Download Minireviews Cracking the Egg: Potential of the Developing Chicken

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Pharmaceutical industry wikipedia , lookup

Pharmacognosy wikipedia , lookup

Psychopharmacology wikipedia , lookup

Pharmacokinetics wikipedia , lookup

Bilastine wikipedia , lookup

Neuropharmacology wikipedia , lookup

Theralizumab wikipedia , lookup

Neuropsychopharmacology wikipedia , lookup

Transcript
1521-0103/355/3/386–396$25.00
THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS
Copyright ª 2015 by The American Society for Pharmacology and Experimental Therapeutics
http://dx.doi.org/10.1124/jpet.115.227025
J Pharmacol Exp Ther 355:386–396, December 2015
Minireviews
Cracking the Egg: Potential of the Developing Chicken as a
Model System for Nonclinical Safety Studies of Pharmaceuticals
Sigrid Bjørnstad,1 Lars Peter Engeset Austdal,1 Borghild Roald, Joel Clinton Glover,
and Ragnhild Elisabeth Paulsen
Received July 1, 2015; accepted October 1, 2015
ABSTRACT
The advance of perinatal medicine has improved the survival of
extremely premature babies, thereby creating a new and heterogeneous patient group with limited information on appropriate
treatment regimens. The developing fetus and neonate have
traditionally been ignored populations with regard to safety
studies of drugs, making medication during pregnancy and in
newborns a significant safety concern. Recent initiatives of the
Food and Drug Administration and European Medicines Agency
have been passed with the objective of expanding the safe
pharmacological treatment options in these patients. There is a
consensus that neonates should be included in clinical trials. Prior
to these trials, drug leads are tested in toxicity and pharmacology
studies, as governed by several guidelines summarized in the
multidisciplinary International Conference on Harmonization of
Technical Requirements for Registration of Pharmaceuticals for
Human Use M3 (R2). Pharmacology studies must be performed in
Introduction
Prior to the onset of clinical trials, new drug candidates are
vigorously assessed in nonclinical studies comprising mandatory toxicological, pharmacokinetic, and pharmacological testing. The multidisciplinary International Conference on
Harmonization of Technical Requirements for Registration of
Pharmaceuticals for Human Use (ICH) guideline M3 (R2),
“Guidance on Nonclinical Safety Studies for the Conduct of
Human Clinical Trials and Marketing Authorization for
Pharmaceuticals,” (ICH, 2009) gives an overview over the
This work was supported by the Norwegian Research Council [Grant 195484
to J.C.G. and R.E.P.] and Southern and Eastern Norway Regional Health
Authority (to B.R.).
1
S.B. and L.P.E.A. contributed equally to this work.
dx.doi.org/10.1124/jpet.115.227025.
the major organ systems: cardiovascular, respiratory, and central
nervous system. The chicken embryo and fetus have features
that make the chicken a convenient animal model for nonclinical
safety studies in which effects on all of these organ systems can
be tested. The developing chicken is inexpensive, accessible,
and nutritionally self-sufficient with a short incubation time and is
ideal for drug-screening purposes. Other high-throughput models have been implemented. However, many of these have
limitations, including difficulty in mimicking natural tissue architecture and function (human stem cells) and obvious differences
from mammals regarding the respiratory organ system and
certain aspects of central nervous system development (Caenorhabditis elegans, zebrafish).This minireview outlines the potential and limitations of the developing chicken as an additional
model for the early exploratory phase of development of new
pharmaceuticals.
toxicological and pharmacological studies that are required for
a drug lead to proceed into clinical trials and refers to specific
safety guidelines for further details. Estimates show that only
about 10% of agents entering clinical trials ultimately receive
marketing approval. Lack of safety contributes to 30% of
failures, whereas lack of efficacy is the other major cause of
attrition (Kola and Landis, 2004). The fact that several drug
candidates progressed well into clinical trials before rare and
potentially lethal adverse effects were detected led to an
extension of nonclinical trials and the foundation of safety
pharmacology as a discipline in the late 1990s (Pugsley et al.,
2008). One of the ICH M3 (R2) safety guidelines referenced is
S7A, “Safety Pharmacology Studies for Human Pharmaceuticals,” (ICH, 2009) which defines a core battery of vital organs
for which the impact of new drugs needs to be assessed. The
core battery comprises the central nervous system (CNS),
ABBREVIATIONS: CNS, central nervous system; EU, European Union; ICH, International Conference on Harmonization of Technical Requirements
for Registration of Pharmaceuticals for Human Use; NMDA, N-methyl-D-aspartate.
386
Downloaded from jpet.aspetjournals.org at ASPET Journals on May 5, 2017
Department of Pathology, Oslo University Hospital HF, Ullevål, Oslo, Norway (S.B., B.R.); Institute of Clinical Medicine
(B.R.), Department of Pharmaceutical Biosciences, School of Pharmacy (L.P.E.A., R.E.P.), and NDEVOR, Section of Physiology,
Department of Molecular Medicine, Institute of Basic Medical Sciences (J.C.G.), University of Oslo, Oslo, Norway; and
Norwegian Center for Stem Cell Research, Department of Immunology and Transfusion Medicine, Oslo University Hospital HF,
Rikshospitalet, Oslo, Norway (J.C.G.)
