Download 2N4124/MMBT4124 NPN General Purpose Amplifier

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Nanofluidic circuitry wikipedia , lookup

Regenerative circuit wikipedia , lookup

Radio transmitter design wikipedia , lookup

Test probe wikipedia , lookup

Wien bridge oscillator wikipedia , lookup

Transistor–transistor logic wikipedia , lookup

Josephson voltage standard wikipedia , lookup

Thermal runaway wikipedia , lookup

Amplifier wikipedia , lookup

Multimeter wikipedia , lookup

CMOS wikipedia , lookup

Schmitt trigger wikipedia , lookup

Voltage regulator wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Power electronics wikipedia , lookup

Negative-feedback amplifier wikipedia , lookup

Ohm's law wikipedia , lookup

TRIAC wikipedia , lookup

Surge protector wikipedia , lookup

Power MOSFET wikipedia , lookup

Current source wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Valve RF amplifier wikipedia , lookup

Wilson current mirror wikipedia , lookup

Operational amplifier wikipedia , lookup

Opto-isolator wikipedia , lookup

Rectiverter wikipedia , lookup

Current mirror wikipedia , lookup

Transcript
2N4124 / MMBT4124
2N4124
MMBT4124
C
E
C
B
TO-92
B
SOT-23
E
Mark: ZC
NPN General Purpose Amplifier
This device is designed as a general purpose amplifier and switch.
The useful dynamic range extends to 100 mA as a switch and to
100 MHz as an amplifier.
Absolute Maximum Ratings*
Symbol
TA = 25°C unless otherwise noted
Parameter
Value
Units
VCEO
Collector-Emitter Voltage
25
V
VCBO
Collector-Base Voltage
30
V
VEBO
Emitter-Base Voltage
5.0
V
IC
Collector Current - Continuous
200
mA
TJ, Tstg
Operating and Storage Junction Temperature Range
-55 to +150
°C
*These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.
NOTES:
1) These ratings are based on a maximum junction temperature of 150 degrees C.
2) These are steady state limits. The factory should be consulted on applications involving pulsed or low duty cycle operations.
Thermal Characteristics
Symbol
PD
TA = 25°C unless otherwise noted
Characteristic
RθJC
Total Device Dissipation
Derate above 25°C
Thermal Resistance, Junction to Case
RθJA
Thermal Resistance, Junction to Ambient
Max
Units
2N4124
625
5.0
83.3
*MMBT4124
350
2.8
200
357
mW
mW/°C
°C/W
°C/W
*Device mounted on FR-4 PCB 1.6" X 1.6" X 0.06."
 2001 Fairchild Semiconductor Corporation
2N4124/MMBT4124, Rev A
(continued)
Electrical Characteristics
Symbol
TA = 25°C unless otherwise noted
Parameter
Test Conditions
Min
Max
Units
OFF CHARACTERISTICS
V(BR)CEO
Collector-Emitter Breakdown Voltage
IC = 1.0 mA, IB = 0
25
V
V(BR)CBO
Collector-Base Breakdown Voltage
V(BR)EBO
Emitter-Base Breakdown Voltage
IC = 10 µA, IE = 0
30
V
IC = 10 µA, IC = 0
5.0
ICBO
Collector Cutoff Current
VCB = 20 V, IE = 0
50
nA
IEBO
Emitter Cutoff Current
VEB = 3.0 V, IC = 0
50
nA
V
ON CHARACTERISTICS*
hFE
DC Current Gain
VCE(sat)
Collector-Emitter Saturation Voltage
IC = 2.0 mA, VCE = 1.0 V
IC = 50 mA, VCE = 1.0 V
IC = 50 mA, IB = 5.0 mA
VBE(sat)
Base-Emitter Saturation Voltage
IC = 50 mA, IB = 5.0 mA
120
60
360
0.3
V
0.95
V
SMALL SIGNAL CHARACTERISTICS
fT
Current Gain - Bandwidth Product
Cobo
Output Capacitance
Cibo
Input Capacitance
Ccb
Collector-Base Capcitance
hfe
Small-Signal Current Gain
