Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
miRNA‐seq of mouse brain regions q g Iiris Hovatta, PhD University of Helsinki Research Program of Molecular Neurology and Department of Medical Genetics, F Faculty lt off Medicine M di i National Network of Molecular Medicine, Institute of Molecular Medicine Finland FIMM National Institute for Health and Welfare Department of Mental Health and Substance Abuse Services Edvard Munch: Anxiety, 1984 1 Anxiety disorders share increased anxiety but have distinct symptoms as well • Panic disorder P i di d • Obsessive‐compulsive disorder • Post‐traumatic stress disorder • Social phobia • Specific phobias • Generalized anxiety disorder G li d i t di d Treated with SSRI, MAOI, benzodiazepines, beta-blockers 2 Identification of candidate genes by gene expression profiling in inbred mouse strains Behavioral testing + Gene expression profiling with microarrays Genes with expression levels that correlate with behavior 6 mouse strains: 129S6/SvEvTac A/J C3H/HeJ C57BL/6J DBA/2J FVB/NJ 7 brain regions: Amygdala Bed nucleus of the stria terminalis Ci Cingulate l t cortex t Hippocampus Hypothalamus Periaqueductal gray Pituitary gland Functional studies Hovatta et al. Nature 2005 Mechanisms that regulate susceptibility genes? miRNA From www.uta.edu/.../henry/classnotes/2457/index.htm. 3 micro‐RNAs are abundant regulators of gene expression • Small ~22 nt long single stranded non‐coding RNA molecules g g g that bind to mRNA • Comprise 1‐5% of all genes • Regulate ~40‐50% of mammalian genes • 1 miRNA can have hundreds of target mRNAs • SNPs within miRNA target sequences can alter the binding of the miRNA and thereby affect the regulation of its target gene – miRNAs involved in many neurobiological diseases miRNAs involved in many neurobiological diseases miRNAs in neuropsychiatric disease • Tourette’s syndrome – a polymorphism in the 3’UTR of SLITRK1 alters the binding site for miR‐189 leading to a more stringent repression of SLITRK1 expression (Abelson & al., Science 2005) g p p ( ) • Autism spectrum disorders – 23 miRNAs differentially expressed in the cerebellum of patients vs controls (Abu‐Elneel & al., Neurogenet 2008) • Schizophrenia – 16 miRNAs differentially expressed in the PFC of patients vs controls (Perkins & al., Genome Biol 2007) – Upregulation of miR‐181b in cortical gray matter in patients vs controls (Beveridge & al. Hum Mol Genet 2008) – A genetic association to SNPs close to miR‐206 and miR198 in patients vs controls (DNA) ( (Hansen & al. PlosOne 2008) ) • Alcoholism – Alcohol leads to upregulation of miR‐9 and reorganization of BK channel mRNA pool ‐> change is BK channel pool ‐> development of tolerance (Pietrzykowski & al. Neuron 2008) 4 Why miRNA‐seq? Advantages • Compared to microarrays, no need to worry about SNPs under probe sequences • Quantitative over 6 orders of magnitude; basically no background! • Discovery and quantitation without prior genome annotation • Can gget information about isomiRs as well Challenges • Large quantity of starting material (µg amount of totRNA) • Methods still under development – lab: lots of PAGE gels, adapter dimers – bioinfo: reads that map to several locations, normalization… • Data storage • Price High quality RNA for Illumina library preparation • Starting material is total RNA that contains all RNAs (1‐10 µg) •RNA extraction methods suitable for miRNA extraction • Trizol based methods • High yield & purity • Specific kits for small RNAs (max 100 mg tissue = 100 µg RNA): • miRVANA (AB) • miRNeasy (Qiagen) Check your RNA quality by BioAnalyzer y q y y y Nano‐kit Small RNA‐kit • Two sample prep kits from Illumina: • v. 1.0 wet lab time ~4 day • v. 1.5 wet lab time ~1 day 5 Illumina library preparation workflow • Modification to the Illumina protocol: •Addition of indexes to the 5’ adapter sequence to increase throughput •Otherwise follow the Illumina protocol Barcoding for miRNA‐Seq