* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download INTRO PACKET
Survey
Document related concepts
Transcript
INTRO PACKET Algebra 1 Name _________________________________________________ Date Received: _________________ Date Due: ______________ Math Teacher: ___________________________________________ August 2012 Integer Addition, Subtraction, Multiplication, Division BASIC DEFINITIONS: INTEGERS – Positive and Negative numbers (and zero) whose decimal digits are zeros. ABSOLUTE VALUE – Distance from zero on a number line. OPPOSITES – Two numbers the same distance from zero on a number line but on different sides of zero. INTEGER ADDITION: - Do the integers have the same sign? YES NO -ADD their absolute values -SUBTRACT their absolute values -Keep the common sign -Keep the sign of the integer with the larger absolute value. INTEGER SUBTRACTION: - Add the opposite. How? Step 1: Step 2: Step 3: Step 4: Keep the first integer the same Change the subtraction symbol to addition Change the sign (to its opposite) of the sign that follows the subtraction symbol Follow the rules of addition above. INTEGER MULTIPLICATION and DIVISION: - Do the integers have the same sign? YES NO -MULTIPLY or DIVIDE their absolute values -MULTIPLY or DIVIDE their absolute values -Your answer will always be positive -Your answer will always be negative 2 Name _____________________________________Integer Operations: Add/ Subtract Alg. 1 Intro Packet Simplify by performing the operation. Do not use a calculator: 1) 4 ( 7 ) 2) 3 (1) 3) 69 1) _______ 2) ______ 3) _______ 4) ______ 4) (2) (3) 5) 3 11 6) (6) (10) 5) _______ 6) ______ 7) _______ 8) ______ 7) 7 ( 7 ) 8) 6 ( 4) 9) 13 (3) 10) 47 11) 3 (9) 12) 29 9) _______ 10) ________ 11) ______ 12) ________ 13) ______ 13) 12 (2) 14) 5 10 15) 6 (11) 14) ________ 15) ______ Simplify by performing the operation. Do not use a calculator: 1) 47 2) 3 (1) 3) 69 1) _______ 2) ______ 3) _______ 4) ______ 4) 23 5) 13 (3) 6) 6 10 5) _______ 6) ______ 7) _______ 8) ______ 7) 10) 77 47 8) 6 (4) 11) 3 (9) 9) 3 11 12) 2 9 9) _______ 10) ________ 11) ______ 12) ________ 13) ______ 13) 12 (2) 14) 5 10 15) 6 11 14) ________ 15) ______ 3 Name ______________________________________Integer Operations: Mult. & Divide Alg. 1 Intro Packet Simplify by performing the operation. Do not use a calculator: 1) 5 2 2) (7)( 3) 3) (10)(5) 1) _______ 2) ______ 3) _______ 4) ______ 5) _______ 6) ______ 4) 312 5) 9 ( 2) 6) ( 1)( 3) 7) _______ 8) ______ 9) _______ 7) 10) 6(8) 2 7 8) 11) (10)( 5) 2(2) 9) 5 8 12) (11)7 10) ________ 11) ______ 12) ________ 13) ______ 14) ________ 15) ______ 13) 35 (5) 14) 42 (3) 15) 28 7 16) ________ 17) ______ 18) ________ 16) 19) 14 2 48 8 17) 9 (3) 18) 3 1 20) 10 5 21) 40 20 19) ________ 20) ______ 21) ________ 22) ______ 23) ________ 24) ______ 22) 21 (7) 4 23) 2 ( 2) 24) 100 2 Name ______________________________________________________Alg. 1 Intro Packet MIXED INTEGER REVIEW Add, subtract, multiply or divide the following integers. Do not use a calculator: 1) 2 ( 7 ) 2) 4 ( 3) 1) ________ 2) _______ 3) ________ 4) _______ 3) 15 3 4) (9)( 7) 5) ________ 6) _______ 7) ________ 8) _______ 5) 3 (6) 6) 45 9) ________ 