NF
Noise Figure
*Pulse Test: Pulse Width ≤ 300 µs, Duty Cycle ≤ 2.0%
IC = 10 mA, VCE = 20 V,
f = 100 MHz
VCB = 5.0 V, IE = 0,
f = 100 kHz
VBE = 0.5 V, IC = 0,
f = 1.0 kHz
VCB = 5.0 V, IE = 0,
f = 100 kHz
VCE = 10 V, IC = 2.0 mA,
f = 1.0 kHz
IC = 100 µA, VCE = 5.0 V,
RS =1.0kΩ, f=10 Hz to 15.7 kHz
300
120
MHz
4.0
pF
8.0
pF
4.0
pF
480
5.0
dB
2N4124 / MMBT4124
NPN General Purpose Amplifier
(continued)
V CE = 5V
400
125 °C
300
25 °C
200
- 40 °C
100
0
0.1
1
10
I C - COLLECTOR CURRENT (mA)
100
Base-Emitter Saturation
Voltage vs Collector Current
1
0.8
β = 10
- 40 °C
25 °C
0.6
125 °C
0.4
0.1
IC
1
10
- COLLECTOR CURRENT (mA)
100
VCESAT- COLLECTOR-EMITTER VOLTAGE (V)
500
VBE(ON)- BASE-EMITTER ON VOLTAGE (V)
Typical Pulsed Current Gain
vs Collector Current
VBESAT- BASE-EMITTER VOLTAGE (V)
h FE - TYP ICAL PULSED CURRE NT GAIN
Typical Characteristics
Collector-Emitter Saturation
Voltage vs Collector Current
0.15
125 °C
0.1
25 °C
0.05
- 40 °C
0.1
1
VCE = 5V
0.8
- 40 °C
25 °C
0.6
125 °C
0.4
0.2
0.1
1
10
I C - COLLECTOR CURRENT (mA)
100
10
f = 1.0 MHz
VCB = 30V
CAPACITANCE (pF)
ICBO- COLLECTOR CURRENT (nA)
100
Capacitance vs
Reverse Bias Voltage
500
10
1
0.1
25
1
10
I C - COLLECTOR CURRENT (mA)
Base-Emitter ON Voltage vs
Collector Current
Collector-Cutoff Current
vs Ambient Temperature
100
β = 10
50
75
100
125
TA - AMBIENT TEMPERATURE ( °C)
150
5
4
3
C ibo
2
C obo
1
0.1
1
10
REVERSE BIAS VOLTAGE (V)
100
2N4124 / MMBT4124
NPN General Purpose Amplifier
(continued)
Typical Characteristics
(continued)
Noise Figure vs Source Resistance
Noise Figure vs Frequency
12
I C = 1.0 mA
R S = 200Ω
10
V CE = 5.0V
I C = 1.0 mA
NF - NOISE FIGURE (dB)
NF - NOISE FIGURE (dB)
12
I C = 50 µA
R S = 1.0 kΩ
8
I C = 0.5 mA
R S = 200Ω
6
4
2
I C = 100 µA, R S = 500 Ω
0
0.1
1
10
f - FREQUENCY (kHz)
10
I C = 5.0 mA
I C = 50 µA
8
6
I C = 100 µA
4
2
0
0.1
100
V CE = 40V
I C = 10 mA
10
100
f - FREQUENCY (MHz)
PD - POWER DISSIPATION (W)
- CURRENT GAIN (dB)
fe
h
θ
1
θ - DEGREES
0
20
40
60
80
100
120
140
160
180
h fe
1
1000
SOT-223
0.75
TO-92
0.5
SOT-23
0.25
0
0
Turn-On Time vs Collector Current
I B1 = I B2 =
Ic
VCC = 40V
10
TIME (nS)
15V
t r @ V CC = 3.0V
2.0V
10
1
10
I C - COLLECTOR CURRENT (mA)
125
150
100
I B1 = I B2 =
Ic
10
T J = 25°C
T J = 125°C
10
t d @ VCB = 0V
5
50
75
100
TEMPERATURE (o C)
Rise Time vs Collector Current
40V
100
25
500
t r - RISE TIME (ns)
500
100
Power Dissipation vs
Ambient Temperature
Current Gain and Phase Angle
vs Frequency
50
45
40
35
30
25
20
15
10
5
0
1
10
R S - SOURCE RESISTANCE ( kΩ )
100
5
1
10
I C - COLLECTOR CURRENT (mA)
100
2N4124 / MMBT4124
NPN General Purpose Amplifier
(continued)
Typical Characteristics
(continued)
Storage Time vs Collector Current
I B1 = I B2 =
T J = 25°C
Fall Time vs Collector Current
500
Ic
I B1 = I B2 =
10
t f - FALL TIME (ns)
t S - STORAGE TIME (ns)
500
100
T J = 125°C
10
5
T J = 125°C
100
T J = 25°C
1
10
I C - COLLECTOR CURRENT (mA)
5
100
1
10
I C - COLLECTOR CURRENT (mA)
Current Gain
h oe - OUTPUT ADMITTANCE ( µmhos)
V CE = 10 V
f = 1.0 kHz
T A = 25oC
100
10
0.1
1
I C - COLLECTOR CURRENT (mA)
1
1
I C - COLLECTOR CURRENT (mA)
10
V CE = 10 V
f = 1.0 kHz
T A = 25oC
10
1
0.1
1
I C - COLLECTOR CURRENT (mA)
10
Voltage Feedback Ratio
)
_4
V CE = 10 V
f = 1.0 kHz
