* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Design of an Analog Memory Cell
Electrical substation wikipedia , lookup
History of electric power transmission wikipedia , lookup
Buck converter wikipedia , lookup
Surge protector wikipedia , lookup
Rectiverter wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Immunity-aware programming wikipedia , lookup
Alternating current wikipedia , lookup
Stray voltage wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Voltage optimisation wikipedia , lookup
Oscilloscope types wikipedia , lookup
Analog-to-digital converter wikipedia , lookup
Electronic engineering wikipedia , lookup
1 Design of an Analog Memory Cell in 0.25 micron CMOS process Thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Technology (Honours) in Electronics and Electrical Communication Engineering by Paramita Barai under the guidance of Dr. A. S. Dhar Department of Electronics and Electrical Communication Engineering Indian Institute of Technology, Kharagpur 2002 2 Motivation: Why Analog Design? Digital Design: Accurate, Greater Noise Margin, Flexible. Limitation in speed & Hardware Cost. Delays add up. Advantages of Analog Design: Fig. 1: Analog Signal Processing Block 1. Low cost and high speed 2. Hardware cost reduces (ADC & DAC not req.) 3. Modern integration technologies have reduced noise affecting ICs (NM of 0.5 volts in digital designs) 4. Trade off between quality of performance, accuracy, hardware cost and speed 3 Digital Memory Fig.2 : DRAM structure for storing 8 bit digital word Analog Memory Fig 3 : Analog memory structure Dielectric quality of capacitor Long term storage – Charge Loses – Refreshing required Challenging????? 4 1. Basic idea to store charge in a capacitor Fig. 4 : Main scheme of storing charge in a capacitor in analog domain Fig 5. Charge fall in Cprimary 5 2. Introducing another capacitor for reading out stored voltage Fig. 6 : Circuit with secondary capacitor for memory read out Fig 7 : When Vtransfer not ON, Voltages across primary and secondary capacitors 6 Fig 8 : When Vtransfer is ON, Voltages across primary and secondary capacitors 7 3. Discharging the secondary capacitor to prevent it’s leakage charging Fig 9 : Circuit with discharging of secondary capacitor Fig 10 : Comparison of voltages across primary and secondary capacitors 8 Fig 12 : Voltages across primary and secondary capacitors as compared to the voltage amplified by the op amp 9 Required Output of op amp ie. value of Vin Serial No. VOUTPUT Input to op amp ie. voltage across Csecondary Taking ( 1 + R1 / R0 ) R0 = 500 ohms, VIN GAIN Required R1 1. 0.2 48m 4.167 1.5835 2. 0.3 72m 4.167 1.5835 3. 0.4 95m 4.21 1.605 4. 0.5 0.118 4.24 1.62 5. 0.6 0.14 4.286 1.643 6. 0.7 0.162 4.32 1.66 7. 0.8 0.185 4.324 1.662 9. 0.9 0.206 4.369 1.6845 10. 1.0 0.228 4.386 1.693 11. 1.1 0.25 4.4 1.7 12. 1.2 0.273 4.4 1.7 13. 1.3 0.295 4.407 1.7035 14. 1.4 0.32 4.41 1.705 15. 1.5 0.338 4.438 1.719 16. 1.6 0.36 4.44 1.72 17. 1.7 0.383 4.44 1.72 18. 1.8 0.402 4.477 1.7385 19. 1.9 0.424 4.48 1.74 20. 2.0 0.446 4.484 1.742 Table 1 : Determining value of R1 from Gain required 10 Results : 1. Assumed: voltage is to be stored till 120 milliseconds, Refreshed every 40 ms Frame rate is 25 frames per second. 2. Stores voltage in range 0.4 volts to 2 volts with max 5% error. 0.2 volts -------- 15% error 3. Refreshing interval is to be decided depending on the frame rate. 4. Vwrite must be present till 40 nanoseconds Vin must be present > 40 nanoseconds highest speed ------------------- 25 MHz. 5. Voltage stored constant with 5 % accuracy till 120 milliseconds. Slow systems --------------------- 8 frames per second. 11 Input analog voltage Voltage after 120 ms VIN VLATER 1. 0.2 0.23 15 2. 0.3 0.33 10 3. 0.4 0.42 5 4. 0.5 0.52 4 5. 0.6 0.61 1.67 6. 0.7 0.71 1.43 7. 0.8 0.8 0 8. 0.9 0.9 0 9. 1.0 1.0 0 10. 1.1 1.1 0 11. 1.2 1.2 0 12. 1.3 1.3 0 13. 1.4 1.4 0 14. 1.5 1.48 1.33 15. 1.6 1.58 1.25 16. 1.7 1.68 1.18 17. 1.8 1.76 2.22 18. 1.9 1.85 2.63 19. 2.0 1.94 3 Serial No. Accuracy of storage (%) Table 2 Quality of storage of analog voltage in the memory (as % error) 12 Conclusions and future scopes Linear op amp is used which has a constant gain adjusted by the two constant biasing resistances R1 and R0. Best results : R1 ~ 1.5 K and 1.7 K ohms Non-linear op amp. Variable amounts of gain ------- Non-linear resistance in place of R1. Dual power supply of + 2.5 volts and – 2.5 volts. Improve by Proper circuit design techniques. E.g. Rail-to-rail op amp ----------single unipolar power supply of 0 to + 2.5 volts will do. 13 References : [1] S. M. Sze, Physics of Semiconductor Devices, John Wiley & Sons Inc., 1981 [2] P. Allen and Holberg, CMOS Analog Integrated Circuits, Holt, Rinehart and Winston, 1987 [3] Laker, K. R., and Sansen, W. M. C., Design of Analog Integrated Circuits and Systems, McGraw-Hill, Inc., 1994. [4] Gray, P. R., & Meyer, Analysis and Design of Analog Integrated Circuits, Third Ed., John Wiley & Sons Inc., 1995. [5] R.R. Harrison, P. Hasler, and B.A. Minch, “Floating-Gate CMOS Analog Memory Cell Array”, Proceedings of the IEEE International Symposium on Circuits and Systems, Monterey, Vol. 2, pp. 204-207, 1998. [6] B. Wang, J. R. Hellums, G. C. Sodini, “MOSFET thermal noise modelling for analog integrated circuits”, IEEE JSSC, Vol. 29, No. 7, pp. 833-835, July 1994. [7] A. Simoni, G. Torelli, F. Maloberti, A. Sartori, S.E. Plevridis, and A.N. Birbas, “A single-chip optical sensor with analog memory for motion detection”, IEEE J. Solid State Circuits, vol. 30, no. 7, pp. 800-806, July 1995. [8] R. Carmona, S. Espejo, R. Domínguez-Castro, A. Rodríguez-Vázquez, T. Roska, T. Kozek and L. O. Chua, “A 0.5µm CMOS Random Access Analog Memory Chip for TeraOPS Speed Multimedia Video Processing”, IEEE Transactions on Multimedia. (Accepted for publication in 1999).