10) ______ 11) _______ 12) ______ 7) 73 8) 2 ( 6 ) 13) _______ 14) ______ 15) _______ 16) ______ 17) _______ 18) ______ 9) 4 5 10) 12 (7) 11) 15 7 12) 11 5 13) 8 (21) 14) (3)( 9) 15) 24 4 16) 9 (13) 17) (2)( 25) 18) 50 30 19) 56 8 20) 32 ( 37) 19) _______ 20) ______ 5 ALGEBRAIC PROPERTIES These basic algebraic properties, which do not affect an expression’s outcome, are categorized by: -Movement of terms -Grouping of terms -Special results from performing certain operations. MOVEMENT OF TERMS: COMMUTATIVE PROPERTY (To ‘commute’ means ‘to move’) of Addition: of Multiplication: a b b a a b b a 5 4 45 3 7 7 (3) x 6 6 x 5 4 45 3 7 7 (3) x 6 6 x GROUPING OF TERMS: ASSOCIATIVE PROPERTY (To ‘associate’ implies who is grouped together) of Addition: a (b c) (a b) c 5 (4 3) (5 4) 3 3 [7 (1)] (3 7) (1) x (6 y ) ( x 6) y of Multiplication: a (b c) (a b) c 5 (4 3) (5 4) 3 3 [7(1)] (3 7) (1) x (6 y ) ( x 6) y SPECIAL RESULTS FROM PERFORMING CERTAIN OPERATIONS: DISTRIBUTIVE PROPERTY IDENTITY PROPERTY a (b c) ab ac of Addition: of Multiplication: a0a a 1 a 50 5 3 0 3 x0 x 5 1 5 3 1 3 x 1 x 5(4 3) 5 4 5 3 3[7 (1)] 3(7) (3)( 1) x (6 y ) x 6 x y *Distributive Property in reverse, ab ac a (b c) , can still be called the Distributive Property, but is more commonly known in algebra as ‘FACTORING’ (through GCF). 6 Name _________________________________________Algebraic Properties Alg. 1 Intro Packet Match the expression change with the algebraic property that justifies it: 1) 033 2) 3 6 63 3) (2 5)8 2(5 8) 4) 1 52 52 5) 1) ____ 2) ____ [A] Commutative Property of Addition 3) ____ 4) ____ [B] Commutative Property of Multiplication 5) ____ (1 2) 3 1 (2 3) 6) ____ 6) 7 8 8 7 7) 5 1 1 5 8) 4(3 7) (4 3) 7 9) 27 7 2 10) ( xy) z z ( xy) 11) 4(3 7) 4 3 4 7 12) 27 7 2 *13) [C] Associative Property of Addition 7) ____ 8) ____ [D] Associative Property of Multiplication 9) ____ 10)____ 11) ___ [E] Distributive Property 12)____ 13)____ [F] Additive Identity (‘Identity Property of Addition’) 18 x 9 9(2 x 1) [G] Multiplicative Identity (‘Identity Property of Multiplication’) Replace the question mark with the missing information: 14) Associative Property of Addition: 6 (7 d ) (? 7) d 15) Associative Property of Multiplication: 16) Distributive Property: 5 3 (4) 5 ? (4) 14) ______ 15) ______ 16) ______ 7( x 5) ? x ? 5 17) ______ 17) Additive Identity (Identity Property of Addition): 18) Commutative Property of Addition: ? 0 m 18) ______ jk mn mn ? 7 Name _________________________________________Distributive Property Alg. 1 Intro Packet Use the Distributive Property to simplify the following expressions: 1) 5( x 4) 2) 5( x 4) 1) _______________ 2) _______________ 3) 8( x 2) 3) _______________ 4) 8(3x 4) 4) _______________ 5) 2 (5 x ) 5) _______________ 6) 2(5 2b) 6) _______________ 7) _______________ 7) 4( 2 x 5) 8) 4(2b 5) 8) _______________ Simplify Like Terms: 9) 4 x 2 x 20 10) 11x 7 x 44 6 9) _______________ 10) _______________ 11) _______________ 11) 3m 12 2m 12) 5h 4h 75 3h 12) _______________ 13) _______________ 14) _______________ 13) 8 x 8 12 x 8 14) 21 18x 7 15) _______________ 16) _______________ 15) 4(b 5) 6 8 16) 2 y 6( y 4) EXPRESSIONS and EQUATIONS EXPRESSION – Collection of numbers, operations, and variables. 