Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
n 5.3 Trig Functions on the Unit Circle Unit Circle: Circle of radius 1. (x,y) 1 y θ x sinθ = cscθ = cosθ = secθ = tanθ = cotθ = Dec 47:01 PM Examples: Use the unit circle to find each value. 1.) sin 90o 2.) cot(-180o) Dec 48:03 PM 1 3.) cos(-270o) 4.) csc180o Dec 48:04 PM Special Triangles... this is all you need to memorize. 45o 60 1 o √2 1 2 45o 30o √3 30-60-90 Triangle 1 45-45-90 Triangle Dec 48:08 PM 2 Examples: Use the unit circle to find the values of the six trig functions for each angle. 1.) 225o Dec 48:06 PM 2.) 120o Dec 48:10 PM 3 3.) 330o Dec 48:11 PM (x,y) r y θ x r = √ x 2 + y2 sinθ = cscθ = cosθ = secθ = tanθ = cotθ = Dec 48:14 PM 4 Examples: Find the values of the six trigonometric functions for angle θ in standard position if a point with the given coordinates lies on its terminal side. 1.) (-4,-3) Dec 48:26 PM 2.) (5,-3) Dec 48:28 PM 5 More Examples 1.) If cosθ <0, where would the terminal side of the angle be located? Dec 48:30 PM Suppose θ is an angle in standard position whose terminal side lies in the given quadrant. For each function, find the values of the six trig functions for θ. 2.) cosθ= 12, Quadrant III 13 Dec 48:32 PM 6 3.) secθ = √3 , Quadrant IV Dec 48:35 PM Dec 67:07 AM 7