Without Index: 3’TTACTATGCCGCTGGTGGCTGTCCAAGTCTCAAGATGTCAGGCTGCTAG-miRNA-AGCATACGGCAGAAGACGAAC’5 5’AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGACGATC-miRNA-TCGTATGCCGTCTTCTGCTTG’3 Sequencing primer Index 3 TTAGGC: 3’TTACTATGCCGCTGGTGGCTGTCCAAGTCTCAAGATGTCAGGCTGCTAGAATCCG-miRNA-AGCATACGGCAGAAGACGAAC’5 5’AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGACGATCTTAGGC-miRNA-TCGTATGCCGTCTTCTGCTTG’3 index Sequencing primer Index 7 CAGATC: 3’TTACTATGCCGCTGGTGGCTGTCCAAGTCTCAAGATGTCAGGCTGCTAGGTCTAG-miRNA-AGCATACGGCAGAAGACGAAC’5 5’AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGACGATCCAGATC-miRNA-TCGTATGCCGTCTTCTGCTTG’3 i d index Sequencing primer Index 11 GGCTAC: 3’TTACTATGCCGCTGGTGGCTGTCCAAGTCTCAAGATGTCAGGCTGCTAGGTCTAG-miRNA-AGCATACGGCAGAAGACGAAC’5 5’AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAGTCCGACGATCGGCTAC-miRNA-TCGTATGCCGTCTTCTGCTTG’3 index Sequencing primer 6 Sequencing • 10 µl of 10nM miRNA Library is needed for cluster generation (1 day). day) •3 samples / lane • Sequencing by Solexa Genome Analyzer II (3 days) • Read lenght 35bp or 50bp (piRNAs ~30nt) Lane 1 Lane 2 FC Ind3 FC Ind7 Lane 3 FC Ind11 Lane 4 Lane 5 Lane 6 FC Pool HI Ind3 HI Ind7 Lane 7 HI Ind11 Lane8 HI Pool • Sample Prep Kit 1.0 • 3 indexes • 36 bp read length C57BL/6J (CR) 7 Bioinformatics pipeline 1. Pre‐filtered reads after base calling; • Total # of reads (avrg of 6 repl.) FC: 6,223,794 HP: 5,652,753 FC : 5,554153 (89%) HP: 5,246,449 (93%) 2. Data sorting according to the indexes; 2. Data sorting to the indexes; • # of reads with indexes 3. Data trimming by removing the index sequence, 3’ adapter sequence , mitochondrial and ribosomal RNAs • # of trimmed reads FC: 847,951 HP: 2,627,101 # of aligned reads FC: 630,435 # of known miRNAs (out of 579 M. musculus) FC: 372 HP: 2,276,631 HP: 410 4. Alignment miRBase v. 14.0 (Bowtie) • • 5. Alignment against mouse genome mmu 8 (Bowtie) • • • # of uniquely mapped # of reads mapping to multiple locations # reads not matching the genome FC: 427,526 (50%) FC: 353,551 (42%) FC: 66,874 (8%) HP: 1,235,866 (47%) HP: 1,317963 (50%) HP: 73,272 (3%) 6. Counting of the reads = digital expression profiling, normalization, analysis of differential expression Different approaches have been used for normalization between samples 1 To 1. To total total number of reads of reads / reads / reads that map to the to the genome / reads that map against known miRNAs 2. Spike‐in controls 3. Use of Bayesian methods for differential expression 8 Let‐7c is the most abundant miRNA in FCx and HP in miRNA‐seq miR‐137 1 % miR‐ miR‐ let‐ 26a 125b‐ 7g 1 % 5p 1 % 1 % Rest 14 % miR‐132 1 % let 7d let‐7d 2 % miR‐9 3 % let‐7e 3 % miR‐124 3 % let‐7f 4 % miR‐125b* 1 % Frontal Cortex; miRNA‐Seq let‐7c 21 % Hippocampus; miRNA‐Seq miR‐ miR‐ 99b 26a 1 % miR‐ 2 % 137 2 % miR‐ let‐7g 124 2 % 2 % let‐7c 27 % Rest 13 % let‐7d 2 % miR‐128 20 % let‐7a 7 % miR‐29a let‐7b 9 % 9 % let‐7e 3 % miR‐9 4 % let‐7f 7 % let‐7a 9 % let‐7b miR‐29a 8 % miR‐128 9 % 8 % How does miRNA‐seq compare to miRNA microarrays? • Frontal cortex and hippocampus and hippocampus samples (3 (3 replicates) hybridized on Affymetrix miRNA microarrays • Criterion for ”expressed”: ≥ ⅔ of samples display probe as "present“ • 245 miRNAs 245 miRNAs detected in FCx detected in FCx and 238 in Hp and 238 in Hp 9 miR‐709 is the most abundant miRNA in FCx and HP using Affymetrix microarrays Frontal Cortex; Affymetrix miR‐709 11 % Rest 40 % Hippocampus; Affymetrix miR‐124 8 % let‐7c 6 % miR‐ 125a‐ 5p let‐ 2 % 7a miR‐128 miR‐23b 2 % 2 %2 % miR‐ 138 3 % miR‐709 11 % Rest 37 % let‐7b 8% 8 % let‐7b 5 % miR‐26a 4 % miR‐ let‐7d 125b‐ 3 % let‐ 7e miR‐1325p miR‐24 3 % 3 % 3 % 3 % let‐7c 8 % miR‐124 7 % miR‐222 2 % miR‐107 2 % miR‐ miR‐23b 127 miR‐24 2 % 2 % 2 % miR‐ 103 2 % miR‐26a 4 % miR‐ let‐ let‐ 125b‐5p 7e 7d miR‐138 3 %3 % 3 % 4 % Overlap between miRNA‐seq and microarrays is considerable 90 205 33 51 163 82 10 Differentially expressed