The Chicken Model for Nonclinical Safety Studies of Drugs
Exposure of Pharmaceuticals to the Developing
Embryo, Fetus, and Neonate and the Use of
Juvenile Animal Models
The developing embryo, fetus, and neonate have previously
represented ignored populations with respect to drug safety
testing. However, the U.S. Food and Drug Administration and
European Medicines Agency have recognized the need for
increased knowledge of medicines in the pediatric population.
The Best Pharmaceuticals for Children Act, effective in the
United States since 2007, and the Pediatric Regulation in the
European Union (EU) of 2006 (EC 1901/2006 and 1902/2006;
EU 2006a, 2006b) were both passed with the objective to
facilitate development of new drugs with pediatric indications
and to improve the availability of information on the use of
medicines for children. A principal goal is to include children
in clinical trials. These trials should follow ICH guideline E11,
“Clinical Investigation of Medicinal Products in the Pediatric
Populations.” (ICH, 2000b). According to ICH M3 (R2) “Nonclinical Safety Studies for the Conduct of Human Clinical
Trials and Marketing Authorization for Pharmaceuticals,”
(ICH, 2009) section 12, the core battery of safety pharmacology
tests used in adult animals and safety data from adult human
exposure are usually available at the onset of pediatric clinical
trials. The guidelines recognize the potential differences in
safety profiles of drugs in adult versus those in young patients,
and the use of juvenile animal models is discussed. ICH E11
states, “The need for juvenile animal studies should be
considered on a case-by-case basis and be based on developmental toxicology concerns.” Apart from animal welfare and
ethics concerns, the reason behind the lack of a strict requirement for studies in juvenile animals might be that
results are difficult to extrapolate and, in some cases, have
been found to be of little relevance to humans (Anderson et al.,
2009). However, the interest in juvenile animal models in drug
development is increasing (Baldrick, 2010). ICH is currently
working (as of June 2015) on a new guideline S11, “Nonclinical
Safety Testing in Support of Development of Pediatric Medicines,” to provide guidance, for example, on the design of
studies in juvenile animals. This topic was endorsed by the
ICH Steering Committee in November 2014, and a completed
guideline is anticipated in 2018 (ICH, 2014). This highlights
the importance of studies related to pediatric pharmacology.
The progression of neonatal medicine has made it possible
to save infants born prior to gestational week 23 despite
extreme prematurity (Blencowe et al., 2012). This has created
an entirely new patient population for which increased
knowledge of pharmacology is strongly needed. Neonatal
therapeutic issues are often related to the cardiovascular
system, the respiratory system, and the CNS, and there is
an urgent demand for pharmacotherapy for conditions such
as epilepsy and bronchopulmonary dysplasia in the pediatric
population. This highlights the need for established prenatal and neonatal animal models in nonclinical studies
of drugs that may potentially be administered to humans
(Giacoia et al., 2012).
The Established Chicken Embryo Model
The Revival of a Well Established Model. The need for
juvenile and perinatal animal models prompts us to propose
the in ovo chicken embryo model as a valuable addition to
early safety studies. The chicken embryo and fetus constitute
a model system with a long and fascinating history. Since
Aristotle first started dissecting chicken embryos around the
year 350 BCE, this model system has contributed substantially to a foundation for our understanding of human development and has also contributed important insight into
immunology, cancer, and other areas of human disease (Stern,
2005; Datar and Bhonde, 2011; Kain et al., 2014).
Several features of the chicken embryo and fetus make it a
desirable animal model: it is phylogenetically closer to
mammals than, for example, zebrafish and the nematode
worm, it has a convenient size, a short incubation time of 21
days, and is readily accessible throughout in ovo or ex ovo
incubation. Development can be followed easily (Dohle et al.,
2009), which is convenient for imaging and microsurgical
procedures (Yalcin et al., 2010). Furthermore, the egg is
nutritionally self-sufficient, and the embryo and fetus develop
normally at 37–39°C and 45–55% air humidity without the
need for specialized facilities and equipment.
Animal Welfare and Ethics with Regards to the
Chicken Embryo Model. Nonclinical testing should be
carried out without unnecessary use of animals and other
Downloaded from jpet.aspetjournals.org at ASPET Journals on May 5, 2017
cardiovascular system, and respiratory system. Traditionally,
these studies have been performed on selected drug candidates late in the nonclinical phase and continued during firstin-human trials. In an attempt to reduce costs and accelerate
development, there has been a shift toward performing safety
pharmacology studies earlier in the discovery phase (Hamdam
et al., 2013). Safety pharmacology endpoints may also be
incorporated into other nonclinical toxicological and kinetic
studies. For early screening purposes in the exploratory phase
of drug development, it is thus beneficial to have efficient and
inexpensive model systems suitable for high throughput in
which functional tests, biochemical markers, and morphology
can be assessed. This will increase the likeliness of a drug
succeeding in later phases of nonclinical studies. A number of
early high-throughput models have been proposed to improve
productivity and efficiency in the early nonclinical phase,
including Caenorhabditis elegans, zebrafish (Danio rerio), and
human stem cells. However, animal models phylogenetically
closer to mammals with well characterized CNS, cardiovascular, and respiratory systems are needed to better predict
alteration in organ function relevant for humans. Established
animal models in safety pharmacology may include pigs,
monkeys, primates, and dogs, models that require substantial
care and tend to stir public opinion (Pugsley et al., 2008). It
would therefore be advantageous to develop additional models
that, in the early exploratory phase, could help reduce the
number of drug leads that later need to be tested in the
established animal models. Ideally, model systems should be
adjustable with respect to parameters such as organ function
and age (Jacobs, 2006). The developing chicken has several
advantageous features for drug discovery. Here, we summarize areas within pharmaceutical research where the use of
chicken embryos is already established, and we suggest an
extended use of the developing chicken as a model system for
the CNS and respiratory system, two of the major organ
systems for which safety needs to be assessed. The chicken
embryo as a cardiovascular model system was recently
discussed by Kain et al. (2014).