2x 7 Examples: a4 5c 8v 5 x 3 7 12.4 EQUATION – Two expressions separated by an equals sign. 2x 7 12.4 Examples: a47 5c 40 EVALUATING EXPRESSIONS: To evaluate an expression, substitute/replace the variable with the number and simplify: (7 ) 4 5( 6 ) w 3 30 3 11 30 10 a 4 if Examples: a7 5c if c6 if w 30 SOLVING EQUATIONS: OPEN SENTENCE – Equation with at least one variable to be solved. Equations can be True, False, or Open. 18 32 50 True 45 15 25 False 12 4 x Open REPLACEMENT SET – Collection of numbers that are substituted in for the variable(s). Example: Solve for ? Solutions: 2(0) (0) 3 03 NO 2x x 3 { 0, 1, 2, 3 } using replacement set ? 2(1) (1) 3 24 NO ? 2(2) (2) 3 45 NO ? 2(3) (3) 3 66 YES Solution Set: {3} 9 To solve an equation without a replacement set provided, performing the inverse operation of the one(s) in the original equation helps to isolate the variable. Examples: y 4 18 4 4 y 22 w 5 12 5 5 w 7 4 x 20 4x 204 4 x5 f 3 f 3 8 38 3 f 24 WRITING EQUATIONS: Addition Words Subtraction Words Multiplication Words Division Words Sum Add More than Increased by Difference Subtracted from Less than Fewer than Decreased by Product of Multiplied by Times Double Triple Quotient Divided by “Is” means ‘equal to’. “Of” often means multiplication. To write an equation, use your key words to translate the phrases into algebraic expressions/equations. Examples: Solutions: Five more than g is 34 5 g 34 5 5 g 29 10 (or also g 5 34 ) 72 is one-sixth of y 72 16 y 672 616 y 432 y (or also 72 y 6 ) Name ___________________________________ One-Step Equations: Addition/Subtraction Alg. 1 Intro Packet Solve each equation by isolating the variable. Show all work: 1) y 7 5 2) t 8 1 3) 3 r 11 4) 6 p 9 5) 2 x6 6) 1 w7 7) 7 11 n 8) 4 1 z 9) 3 9 j Solve each equation by isolating the variable. Show all work: 10) y 4 5 11) t 5 1 12) v 4 11 13) 13 x 7 14) 10 x 8 15) 10 x 8 16) p6 9 17) 2 x 1 18) 5 a (11) 11 Name _______________________________________ One-Step Equations: Mult./ Division Alg. 1 Intro Packet Solve each equation by isolating the variable. Show all work: 1) 3 y 15 2) 4t 16 3) 6 x 12 4) 7 x 77 5) 77 7 x 6) 72 0.5x 7) 5 p 90 8) 2b 10 9) 10 5w Solve each equation by isolating the variable. Show all work: 10) y 2 1 4 x5 13) 1 5 16) 1 8 12 p 6 11) 1 2 t 5 12) 1 3 14) x 5 5 15) x 5 18) 1 17) x ( 2 ) 1 x 11 5 1 4 w Name _______________________________________ One-Step Equations: Mixed Review 1 Alg. 1 Intro Packet Solve each equation by isolating the variable. Show all work: 1) 3 g 15 2) 24 y 61 3) 4) 7 y 17 5) c ( 30) 12 6) 4b 20 9 8) t 8 10 9) 48 16 g n 38 5 11) 4 6 y 12) 6 b 12 1 14) x 3 3 7) 10) 13) n 2 n 3 b 6 5 15) The sum of a number and 8 is negative 3. 13 Name _______________________________________ One-Step Equations: Mixed Review 2 Alg. 1 Intro Packet Solve each equation by isolating the variable. Show all work: 12 18) 20) 4b 60 21) b 4 4 16 78 y 23) x 25 44 24) b 15 9 30h 150 26) c ( 5) 28 27) 29) 3 x 3 16) 3c 27 17) 19) x 13 19 22) 25) 28) 1 6 14 x3 b 8 7r 49 x (4) 14 30) The difference of a number and 1 is 3. Name _______________________________________ Writing & Solving Equations Alg. 1 Intro Packet A) Write and equation and B) Solve for the missing variable. Show all work: 1) Nine more than a number is four. 2) Ten less than a number is eight. 