Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Trace Elements 300 Ni 200 100 ppm 0 300 Zr 200 100 0 40 50 60 SiO 2 70 wt. % 80 Today’s lecture Updates: Topics: •Finish major elements •Trace element compositions •Trace element behavior •Partitioning •Spider diagrams Magma Evolution Harker diagram B BA A D RD R 16 Al2O3 14 Smooth trends Model with 3 assumptions: MgO 1 Rocks are related 2 Trends = liquid line of descent (mineral control) 3 The basalt is the parent Na O magma from which the others are derived 10 2 6 8 2 4 0 8 4 4 CaO 0 3 2 4 2 B=basalt, BA=basaltic-andesite, A=andesite, D=dacite, RD=rhyo-dacite, R=rhyolite Fe2O3 0 45 55 65 Wt. % SiO 75 K2O Magma Series Alkali vs. Silica -- Hawaiian volcanics: 12 10 Alkaline 8 6 4 2 Subalkaline 35 40 45 50 %SiO 55 60 65 Evolving rocktypes, subalkaline subdivision FeO + Fe2O3 Tholeiitic B-A A D R Calc-alkaline K2O + Na2O MgO Occurrence of different series Calc-alkaline only in subduction zones Tholeiitic series anywhere Alkaline not at Mid Ocean Ridges Characteristic Plate Margin Series Convergent Divergent Alkaline yes Tholeiitic yes yes Calc-alkaline yes Within Plate Oceanic Continental yes yes yes yes After Wilson (1989). Igneous Petrogenesis. Unwin Hyman - Kluwer The Basalt Tetrahedron Di Ol Critical plane of silica undersaturation Plane of silica saturation Ab Ne Opx Q En Fo Figure 8-12. Left: the basalt tetrahedron (after Yoder and Tilley, 1962). J. Pet., 3, 342-532. Right: the base of the basalt tetrahedron using cation normative minerals, with the compositions of subalkaline rocks (black) and alkaline rocks (gray) from Figure 8-11, projected from Cpx. After Irvine and Baragar (1971). Can. J. Earth Sci., 8, 523-548. Ne Ab Dividing line Q Types of incompatible elements W. White Element Distribution Element fits in a crystal if similar: Ionic size (xl lattice) Charge (neutral crystal) Goldschmidt’s rules 1. Ions of similar size (<15%) can replace each other W. White 2. Ions of similar size and a charge difference of 1 can replace as long as neutrality is preserved 3. The ion with the higher ionic potential forms a stronger bond with the anions surrounding the crystal site Chemical Fractionation The uneven distribution of an ion between two competing phases (melt-xl) Exchange equilibrium of a component i between two phases (solid and liquid) i (liquid) <=> i (solid) K= Xi solid Xi liquid (mol) => D = Cs Cl (concentration by weight) K = equilibrium constant (mol) ≈ D Compatibility Cs D= C l Compatibility and minerals Rb Sr Ba Ni Cr La Ce Nd Sm Eu Dy Er Yb Lu Rare Earth Elements Table 9-1. Partition Coefficients (CS/CL) for Some Commonly Used Trace Elements in Basaltic and Andesitic Rocks Olivine 0.010 0.014 0.010 14 0.70 0.007 0.006 0.006 0.007 0.007 0.013 0.026 0.049 0.045 Opx 0.022 0.040 0.013 5 10 0.03 0.02 0.03 0.05 0.05 0.15 0.23 0.34 0.42 Data from Rollinson (1993). Cpx Garnet 0.031 0.042 0.060 0.012 0.026 0.023 7 0.955 34 1.345 0.056 0.001 0.092 0.007 0.230 0.026 0.445 0.102 0.474 0.243 0.582 1.940 0.583 4.700 0.542 6.167 0.506 6.950 Plag Amph Magnetite 0.071 0.29 1.830 0.46 0.23 0.42 0.01 6.8 29 0.01 2.00 7.4 0.148 0.544 