387
388
Bjørnstad et al.
chicken embryos instead of mammalian embryos obviously
reduces the size of the experimental group, in line with
international ethical guidelines. A further reduction is possible by monitoring effects on several major organ systems in
each individual simultaneously. An important feature of the
chicken embryo in this regard is that the development and
maturation of the CNS and respiratory system overlap to a
large extent temporally, as will be discussed in the following
sections. It is thus possible to monitor several organ systems
at the same time in one embryo—in line with the goal of
reduction. In this respect, the chicken embryo model could
serve as a replacement for other perinatal and juvenile animal
models. However, the experimental use of embryonic stages is
no longer considered an acceptable replacement for adult
animals. Partial replacement by using, for example, tissue and
cell culture, perfused organs, and tissue slices should be
preferred instead of replacement with other live laboratory
animals. All of these techniques are applicable to and described in the chicken.
Administration of Pharmaceuticals to the Developing Chicken. The physical isolation of the chicken embryo
and fetus from the mother is an advantage in studies of
mechanisms of pharmaceuticals. Drug administration is
easily controlled, and both primary and secondary pharmacology, off-target effects, and toxicity can be tested. However,
the chicken model does have limitations in this respect. As a
rule, the route of drug administration in an animal model
should appropriately mimic the intended therapeutic route of
administration in humans. Historically, however, studies of
acute toxicity have been performed by parenteral administration in addition to the intended clinical administration, as
discussed in ICH M3(R2; ICH, 2009). In the developing
chicken, various drug delivery systems and formulations have
been evaluated, and topical administration onto the chorioallantoic membrane as well as systemic administration intravenously or via injections into the yolk sac, amnion, or
peritoneum have been tested (Vargas et al., 2007). Drug
inhalation in the developing chicken can only be done in the
postpipping stage after E19, whereas oral drug administration can be performed after hatching. As in all nonmammalian
animal models, challenges arise when attempting to translate
results to a similar setting in mammals. For example, drug
metabolism in the mother and the placental barrier in
mammals may, depending on properties of the pharmaceutical, protect the fetus against exposure, a feature which cannot
be mimicked correctly in avian models. Further, there is no
excretion from the egg until hatching, a feature that may
cause a prolonged effect of a single exposure. In studies of
pharmacokinetics, the chorioallantoic membrane has raised
interest in testing drug delivery systems and has been
suggested as a valuable tool in nonclinical studies, thoroughly
reviewed by Vargas et al. (2007). One has to be aware of the
possible differences in pharmacokinetics in chickens compared with humans (Nowak-Sliwinska et al., 2014).
Established Use of the Chicken Model in Nonclinical
Safety Studies. Avian embryos are established models in
teratology and developmental toxicology. Such issues are
addressed by the ICH guideline S5 (R2) “Detection of Toxicity
to Reproduction for Medicinal Products and Toxicity to Male
Fertility.” (ICH, 2000c) Several apoptosis assays (activated
caspase-3, terminal deoxynucleotidyl transferase–mediated
digoxigenin-deoxyuridine nick-end labeling assay) in addition
Downloaded from jpet.aspetjournals.org at ASPET Journals on May 5, 2017
resources. Unanesthetized animals are preferred, and the
number of animals in each experimental group should not
exceed what is scientifically justified (ICH S7A; ICH, 2000a).
All use of laboratory animals is subject to strict regulations
with certain national variations. Guidelines regarding animal
ethics and best practice aim to ensure minimal pain, suffering,
and distress for the animal.
There is a consensus among scientists that the avian
embryo gains the ability to experience pain at a certain point
of development in ovo. The first sensory afferent nerves in
chicken develop from embryonic day 4 (E4); however, synaptic
connection with the dorsal horn is not established until E7,
making perception of pain during the first trimester impossible (Eide and Glover, 1995, 1997; Rosenbruch, 1997). The
development of tractus spinothalamicus is not fully characterized in the chicken embryo, so the exact time point at which
the chicken embryo could begin experiencing pain is not
known. At E13, the chicken fetus has developed a functional
brain, and a few days prior to hatching, it is considered fully
conscious (Animal Care and Use Committee California State
Polytechnic University, 2012; Institutional Animal Care and
Use Committee University of Louisville, 2012). Despite the
uncertain onset of nociception and pain perception in the
developing chicken, the American Veterinary Medical Association guidelines for euthanasia state that avian embryos that
have attained .1/2 of the total incubation period have a
sufficiently developed CNS for pain perception and should
be euthanized by similar methods as used in neonates—for
example, by anesthetic overdose, decapitation, or prolonged
exposure to CO2. Eggs at ,1/2 of the total incubation period
may be destroyed by cooling (,4°C for 4 hours), freezing, or
prolonged exposure to CO2. The EU legislation on the protection of animals used for scientific purposes (2010/63/EU;
EU, 2010) defines embryos or fetuses developed to .2/3 of
their total gestational period as neonates. Also included and
protected by the requirements of this legislation are embryonic or fetal forms at a developmental stage less than 2/3 of
their gestational length if they are subjected to experimentation during these two trimesters and allowed to live into the
third trimester. This includes nonmammalian vertebrates,
such as birds.
