Download Community Ecology

yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts

Biogeography wikipedia, lookup

Island restoration wikipedia, lookup

Biodiversity action plan wikipedia, lookup

Reconciliation ecology wikipedia, lookup

Habitat wikipedia, lookup

Habitat conservation wikipedia, lookup

Bifrenaria wikipedia, lookup

Latitudinal gradients in species diversity wikipedia, lookup

Unified neutral theory of biodiversity wikipedia, lookup

Occupancy–abundance relationship wikipedia, lookup

Community Ecology
Species abundance patterns
Click here for supplemental materials for today (PDF)
1. Most species are rare, few are common.
A. Overview of dominance-diversity plots (species-abundance distributions)
B. Some explanations for most rare/few common pattern:
Geometric series (sequential niche breakage model)
Log series
Broken-stick model (simultaneous niche breakage model)
Log-normal model
C. Are these explanations based in biology or in statistics?
2. Abundance generally highest in the center of a species’ range, decreasing towards the
3. Common species tend to be widespread, rare species tend to be restricted in distribution.
A. Some explanations:
Sampling artefact
Resource requirements
Vital rates
Core-satellite hypothesis (Hanski 1982)
dominance-diversity plot (species-abundance distribution, Whittaker plot, rank-abundance plot)
geometric series (Motomura)
broken-stick model (MacArthur)
log series (Fisher et al.)
log-normal (Preston)
sequential-breakage model
simultaneous-breakage model
Hanski (core-satellite hypothesis)
Central Limit Theorem
veil line (Preston)
surrogates for abundance
Three general patterns regarding abundance:
1. Species have unequal distributions: most species are relatively rare, few are common.
(Rarity based on population size, range, endemicity, habitat specialization, etc.; see Rabinowitz
1981, Gaston 1994.)
dominance-diversity plots (a.k.a. species-abundance distributions, Whittaker plots, or
rank-abundance plots)
There are over 2 dozen forms of species-abundance distributions (McGill 2011), each
resulting from a different process (considerable debate about whether a given species-abundance
distribution is ecological or statistical in origin); 4 especially common:
1) geometric series (a.k.a. sequential breakage model) - Motomura (1932); very steep;
sequential niche breakage: the probability of any niche fragment being subdivided is independent
of its size. Ecological dominance effect: early arriving species can pre-empt resources. An early
arriver can become dominant in abundance and thereby limit later arrivers (resulting in a steep
dominance-distribution plot). Occurs when species arrive at an unsaturated habitat at regular
intervals of time, occupying fractions of remaining niche hyperspace. Tends to hold for
communities in settings where there is only one or a few dominating environmental factors (e.g.
light limitation for understory plants, or soil nutrient limitation for desert microbes). Tends to be
seen more in communities with low richness and early seral stages.
2) log series (a.k.a. logarithmic series) - Fisher et al. (1943); less steep; occurs when
species arrive at an unsaturated habitat at random intervals of time. Like the geometric series,
tends to hold for communities in settings where there is only one or a few dominating
environmental factors. Tends to be seen more in communities with low richness.
3) broken stick (a.k.a. simultaneous breakage model, random niche-boundary model) MacArthur (1957); more shallow (almost flat), with most species almost equally abundant;
simultaneous niche breakage: resource is partitioned more equitably and no severe dominance is
possible (therefore, a species’ abundance is proportional to its resource use), resulting in a lesssteep dominance-diversity plot than is seen with the two previous mechanisms. Typically found
in narrowly defined communities of closely related species. Question for the class: why do you
think that closely related groups are more likely to fit the broken-stick model than unrelated
groups of species?
4) log-normal - Preston (1948, 1962); see also Sugihara (1980); a few spp. are very
common, most species VERY rare (i.e., highly right-skewed), often stair-stepped, especially
when divided into octaves; veil line illustrates importance of sample size; is the most common
distribution (but see #5), assumed as null for undisturbed communities (disturbance drives
more towards geometric series); but is this distribution a function of large samples and/or the
Central Limit Theorem? (See for an explanation of what the CLT
is.) The log-normal is usually considered the undisturbed default for most communities; it is
arguably the most commonly observed of the distributions (Ulrich et al. 2010). As a
community is disturbed, it tends towards the geometric series. See Kevan et al. (1997) for an
example on bees exposed to pesticides in Canadian blueberry fields.
We will go over each of these in class in some detail, after which you should be familiar
with what the shape of each of the models above looks like (be able to determine, from a
dominance-diversity plot, which of the models is the appropriate model) and how they