miRNAs between frontal cortex and hippocampus miRNA‐seq Frontal cortex Hippocampus Total number of miRNAs 214 295 Upregulated with FC>2 26 13 miRNA microarrays Frontal cortex Hippocampus Total number of miRNAs 245 238 Upregulated with FC>2 17 10 miRNA-seq miRNA seq miRNA-seq iRNA 18 8 9 10 3 7 array array Frontal cortex Hippocampus Target prediction of identified miRNAs • miRWalk tool (http://www.ma.uni‐heidelberg.de/apps/zmf/mirwalk/) – Poisson p‐value < 0.05 (calculated by miRWalk) P i l < 0 05 ( l l t d b iRW lk) – At least 2 hits out of 5 target prediction softwares Frontal cortex Hippocampus Number of targets 1446 624 Number of targets expressed in that brain region 758 447 Pathway analysis with DAVID and Ingenuity Pathways Analysis 11 Erk5 Signaling (FCx pathway) Predicted target g genes: RRAS2 RPS6KB1 YWHAZ FOXO3 CREB1 MEF2C Predicted regulating miRNAS: iRNAS mir-182 mir-132/mir-212 mir-200a mir-153 mir-141 mir-206 12 isomiRs are frequent Counts Sequence 39550 TTATTGCTTAAGAATACGCGTAG 33699 TTATTGCTTAAGAATACGCGT 30289 TTATTGCTTAAGAATACGCGTA 5668 TTATTGCTTAAGAATACGCGTAA 2156 TTATTGCTTAAGAATACGCGTAC 1532 TTATTGCTTAAGAATACGCGTAT 1050 TTATTGCTTAAGAATACGCGTAGT 631 TTATTGCTTAAGAATACGCGTAGA 528 TTATTGCTTAAGAATGCGCGTA 454 TTATTGATTAAGAATACGCGTAG 433 TTATTGATTAAGAATACGCGT 384 TTATTGCTTAAGAATACGCGGAG 339 TTATTGATTAAGAATACGCGTA 319 TTATTGCTTAAGAATGCGCGT 249 TTATTGCTTAAGAATACGCGGA 216 TTATTGCTTAAGAATATGCGTAG 208 TTATTGCTTAAGAATACGCGA 178 TTATTGCTTAAGAATACGCGTT 155 TTATTGCTTAAGAATACGTGTAG 149 TTATTGCTTAGGAATACGCGTAG 140 TTATTGCTTAAGAATATGCGTA 137 TTATTGCTTAAGAATGCGCGTAG 130 TTATTGCTTAGGAATACGCGTA 129 TTATTGCTTAAGAATACGCGTCG 114 TTATTGCTTAGGAATACGCGT 106 TTATCGCTTAAGAATACGCGTAG 104 TTATCGCTTAAGAATACGCGT mmu‐miR‐137 TTATTGCTTAAGAATACGCGTAG Chr Position Strand 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + 3 118136818 + Mismatch • Variability 22:G>A 22:G>C 22:G>T 23:T>A 15:A>G 6:C>A 6:C>A 20:T>G 6:C>A 15:A>G 20:T>G 16:C>T 20:T>A 21:A>T 18:C>T 10:A>G 16:C>T 15:A>G 10:A>G 21:A>C 10:A>G 4:T>C 4:T>C in Dicer and Drosha cleavage or RNA editing • Not available in miRbase • Often modifications in 3’ end (21, 22 and 23) • Also modifications in seed area (5’ end) that is important for target g bindingg • Biological function? Identification of miRNAs that regulate anxiety frontal cortex hippocampus hypothalamus anxiety • • Identification of expression differences of known miRNAs & correlation to anxiety phenotype Identification of novel miRNAs and isomiRs & correlation to anxiety phenotype 13 Conclusions • miRNAs are abundant regulators of gene expression • miRNAs might g regulate g anxiety‐associated y ggenes and have been shown to be involved in the etiology of many neuropsychiatric diseases • miRNA‐seq allows digital expression profiling and identification of novel miRNAs • Indexing increases throughput and reduces costs of miRNA‐seq • Remaining challenges of miRNA‐seq include quantity of starting material and bioinformatic data analysis (normalization and modelling of miRNA/mRNA / interaction)) • Concomitant analysis of miRNA and mRNA patterns may lead to a network‐oriented view of disease Acknowledgments University of Helsinki Research Program of Molecular Neurology Hovatta Lab Jonas Donner Petri Hyytiä Katherine Icay Juuso Juhila Laura Kananen Helena Kilpinen Kaisa Manninen Sirli Raud Mari Rossi Tessa Sipilä Institute for Molecular Medicine, FIMM Pekka Ellonen Sari Hannula Daniel Nicorici Funding: Academy of Finland (NEURO program and academy research fellowship) Biocentrum Helsinki University of Helsinki / FIMM g Foundation Sigrid Jusélius Jalmari and Rauha Ahokas Foundation Yrjö Jahnsson Foundation L'Oréal Finland – UNESCO Women in Science Program Yrjö and Tuulikki Ilvonen Foundation Signe & Ane Gyllenberg Foundation Peter and Patricia Gruber Foundation (Rosalind Franklin Young Investigator Award) Helsinki Biomedical Graduate School Helsinki University Central Hospital Dario Greco 14