In accordance with the 3R principles of animal ethics
(reduce, refine, replace), appropriate anesthesia of animals
subjected to potentially painful procedures should be provided. The knowledge on nociception and distress during
chicken embryonic development is relatively new and has
led to new protocols for humane anesthesia of chicken
embryos. These protocols have helped to refine the model to
a higher ethical standard (Aleksandrowicz and Herr, 2015).
In mice and rats, litter size varies across breedings and
cannot be accurately predicted in advance, whereas in general,
a hen lays only one egg per day. To obtain a sample size of
animals large enough for sufficient statistical power, additional matings are often required in mice and rats, causing
distress for the mothers and potentially resulting in an
unnecessarily large number of animals being handled, manipulated, and destroyed. In chicken hatcheries, however, the
daily production of fertilized eggs is more predictable, making
it easier to assign the appropriate number to experimental
groups. Moreover, a broader genetic variation can be obtained,
mimicking the clinical setting more closely. Additionally, the
mother is excluded from experimentation. Thus, the use of
The Chicken Model for Nonclinical Safety Studies of Drugs
Expanding the Use of the Chicken Embryo Model
The Developing Chicken as a CNS Model. Conditions
affecting the nervous system are common in neonates; one
typical sequela of dysregulated brain development is the
occurrence of seizures, which requires treatment with antiepileptic drugs (Giacoia et al., 2012). During CNS development,
cell division, cell death, and cell differentiation are all tightly
regulated (Marzban et al., 2014). To avoid administering
neuroactive drugs that may alter CNS development, safety
studies are recommended to investigate key functional domains of the developing CNS (Himmel, 2008). These studies
should be performed in the early nonclinical phase of drug
development.
As a major model in developmental biology, the chicken
embryo has also played a pivotal role in the study of neurodevelopment. Famously, the neural crest was first discovered
in the chicken embryo by Wilhelm His in 1868. Rita LeviMontalcini shared the Nobel Prize in Medicine or Physiology
in 1986 for her discovery of nerve growth factor, and her work
was primarily performed in the chicken embryo. Her mentor,
Viktor Hamburger, together with Howard Hamilton described
the 46 stages of chick development, a staging system that is
still used today (Fig. 1), and performed seminal studies of the
development of motility and behavior as well as trophic
interactions (Hamburger and Hamilton, 1951). Several aspects of the stages of neuronal development in chickens are
characterized. As an example, the efferent motor neurons
develop early in chickens. This gives the embryo the ability to
move spontaneously from E3.5, when early movements start
in the neck before spreading to the trunk. At E6.5, motility in
the legs appears (Hamburger and Balaban, 1963; Bekoff,
1976). Nicole LeDouarin invented and developed the technique of quail-chick chimeras to launch a wide-reaching series
of fate-mapping studies that have helped elucidate the fates
and developmental roles of neural crest cells (Dupin et al.,
1998; Le Douarin, 2004; Le Douarin et al., 2008; Le Douarin
and Dieterlen-Lievre, 2013). Viral approaches for genetic fate
mapping were introduced in the late 1980s (Price et al., 1987;
Gray et al., 1988; Sanes, 1989). More recently, the chicken
embryo has been used to study neural induction and early
patterning (Le Douarin, 2004; Teillet et al., 2008). Fluorescent
and other tracers have been developed to map the structural
and functional development of axon projections and neural
circuits (Glover et al., 1986; O’Donovan et al., 1994). The
tradition of utilizing the chicken embryo in neurodevelopmental studies has continued to progress to embrace molecular
genetic approaches, including in ovo electroporation for gainand loss-of-function studies (Nakamura et al., 2004) and a
genetic toolbox of DNA constructs and viral vectors for
targeted tracing and functional manipulation of specific
neuronal subtypes (Hadas et al., 2014). The chicken embryo
and fetus are accessible for in ovo kinematic, electrophysiological, and noninvasive imaging studies of neurophysiological
and behavioral development (Bekoff, 1992; Ryu and Bradley,
2009; Balaban et al., 2012). Last, the chicken embryo has been
used as a recipient for xenotypic grafting studies of human
neural stem and progenitor cells (Glover et al., 2009; Boulland
et al., 2010).
Given its proud history in the field of neurodevelopment, it
is surprising that, when it comes to nonclinical neuropharmacological studies, the chicken model is not yet routinely used.
An area where the advantages of the chicken embryo model
have been highlighted is developmental endocrinology (De
Groef et al., 2008). It is of particular benefit that the only
endocrine influence the embryo receives from its mother is
through the egg yolk. This facilitates external manipulation of
the endocrine system and the study of whether pharmaceuticals and environmental chemicals cause endocrine disruption
(Mathisen et al., 2013). Tight regulation of the endocrine
system is crucial for correct development of the CNS. The
chicken embryo can be a valuable tool in early screening of
drug candidates to determine whether they alter endocrine
profiles.
