polyol pathway, J. Clin. Invest. 50 (1971) 2104-2112. [27] E.P. de Oliveira, R.C. Burini, High plasma uric acid concentration: causes and consequences, Diabetol. Metab. Syndr. 4 (2012) 12. [28] A. Hesse, H.G. Tiselius, A. Jahnen, Urinary Stones: Diagnosis, treatment, and prevention of recurrence, second ed., S. Karger AG, Basel, Switzerland, 2002. [29] R. Kanďár, X. Štramová, P. Drábková, J. Křenková, A monitoring of allantoin, uric acid, and malondialdehyde levels in plasma and erythrocytes after ten minutes of running activity, Physiol. Res. 63 (2014) 753-762. [30] L.J. Marton, D.H. Russell, C.C. Levy, Measurement of putrescine, spermidine, and spermine in physiological fluids by use of an amino acid analyzer, Clin. Chem. 19 (1973) 923-926. [31] K. Igarashi, S. Ueda, K. Yoshida, K. Kashiwagi, Polyamines in renal failure, Amino Acids 31 (2006) 477-483. [32] G. Seghieri, R. Anichini, M. Ciuti, A. Gironi, F. Bennardini, F. Franconi, Raised erythrocyte polyamine levels in non-insulin-dependent diabetes mellitus with great vessel disease and albuminuria, Diabetes Res. Clin. Pract. 37 (1997) 15-20. [33] H. Desser, G. Kleinberger, J. Kläring, Plasma polyamine levels in liver insufficiency, J. Clin. Chem. Clin. Biochem. 19 (1981) 159-164. [34] P.J. Thornalley, R. Babaei-Jadidi, H. Al Ali, N. Rabbani, A. Antonysunil, J. Larkin, A. Ahmed, G. Rayman, C.W. Bodmer, High prevalence of low plasma thiamine concentration in diabetes linked to a marker of vascular disease, Diabetologia 50 (2007) 2164–2170. [35] S. Hustad, P.M. Ueland, J. Schneede, Quantification of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma by capillary electrophoresis and laserinduced fluorescence detection, Clin. Chem. 45 (1999) 862-868. [36] Ø. Midttun, S. Hustad, J. Schneede, S.E. Vollset, P.M. Ueland, Plasma vitamin B-6 forms and their relation to transsulfuration metabolites in a large, population-based study, Am. J. Clin. Nutr. 86 (2007) 131-8. [37] A.C. Peeters, B.A. van Landeghem, S.J. Graafsma, S.E. Kranendonk, A.R. Hermus, H.J. Blom HJ, M. den Heijer, Low vitamin B6, and not plasma homocysteine concentration, as risk factor for abdominal aortic aneurysm: a retrospective case-control study, J. Vasc. Surg. 45 (2007) 701-705. [38] Y. Hellsten, D. Maclean, G. Rådegran, B. Saltin, J. Bangsbo, Adenosine concentrations in the interstitium of resting and contracting human skeletal muscle, Circulation 98 (1998) 6-8. [39] A.S. Lader, A.G. Prat, G.R. Jackson, K.L. Chervinsky, A. Lapey, T.B. Kinane, H.F. Cantiello, Increased circulating levels of plasma ATP in cystic fibrosis patients, Clin. Physiol. 20 (2000) 348-353. [40] P.I. Creeke, F. Dibari, E. Cheung, T. van den Briel, E. Kyroussis, A.J. Seal, Whole blood NAD and NADP concentrations are not depressed in subjects with clinical pellagra, J. Nutr. 137 (2007) 2013-2017.