Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Complex Numbers Modulus-Argument Form Modulus-Argument Form x r cos y r sin Here is the real and imaginary part of the The complex number z is marked on the Argand diagram. Im z x yj r y x Re complex number. z ( r cos ) ( r sin ) j Cartesian coordinates are not the only way to specify a position on a plane. z r (cos j sin ) The angle (argument) and distance from This is called the modulus-argument form the origin (modulus) could also be used. of the complex number. Using simple trigonometry allows us to find x and y in terms of r and θ. Multiplication u 2 32j Im v 1 j uv uv (2 3 2 j )(1 j ) 2 32 3j2j2 v u 2( 3 1) 2( 3 1) j Re Argand diagram – the argument Im uv v u Re The modulus u 2 32j u (2 3 ) 2 22 16 4 v 1 j v 12 12 2 uv 2( 3 1) 2( 3 1) j uv (2( 3 1)) 2 (2( 3 1)) 2 4(3 2 3 1) 4(3 2 3 1) 32 4 2 The argument arg(u ) arctan( 2 2 3 ) 6 arg(v) arctan( 11 ) 5 6 4 12 4 arg(uv ) arctan( 2( 5 12 3 1) 2 ( 3 1) ) Summary When two complex numbers u and v are multiplied together, the modulus of the product uv is equal to the modulus of u multiplied by the modulus of v. The argument of uv is equal to the sum of the arguments of u and v. uv u v arg( uv) arg( u ) arg( v) Division - modulus u 2 32j v 1 j u 2 32j v 1 j 2 3 2 j 1 j 1 j 1 j 2(1 3 ) 2(1 3 ) j 2 (1 3 ) (1 3 ) j u (1 3 ) 2 (1 3 ) 2 v 1 2 3 3 1 2 3 3 82 2 u 4 2 2 v 2 Division - argument arg(u ) 6 arg(v) 4 arg( u v ) arctan( 1 3 1 3 ) 12 arg( u ) arg( v) 6 4 12 Summary When one complex number u is divided by another v, the modulus of u/v is equal to the modulus of u divided by the modulus of v. The argument of u/v is equal to the arguments of u minus the argument of v. u u v v arg( u v ) arg( u ) arg( v) Using modulus-argument form If complex numbers are written in modulus-argument form, it is easy to find the modulus and argument of any product or quotient of the numbers and hence the actual product and quotient. u 3(cos 3 j sin 3 ) for uv u 3 v 2(cos 4 j sin 4 ) v 2 uv 3 2 6 arg( u) 3 arg( v) 4 hence uv 6(cos 712 j sin 7 12 ) arg( uv) 3 4 712 Using modulus-argument form w 5(cos 6 j sin for w z hence z cos 712 j sin ) 6 arg( z ) w 5(cos 34 j sin z 3 4 7 12 w 5 1 5 z z 1 w 5 arg( w) 6 7 12 ) arg( wz ) 6 712 9 12 3 4