Epilepsy is one of the most serious conditions affecting
human neonates. A homozygous strain of epileptic chickens,
the Fayoumi strain, has been used in epilepsy research for
over 30 years (Nunoya et al., 1983). Epileptic chickens show
differences in electroencephalography compared with normal
chickens from E17 (Guy et al., 1995). They have been used for
magnetic resonance imaging (Fabene and Sbarbati, 2004) and
evaluation of anticonvulsant drugs (Loscher, 1984; Johnson
et al., 1985) and N-methyl-D-aspartate receptor (NMDA)
Downloaded from jpet.aspetjournals.org at ASPET Journals on May 5, 2017
to echocardiography and morphologic changes in organs have
been used to test effects of toxicants (Smith et al., 2012). The
chicken embryo has also been used to study the effects of
retinoids that alter patterns of gene expression, neuronal
differentiation, and axonal projections. In situ hybridization,
RNA sequencing, immunostaining, and retrograde labeling
techniques have been used to assess such effects (Forehand
et al., 1998).
A challenge in nonclinical studies is poor translation of
results between species. Retinoids are known teratogens that
also affect the nervous system in the human embryo (Adams,
2010). Here, there is good concordance between the chicken
and other animal models. In general, proper cross-species
translation of results from animal models requires knowledge
of comparative biology and careful selection of relevant and
translatable endpoints before concluding. Observation of
similar results in animal models of different species increases
the likeliness of the results being translatable to humans.
As another example from the area of developmental toxicology, the effect of mammalian cardiac inward rectifying
potassium channel blockers has been shown to produce digit
malformations in developing rats. Knowledge of the comparative biology of expression of the human Ether-à-go-goRelated Gene (hERG) channel was essential for translation
of these results into a human drug-development context.
This channel is important in the chicken embryo as well
(Krogh-Madsen et al., 2005; Danielsson et al., 2007), which
makes it possible to study primary or off-target effects of
pharmaceuticals on this channel in the developing chicken.
One area of drug development where the chicken model has
been more firmly implemented is in ocular toxicology testing.
The chicken embryo is an established model for the study of
retinal development (Vergara and Canto-Soler, 2012). The
chicken has large eyes during development and at birth, and
retinal cells can be cultured in vitro (Daston et al., 1991). The
isolated chicken eye is an accepted method for toxicology
testing in both the U.S. and the EU (Dholakiya and Barile,
2013). Toxicity is assessed by a qualitative examination of
opacity of the cornea, swelling, and damage measured by
fluorescein staining (OECD, 2009).
389
390
Bjørnstad et al.
Downloaded from jpet.aspetjournals.org at ASPET Journals on May 5, 2017
Fig. 1. Developmental events during the embryonic and fetal period in humans and chickens. Whereas a human pregnancy takes 40 weeks, chickens
hatch after only 21 days of incubation. The Hamburger-Hamilton (HH) classification is a useful research tool to stage chicken embryos and fetuses based
on morphologic landmarks rather than chronological age. The early development of efferent motor neurons of the chicken makes the embryo able to move
spontaneously from E3.5. Sensory afferents, however, do not establish synaptic connections with the dorsal horn until E7, making perception of pain
during the first trimester impossible (the exact time point at which the chicken embryo starts experiencing pain is not known). The human cerebellum
grows exponentially toward the end of gestation (Guihard-Costa and Larroche, 1990), whereas in chickens, a cerebellar growth spurt occurs earlier
(around E13–E17) and slows before hatching, thus creating a near sigmoid-shaped growth curve (unpublished observations). In humans, staging of fetal
lung development based on morphology is well established. The human lung develops from an embryonal stage to a pseudoglandular, canalicular stage,
and then in the last trimester into a saccular stage. The chicken lung, on the other hand, develops atrio-infundibular and air-capillar lungs during the
last trimester. This appears coincidentally with chicken fetal respiratory movements starting around E18, much later than the movement of the legs,
trunk, and neck.
antagonists (Pedder et al., 1990). Studies have been carried
out to examine how generalized seizures alter the development of the chicken brain (Gong et al., 2003).
For studies of neural development in chicken, the cerebellar
cortex is an important model system (Nieuwenhuys, 1967;
Solecki et al., 2006). The structure of the cerebellar cortex was
first described in 1911 by Ramon y Cajal, who found it to be so
conserved among species that he proposed it to be a “law of
biology” (Sultan and Glickstein, 2007). The cerebellum is
considered an appropriate model that reflects well the general
aspects of CNS development. Cerebellar granule neurons
are numerous, constitute the most homogenous neuron
The Chicken Model for Nonclinical Safety Studies of Drugs
although few are firmly established. The transcription factor
PAX6 is important for cerebellar development and migration
(Engelkamp et al., 1999), and perturbations of PAX6 expression have been linked to autism (Umeda et al., 2010). Also, the
role of PAX6 has been studied and found to be important for
brain development in the chicken embryo (Mathisen et al.,
2013). Other markers that have been suggested and partly
implemented in studies of neurotoxicity are Calbindin D28k
and microtubule-associated protein-2 (Haworth et al., 2006).