3) The product of negative five and a number . is two-hundred fifteen. 4) One-fifth of a number is negative three. 5) A number decreased by sixteen is negative twenty six. 6) Four less than a number is eight. 7) Four copies of a book cost $44. Find the price of one book. 8) Jen added $150 to her savings account. Her balance is now $525. How much was it before? 9) Terri is 60 inches tall. This is 24 inches more than Kevin’s height. How tall is Kevin? 10) The perimeter of a square is 60 inches. Find the length of each side. 15 EXPONENTS Exponents show repeated multiplication in shorthand form. An exponent tells us how many times to multiply the base by itself. EXAMPLES: 53 5 5 5 In this problem, 5 is called the base and 3 is its exponent. 4a 3 4 a a a Note in this problem that 3 is the exponent of base a , not the 4. (4a)3 4a 4a 4a However in this example the 4 is included in the repeated multiplication. Both 4 and a are bases to exponent 3. -Writing an expression as just a base with its exponent is called writing it in exponential 3 notation, such as 4 a a a becoming 4a ‘in exponential notation’. ORDER OF OPERATIONS An order has been agreed upon to which operations are performed before others. Several shortcut ways to remember this ranking system have been developed, with most popular being PEMDAS, or “Please Excuse My Dear Aunt Sally”. However, note that although there are six operations, two ranks of order have two operations in them. Step #1: Step #2: Step #3: Step #4: Parentheses – Compute within any grouping symbol first, if available. Exponents – Compute powers next, if available. Multiply or Divide – Compute in order from left to right. Add or Subtract – Compute in order from left to right. - If more than one grouping symbol exists within a problem, such as (parentheses), [brackets], or {braces}, work from the inside out. EXAMPLES: Evaluate the following by using the Order of Operations: x 4 if x 2 m2 (5) (2) 4 2 2 2 2 16 (6) 2 6 6 (5) 36 (5) 31 (2) 3 (2)( 2)( 2) 2 8 2 6 (3a)3 if a 2 3a3 if a 2 16 4 32 [3(2)]3 [6]3 6 6 6 216 3 23 3 8 24 16 4 9 4 9 13 if m6 n3 2 if 1 [4 (17 23) 23 ] 1 [4 40 23 ] 16 1 [4 40 8] 1 [4 5] 1 [1] 0 n 2 Name _________________________________________ Order of Operations, page 1 Alg. 1 Intro Packet Find the answer by applying the Order of Operations. SHOW EACH STEP! Use example 1 as a guide: 1) 15 7 2 1 15 14 1 29 1 30 2) 6 2 3 (5) 3) 6 8 8 60 4) 32 8 5 6 5) 20 5 4 8 6) 24 3 5 3 24 7) 10 12 12 (2) 6 8) 63 28 3 9) 18 3 4 2 8 10) 7 8 28 6 11) 6 (3 5) 2 12) (14 3 4) 5 13) (2 4)3 5 3 14) (23 13) 6 18 15) (8 6) 4 2 6 17 Name _________________________________________ Order of Operations, page 2 Alg. 1 Intro Packet Find the answer by applying the Order of Operations. SHOW EACH STEP! 16) (3 8) 11 23 19) 5 (6 8 18) 04 8 17) 49 7 8 4(3 2) 18) 3 (5 8) 6 3 8 2 20) (4)( 9) 6 (3 4) Substitute and simplify each expression 21) 3x 5 when x 2 24) b 5 when b 3 4 22) a 5 when a 5 23) 2 n 25) w 11 when w 5 26) x y when x 2 2 3 3 when n 5 2 & y6 18