2 0.082 0.843 2 0.055 1.340 2 0.039 1.804 1 0.1/1.5* 1.557 1 0.023 2.024 1 0.020 1.740 1.5 0.023 1.642 1.4 0.019 1.563 * Eu3+/Eu2+ Italics are estimated Bulk distribution For a rock, determine the bulk distribution coefficient D for an element by adding up the minerals DEr = (0.6 · 0.026) + (0.25 · 0.23) + (0.10 · 0.583) + (0.05 · 4.7) = 0.366 60% olivine, D = 0.026 25% orthopyroxene, D = 0.23 10% clinopyroxene, D = 0.583 5% garnet, D = 4.7 Enrichment/depletion 300 Ni 200 100 ppm 0 300 Zr 200 100 0 40 50 60 SiO 2 70 wt. % 80 Trace element behavior Examples of using trace element ratios to evaluate crystallizing minerals: Incompatible examples: K/Rb often used for amphibole: least incompatible in amph => controls K/Rb with its D values Sr and Ba actually compatible in plagioclase and alkali feldspar, resp. => start of fsp crystallization significantly changes bulk D and ends enrichment Compatible example: Ni strongly fractionated olivine Cr and Sc pyroxenes => Ni/Cr or Ni/Sc can distinguish the effects of olivine and augite in a partial melt or a suite of rocks produced by fractional crystallization Concentration REE Diagrams La Ce Nd Sm Eu Tb Er Dy Yb Lu Odd-Even in the Solar System What’s interesting/strange about this pattern? Log (Abundance in CI Chondritic Meteorite) 11 H He 10 9 8 C 7 6 5 4 3 2 1 Li O Ne MgSi Fe N S Ar Ca Ni Na Ti AlP K F Cl V B Sc Sn Ba Pt Pb 0 Be -1 Th -2 U -3 0 10 20 30 40 50 60 Atomic Number (Z) 70 80 90 100 Normalized diagrams sample/chondrite 10.00 8.00 6.00 ? 4.00 2.00 0.00 56 La58 Ce L 60Nd 62Sm 64 Eu 66 Tb 68Er 70 Yb 72 Lu Spider Diagrams Rock/Chondrites 1000 100 10 1 Rb Ba Th Nb K La Ce Sr Nd Sm Zr Ti Gd Y Fig. 9-5. Spider diagram for an alkaline basalt from Gough Island, southern Atlantic. After Sun and MacDonough (1989). In A. D. Saunders and M. J. Norry (eds.), Magmatism in the Ocean Basins. Geol. Soc. London Spec. Publ., 42. pp. 313-345. REE/Spider Diagrams II sample/chondrite 8.00 Eu* 2 6.00 1 4.00 2.00 0.00 56La Ce 58 Nd 60 Sm Eu 62 64 Tb 66 Er Yb Lu 68 70 72 Element Figure 9-5. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. Examples 10.00 67% Ol sample/chondrite 8.00 17% Opx 17% Cpx 6.00 4.00 2.00 0.00 56 58 Ce 60 Nd 62Sm Eu 64 Tb66 La 68 Er 70 Lu 72 Yb 10.00 10.00 57% Ol 8.00 14% Opx 14% Cpx 14% Grt 8.00 sample/chondrite sample/chondrite 60% Ol 15% Opx 15% Cpx 10%Plag 6.00 4.00 6.00 4.00 2.00 2.00 0.00 0.00 La Ce Nd Sm Eu Tb Er Yb Lu 56 58 La 64 Ce60 Nd 62Sm Eu Tb66 68 Er 70 Lu Yb 72 Batch Melting CL = 1 What’s Di? C O Di(1 - F)+ F CL, CO = liquid, solid concentration F = fraction melt produced = melt/(melt + rock) D = 1 = even split, D < 1 = incompatible in minerals => enriched in melt D > 1 = compatible in minerals => depleted in melt 1000 100 D = 0.001 10 CL/CO D = 0.1 D = 0.5 D=1 D=2 1 D=4 D = 10 0.1 0 0.2 0.4 0.6 0.8 F Figure 9-2. From Winter (2001) An Introduction to Igneous and Metamorphic Petrology. Prentice Hall. 1 Fractional melting, and others Separation of each melt drop as it formed CL/CO = (1/D) * (1-F) (1/D Crystallization like melting Wall-rock assimilation Zone refining Combinations of processes Cox, Bell, Pankhurst -1)