Calbindin D28k is a calcium-binding protein highly expressed
in the cerebellum across various species, has been studied in
chickens (Hunziker and Schrickel, 1988; Koszka et al., 1991;
Marzban et al., 2010; Flace et al., 2014), and is associated with
autism (Whitney et al., 2008) and hereditary ataxia (Koeppen
et al., 2013) in humans. Microtubule-associated protein-2 has
roles in neuronal growth and plasticity (Johnson and Jope,
1992), has been studied in chickens (Pinkas et al., 2015), and
has been shown to be important in human traumatic brain
injury (Mondello et al., 2012) and Rett syndrome (Johnston
et al., 2001). Therefore, these are examples of markers that
could serve as endpoints in safety studies with results
relevant for conditions seen in humans. Other relevant
neuronal markers are listed in Table 1. We thus argue that
the chicken cerebellum is a valuable tool for the study of
neurodevelopment that could successfully be implemented
in early nonclinical studies of new pharmaceuticals.
The Developing Chicken as a Lung Model. In the 17th
century, the lung was suggested to be a link between vital air
particles in the atmosphere (later determined to be oxygen)
and the blood (Partington, 1956). Since then, it has been
acknowledged as a prerequisite for life, and the respiratory
system is a natural component of the core battery of safety
pharmacology studies (Murphy, 2002; Dhokarh et al., 2012).
In nonclinical testing of drugs on laboratory animals, clinical
observation alone to assess respiratory function is not adequate. Thus, several parameters of respiratory function,
including monitoring both the pumping apparatus and the
gas-exchange unit, should also be quantified using appropriate methods, as discussed by Murphy (2002, 2014). Important
conditions in neonatology that affect the respiratory system
include neonatal respiratory distress syndrome, apnoe of
prematurity, and persistent bronchopulmonal dysplasia, and
call for immediate treatment. Fetal hypoxia is an important
concern during pregnancy and is often present in combination
with premature birth and other conditions, such as chorioamnionitis, preeclampsia, and maternal diabetes. Premature
birth occurs in .10% of all live births worldwide (Blencowe
et al., 2012), and drugs that have minimal adverse effects
in healthy and normally developed individuals can be lifethreatening in individuals with a diseased or immature
respiratory system. Both the pumping apparatus and the gasexchange unit are essential for respiration. Mild respiratory
depressant drugs may produce serious adverse effects if given
to a patient with a ventilatory defect such as apnea, often seen
in low-birth-weight neonates with an immature CNS. Drugs
that mildly hamper lung development and maturation may be
mortally dangerous to premature individuals with marginally
developed lungs. Adverse effects on the respiratory system in
newborn babies after drug administration to the mother during
pregnancy may also occur. Selective serotonin reuptake inhibitors are associated with an increased risk of pulmonary hypertension in the newborns of women receiving this therapy
Downloaded from jpet.aspetjournals.org at ASPET Journals on May 5, 2017
population in the brain, are easily accessible, and may be
purified and grown in vitro. They undergo all key stages of
neural development and thus provide a model of choice for
studying mechanisms of neuronal proliferation, apoptosis and
survival, differentiation, and migration (Contestabile, 2002).
A key feature of cerebellar development is the migration of
granule neurons through layers of the cerebellar cortex—from
the external granule layer to the internal granule layer. To a
large extent, this occurs postnatally in some mammals,
including humans. Alterations in migration may be indicative
of impaired neurodevelopment and could be monitored by
histologic methods in safety studies to assess whether a drug
candidate is likely to be safe for children or during pregnancy.
Over time, cerebellar granule neurons in vitro differentiate
and acquire the characteristics of mature neurons, express
NMDA receptors, and rapidly develop excitotoxicity in culture
(Contestabile, 2002). Exposure of these cultured neurons to a
drug candidate can determine at an early stage of preclinical
testing whether the drug is toxic to neurons and, for example,
initiates apoptosis (Jacobs et al., 2006). An important aim in
drug development is to discover detrimental effects as early as
possible (Pugsley et al., 2008). This is of particular importance
when testing new antiepileptic drugs that interfere with
glutamate (as NMDA antagonists) or GABA signaling, or to
discover off-target effects of other potential drugs.
As pointed out by Ramon y Cajal, the structure of the
cerebellar cortex is highly conserved among species, which
makes histologic examination of alterations in the cortex
relevant to a similar setting in humans. However, there are
some differences. The vermis (a medial expansion of the
cerebellum) is only seen in mammalian species (Butts et al.,
2014), and the migration of granule neurons exhibits different
patterns in different species. In the human embryo, the
external granule layer reaches its peak thickness by gestational week 25, and the process of migration continues well
into the first postnatal year. In the chicken cerebellum, the
migration of cerebellar granule neurons occurs prenatally
(Aden et al., 2008, 2011; Volpe, 2009; Mathisen et al., 2013), in
contrast to the situation in the rodent cerebellum where the
external granule layer is formed postnatally, and granule
neurons migrate between postnatal days 4 and 15 (Fujita,
1967). In fish, the migration of granule neurons follows yet a
different pattern from that of mammals and chicken or is
absent altogether (Butts et al., 2014). That the migration of
cerebellar granule neurons in chicken resembles the human
counterpart more closely than what is seen, for example, in
zebrafish makes the chicken embryo cerebellum a more
appropriate model than the fish cerebellum for highthroughput screening in safety studies of the CNS. That
granule neuron migration in the chicken occurs at a fetal
stage is another advantage of the chicken embryo model that
facilitates the study of insults to cerebellar development. This
has been used to assess the neurodevelopmental effects of
glucocorticoids (Aden et al., 2008, 2011), a clinically relevant
neonatal issue (Roberts and Dalziel, 2006; Brownfoot et al.,
2013). The same model has been used to address developmental disruption caused by bisphenol A, with results in concordance with those reported in a mouse model (Mathisen et al.,
2013). Histopathology remains the gold standard (Sasseville
et al., 2014) for assessing detrimental effects on the developing
CNS in chickens (Table 1). In addition, there are several
biomarkers that could be useful for early screening purposes,
391
392
Bjørnstad et al.
