Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
R ENDICONTI del S EMINARIO M ATEMATICO della U NIVERSITÀ DI PADOVA L EONARD C ARLITZ Some multiplication formulas Rendiconti del Seminario Matematico della Università di Padova, tome 32 (1962), p. 239-242 <http://www.numdam.org/item?id=RSMUP_1962__32__239_0> © Rendiconti del Seminario Matematico della Università di Padova, 1962, tous droits réservés. L’accès aux archives de la revue « Rendiconti del Seminario Matematico della Università di Padova » (http://rendiconti.math.unipd.it/) implique l’accord avec les conditions générales d’utilisation (http://www.numdam.org/legal. php). Toute utilisation commerciale ou impression systématique est constitutive d’une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ SOME MULTIPLICATION FORMULAS Nota (*) di LEONARD CARLITZ Some years ago Rainville (a Durham)(**) [5] proved the formula where that P.(x) is the Legendre polynomial. The writer [11 showed where Cf(z) is For A the ultraspherical polynomial defined by 1/2, (2) reduces to (1). Chatterjea [2] has recently proved where = ~"(x) is defined the following formulas: by (*) Pervenuta in redazione il 3 dicembre 1961. Indirizzo dell’A.: Department of Mathematics, Duke University, Durham, North Carolina (U.S.A.). (**) Supported in part by National Science Foundation grant G 16485. 240 and where L,~(~) is the Laguerre polynomial. These results and in particular (3) suggest the consideration of the functional equation If we For For x take fl = = = tan a it is easily verified that (5) reduces to this becomes 1, (6) becomes where are arbitrary Conversely if f n(~1) is defined by (7), where the c, we have Indeed holds. ..constants, it is easily verified that (6) 241 therefore that (6) is equivalent to (7) and that the of (6) is given by (7) with arbitrary c, . Moreover solution general it follows from (6) with x replaced by pz and A replaced by that We If see mow take A = tan a, It = tan ~B we get (5). Thus (5) is equi- valent to (7). We recall that Feldheim [3] has proved that the Laguerre are the only orthogonal polynomials with polynomials a multiplacation theorem of the form It may be of interest to note that or, if with we prefer, (7) implies 242 where the last is symbolic. Rainville [4, p. 244] has noted that the polynomials f n (~ ) defined by (9) satisfy (6). It follows from (9) that the polynomials constitute an Appell set, that is B~2013// Also (6) becomes Conversely polynomials if the Appell set {g"(x)} is assigned then the defined by (11) satisfy (5). REFERENCES [1] CARLITZ L.: Note on a formula of Rainville. Bulletin of the Calcutta Mathematical Society, vol. 51 (1959), pp. 132-133. [2] CHATTERJEA S. K. : Notes on a formula of Carlitz. Rendiconti del Seminario Matematica della Università di Padova, vol. 31 (1961), pp. 243-248. [3] FELDHEIM E.: Une propriété caracteristique des polynomes de Laguerre. Commentarii Mathematici Helvetici, vol. 13 (1940), pp. 6-10. [4] RAINVILLE E. D.: Certain generating functions and associated polynomials. American Mathematical Monthly, vol. 52 (1945), pp. 239250. [5] RAINVILLE E. D.: Notes American Mathematical on Legendre polynomials. Society, vol. 51 (1945), pp. Bulletin of the 268-271.