T A = 25oC
10
0.1
0.1
100
10
Input Impedance
100
100
Output Admittance
h re - VOLTAGE FEEDBACK RATIO (x10
h fe - CURRENT GAIN
VCC = 40V
10
500
h ie - INPUT IMPEDANCE (kΩ )
Ic
10
10
7
V CE = 10 V
f = 1.0 kHz
T A = 25oC
5
4
3
2
1
0.1
1
I C - COLLECTOR CURRENT (mA)
10
2N4124 / MMBT4124
NPN General Purpose Amplifier
(continued)
Test Circuits
3.0 V
275 Ω
300 ns
10.6 V
Duty Cycle = 2%
Ω
10 KΩ
0
C1 < 4.0 pF
- 0.5 V
< 1.0 ns
FIGURE 1: Delay and Rise Time Equivalent Test Circuit
3.0 V
10 < t1 < 500 µs
t1
10.9 V
275 Ω
Duty Cycle = 2%
Ω
10 KΩ
0
C1 < 4.0 pF
1N916
- 9.1 V
< 1.0 ns
FIGURE 2: Storage and Fall Time Equivalent Test Circuit
2N4124 / MMBT4124
NPN General Purpose Amplifier
TRADEMARKS
The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is
not intended to be an exhaustive list of all such trademarks.
ACEx™
Bottomless™
CoolFET™
CROSSVOLT™
DOME™
E2CMOSTM
EnSignaTM
FACT™
FACT Quiet Series™
FAST 
FASTr™
GlobalOptoisolator™
GTO™
HiSeC™
ISOPLANAR™
MICROWIRE™
OPTOLOGIC™
OPTOPLANAR™
PACMAN™
POP™
PowerTrench 
QFET™
QS™
QT Optoelectronics™
Quiet Series™
SILENT SWITCHER 
SMART START™
SuperSOT™-3
SuperSOT™-6
SuperSOT™-8
SyncFET™
TinyLogic™
UHC™
VCX™
DISCLAIMER
FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER
NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD
DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT
OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT
RIGHTS, NOR THE RIGHTS OF OTHERS.
LIFE SUPPORT POLICY
FAIRCHILD’S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT
DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.
As used herein:
1. Life support devices or systems are devices or
2. A critical component is any component of a life
support device or system whose failure to perform can
systems which, (a) are intended for surgical implant into
be reasonably expected to cause the failure of the life
the body, or (b) support or sustain life, or (c) whose
support device or system, or to affect its safety or
failure to perform when properly used in accordance
with instructions for use provided in the labeling, can be
effectiveness.
reasonably expected to result in significant injury to the
user.
PRODUCT STATUS DEFINITIONS
Definition of Terms
Datasheet Identification
Product Status
Definition
Advance Information
Formative or
In Design
This datasheet contains the design specifications for
product development. Specifications may change in
any manner without notice.
Preliminary
First Production
This datasheet contains preliminary data, and
supplementary data will be published at a later date.
Fairchild Semiconductor reserves the right to make
changes at any time without notice in order to improve
design.
No Identification Needed
Full Production
This datasheet contains final specifications. Fairchild
Semiconductor reserves the right to make changes at
any time without notice in order to improve design.
Obsolete
Not In Production
This datasheet contains specifications on a product
that has been discontinued by Fairchild semiconductor.
The datasheet is printed for reference information only.
Rev. G
Mouser Electronics
Authorized Distributor
Click to View Pricing, Inventory, Delivery & Lifecycle Information:
Fairchild Semiconductor:
2N4124_D26Z 2N4124_D27Z 2N4124_D74Z 2N4124_D75Z