TABLE 1
Examples of specific parameters available in chickens for quantitative evaluation of drug responses
Specific Tests/Endpoints
CNS function
Physiologic
EEG
EMG
Structural
Brain weight
PET scan
MRI
Morphology, measuring thickness
of the cerebellar EGL and IGL
Biochemical
Transcription factor PAX6
Calbindin D28k
NeuN
S-100
Respiratory function
Physiologic
Tidal volume
Breathing rate
Minute ventilation
Oxygen consumption
Structural
Lung weight
Morphology with staging of fetal
lung development (embryonal,
pseudoglandular, atrio-infundibular
or air-capillar)
Biochemical
Pulmonary surfactant components
(spB, PC, DSPL)
Aquaporin 5
Caveolin 1
VEGF
Chicken References
Monitoring brain function, epileptic activity, and
focal brain disease
Monitoring neuromuscular function and motility
Guy et al., 1995; Di Pascoli et al., 2013
CNS growth
Structural and functional neuroimaging relevant in
diffuse and focal brain disease
Cerebellar abnormalities are clinically important
causes of neurodevelopmental disabilities in
premature babies, often manifested by cognitive,
behavioral, attentional, and socialization deficits
(Volpe, 2009)
McCutcheon et al., 1982; Fabene and
Sbarbati, 2004; Aden et al., 2008, 2011;
Balaban et al., 2012; Mathisen et al., 2013
Important for cerebellar development and migration Cicero and Provine, 1972; Hunziker and
Schrickel, 1988; Koszka et al., 1991;
(Engelkamp et al., 1999); linked to autism
Marzban et al., 2010; Mezey et al., 2012;
(Umeda et al., 2010)
Highly expressed in the cerebellum; associated with
Mathisen et al., 2013; Flace et al., 2014;
autism (Whitney et al., 2008) and hereditary
Pinkas et al., 2015
ataxia in humans (Koeppen et al., 2013)
Neuronal growth and plasticity (Johnson and
Jope, 1992)
Marker for neuronal maturation (Sarnat et al., 1998)
Marker enabling monitoring of brain injury in blood
and CSF (Sun et al., 2012)
Monitoring respiratory function
Mortola and Labbe, 2005; Szdzuy and
Mortola, 2007
Pulmonary growth
Insufficient lung development is associated with
respiratory distress syndrome
Hylka and Doneen, 1983; Maina, 2004a;
Bjornstad et al., 2014
Surfactants increase compliance, lower surface
tension, and prevent atelectasis of the lungs; lack
of surfactants causes respiratory distress of the
newborn
Expressed in human type I pneumocytes, vital for
gas exchange (Kreda et al., 2001)
Expressed in mature gas exchange tissue of the
human lung (Kaarteenaho et al., 2010)
Important for sufficient vascularization of the gas
exchange membrane
Hylka and Doneen, 1983; Makanya et al.,
2007, 2013; Been et al., 2010;
Bjornstad et al., 2014
CSF, cerebral spinal fluid; DSPL, disaturated phospholipids; EEG, electroencephalography; EGL, external granule layer; EMG, electromyography; IGL, internal granule
layer; MRI, magnetic resonance imaging; PC, phosphatidylcholine; PET, positron emission tomography; spB, pulmonary surfactant protein B; VEGF, vascular endothelial
growth factor.
during the last trimester of pregnancy (Moses-Kolko et al.,
2005; Chambers et al., 2006). Administering drugs to newborn
children and pregnant women is thus a major safety concern.
There is a need for animal models to study whether pharmaceuticals affect the respiratory system in fetal and neonatal
life. As conditions affecting the respiratory system can be
severe, there is also a clinical need for new treatment options.
Models in which lung development is well characterized can
provide an important research tool to identify targets for
future therapy.