differ in terms of mechanism. For more information, I highly recommend Magurran (2004).
We will not fit or test models (a process that is quite involved); for worked examples, I highly
recommend Krebs (1999).
2. Abundance generally highest in the center of a species’ range, decreasing towards the
periphery (Grinnell 1922)
Field data on birds by Emlen et al. 1986 confirms this; ditto for Bock and Ricklefs 1983
(Christmas Bird Count data), who found significant positive correlation between range size and
mean local abundance.
3. Common species are widespread, rare species are restricted in distribution - Hanski 1982
called this a "general rule" of nature
Pattern is not universal, however: Gaston 1996 in a review of 90 studies, found 80%
positive, 5% negative, and 15% non-significant
For exceptions, see e.g. Fuller 1982 (British birds), Gaston and Lawton 1989 (insects)
Possible explanations for this pattern:
1. Sampling artefact
2. Function of resource requirements
3. Density-dependent habitat selection
4. Vital rates
5. Core-satellite hypothesis (Hanski)
Next time: Community assembly and null models
Bock, C.E., and R.E. Ricklefs. 1983. Range size and local abundance of some North American
songbirds: a positive correlation. Am. Nat. 122:295-299.
Clarke, K.R. 1990. Comparisons of dominance curves. J. Exp. Mar. Biol. Ecol. 138:143-157.
Cotgreave, P., and P.H. Harvey. 1994. Evenness of abundance in bird communities. Journal of
Animal Ecology 63: 365-374.
Emlen, J.T., M.J. DeJong, M.J. Jaeger, T.C. Moermond, K.A. Rusterholz, and R.P. White. 1986.
Density trends and range boundary constraints of forest birds along a latitudinal gradient. Auk
Fisher, R.A., A.S. Carbet, and C.B. Williams. 1943. The relation between the number of
species and the number of individuals in a random sample from an animal population. J. Anim.
Ecol. 12:42-58.
Fuller, R.J. 1982. Bird Habitats in Britain. T & A D Poyser, Calton, UK.
Gaston, K.J. 1994. Rarity. Chapman and Hall, London, UK.
Gaston, K.J. 1996. The multiple forms of the interspecific abundance-distribution relationship.
Oikos 76:211-220.
Gaston, K.J., and J.H. Lawton. 1989. Insect herbivores on bracken do not support the coresatellite hypothesis. Am. Nat. 134:761-777.
Grinnell, J. 1922. The trend of avian populations in California. Science 56:671-676.
Hanski, I. 1982. Dynamics of regional distribution: the core and satellite species hypothesis.
Oikos 38:210-221.
Hanski, I., and M. Gyllenberg. 1997. Uniting two general patterns in the distribution of species.
Science 275:397-400.
He, F.L., and K.J. Gaston. 2000. Estimating species abundance from occurrence. Am. Nat.
Kevan, P.G., C.F. Greco, and S. Belaoussoff. 1997. Log-normality of biodiversity and abundance
in diagnosis and measuring of ecosystem health: pesticide stress on pollinators on blueberry
heaths. J. Appl. Ecol. 34:1122-1136.
Krebs, C.J. 1999. Ecological Methodology (2nd ed.). Addison-Welsey Educational Publ., Inc.,
Menlo Park, CA. [highly recommended]
Kunin, W.E. 1998. Extrapolating species abundance across spatial scales. Science 281:15131515.
Kunin, W.E., S. Hartley, and J.J. Lennon. 2000. Scaling down: on the challenge of estimating
abundance from occurrence patterns. Am. Nat. 156:560-566.
Lawton, J.H. 1993. Range, population abundance and conservation. Trends Ecol. Evol. 8:409413.
Loreau, M. 1992. Species-abundance patterns and the structure of ground-beetle communities.
Ann. Zool. Fenn. 28:49-56.
MacArthur, R.H. 1957. On the relative abundance of bird species. Proc. Natl. Acad. Sci. USA
Magurran, A.E. 2004. Measuring Biological Diversity. Blackwell Publishing, Malden, MA.
[highly recommended]
Magurran, A.E., and P.A. Henderson. 2003. Explaining the excess of rare species in natural
species abundance distributions. Nature 422:714-716.
Maina, G.G., and H.F. Howe. 2000. Inherent rarity in community restoration. Conservation
Biology 14:1335-1340.
May, R.M. 1975. Patterns of species abundance and diversity. Pp. 881-120 in: Ecology and
Evolution of Communities (M.L. Cody and J.M. Diamond, eds.). Harvard University Press,
Cambridge, MA.
McGill, B.J. 2011. Species abundance distributions. Pp. 105-122 in: Biological Diversity:
Frontiers in Measurement and Assessment (A.E. Magurran and B.J. McGill, eds.). Oxford
University Press, New York, NY.
Preston, F.W. 1948. The commonness and the rarity of species. Ecology 29:254-283.
Preston, F.W. 1962. The canonical distribution of commonness and rarity of species. Ecology
Rabinowitz, D. 1981. Seven forms of rarity. Pp. 205-217 in: Biological Aspects of Rare Plant
Conservation (H. Synge, ed.). Wiley, Chichester, UK.
Sugihara, G. 1980. Minimal community structure: an explanation of species abundance patterns.
Am. Nat. 116:770-787.
Tokeshi, M. 1990. Niche apportionment or random assortment: species abundance patterns
revisited. J. Anim. Ecol. 59:1129-1146.
Tokeshi, M. 1996. Power fraction: a new explanation for species abundance patterns in speciesrich assemblages. Oikos 75:543-550.
Ulrich, W., M. Ollik, and K.I. Ugland. 2010. A meta-analysis of species-abundance
distributions. Oikos 119:1149-1155.
Wilson, J.B. 1991. Methods for fitting dominance/diversity curves. J. Veg. Sci. 2:35-46.