The respiratory anatomy and physiology of birds differs
from that of mammals, and the morphology of the developing
chicken lung is well described (Maina, 2003a,b, 2004b). The
parabronchial bird lungs are connected to air sacs that serve
as reservoirs for oxygen-rich air and are used for respiration
during exhaling. This results in a very efficient respiration
that is highly useful, for example, during long flights. In
chickens, the respiratory movements start around E18 of
development. The human fetus, by contrast, already makes
breathing-like movements from week 9, and the circulation of
amniotic fluid into the airways is essential for sufficient lung
development. Unlike mammals at birth, birds adapt to air
breathing gradually, with an overlap of chorioallantoic membrane and lung-dependent gas exchange lasting from hours to
even days during hatching. Partly because of these major
anatomic and physiologic differences, the chicken has traditionally not been implemented as a model system in safety
studies of respiratory function. However, the commercial
broiler industry, which uses in ovo vaccination and drug
treatments as strategies to defeat disease among flocks, has
used monitoring of the respiratory system of the developing
chicken in safety pharmacology testing of new vaccines. For
Downloaded from jpet.aspetjournals.org at ASPET Journals on May 5, 2017
Microtubule-associated protein-2
Relevance to Human Disease
The Chicken Model for Nonclinical Safety Studies of Drugs
model to study the actions of steroid hormones on the fetal
lung. This study used growth, cellular proliferation, and rate
of synthesis of the major surfactant phospholipids as parameters of lung development and function. Further, effects on
lung development of in ovo hypophysectomy and treatment
with corticosterone or pituitary transplantation were assessed
(Hylka and Doneen, 1983). Antenatal corticosteroid treatment
is also associated with impaired cerebellar development in
humans, a finding that has been reproduced in the chicken
embryo (Aden et al., 2008, 2011). Thus, the chicken embryo
model can be used advantageously to study the impact on two
organ systems (Fig. 1) of pharmaceuticals clinically administered for a major human neonatal condition.
Fetal hypoxia is another important concern in neonatal
medicine, and a hypoxia model has been established in
chickens. In a study from 2010, fertilized eggs were incubated
at various levels of oxygenation to support the concept that
fetal oxygen tension is a key signal in the regulation of the
surfactant system. Disaturated phospholipids and vascular
endothelial growth factor were used as parameters of lung
function at different stages of chicken embryo development,
and a critical window of vulnerability to oxygen tension was
established (Been et al., 2010). Another relevant example is
surfactant protein B, which is expressed in chicken lungs from
TABLE 2
The expanded toolbox available for the chicken embryo model
Tools and Methods
Ex ovo incubation
Imaging
Fluorescent tracers
MRI
PET
Chicken stem cells
Stem cells available from
several organs
Chimeric models
Quail-chick chimeras
Reference to Method or Review
Auerbach et al., 1974
Imaging and microsurgery (Yalcin et al., 2010)
Technical aspects described in Dohle et al. 2009
Kulesa et al., 2013
Clarke, 2008
Axon tracing (Glover et al., 1986)
Altered projections in the spinal cord caused by
retinoids (Forehand et al., 1998)
Hogers et al., 2009
Monitoring of chicken brain development (Zhou et al., 2015)
Walking-like brain function in embryos
(Balaban et al., 2012)
The chicken embryo for evaluation of radiopharmaceuticals
(Haller et al., 2015)
Intarapat and Stern, 2013
Neuronal differentiation of pluripotent stem-like cells in
chickens (Dai et al., 2014)
Developed by Le Douarin and Renaud, 1969
Fate-mapping studies to investigate developmental roles
of the neural crest (Le Douarin, 2004)
Studies of cerebellar development (Hallonet et al., 1990)
Study of neuronal migration (Kharazi, Levy et al., 2013)
Reviewed in Teillet et al., 2008
Xenotransplantation of human Glover et al., 2009
stem cells into the chicken
Boulland et al., 2010
Disease-prone strains
Fayoumi strain
A model for epilepsy; described in
Nunoya et al., 1983
Obese strain of chicken
Gain and loss of function
Gain of function
In ovo electroporation
Examples of Applications
Studies of autoimmune thyroiditis as
described in Wick, Sundick et al., 1974
and Dietrich et al., 1999
Sauka-Spengler and Barembaum, 2008
Krull, 2004
Nakamura et al., 2004
Retroviral vector
Loss of function
RNAi gene silencing
Sato, 2004
Morpholinos
Kos et al., 2003
Andermatt and Stoeckli, 2014
Evaluation of anticonvulsant drugs (Loscher, 1984;
Johnson et al., 1985) and how seizures alter the
development of the brain (Gong et al., 2003)
Neuroendocrine alterations caused by thyroiditis
(Schauenstein et al., 1987)
Overexpression of genes in Purkinje cells (Luo and
Redies, 2004)
Tbx4 and Fgf10 in lung bud formation
(Sakiyama et al., 2003)
Wnt5a in pulmonary development (Loscertales et al., 2008)
Axonin/TAG-1 in cerebellar development (Baeriswyl
and Stoeckli, 2008)
Transcription factor FoxD3 in the development of the
neural crest (Kos et al., 2001)
MRI, magnetic resonance imaging; PET, positron emission tomography; RNAi, RNA interference.
Downloaded from jpet.aspetjournals.org at ASPET Journals on May 5, 2017
example, effects on distal lung maturation with insufficient
development of air capillaries have been found in an in ovo
trial testing a vaccine against Newcastle disease virus
(Dilaveris et al., 2007). Safety studies of respiratory function in adult and juvenile animals are usually monitored in
head-out or whole-body plethysmographs. Whereas measuring respiratory function in a mammalian fetus requires
invasive or indirect electrophysiology or imaging techniques (Greer, 2012), the same monitoring in the chicken
fetus can be performed using noninvasive barometric methods, a real advantage of the chicken embryo model system
(Szdzuy and Mortola, 2007).
Although not yet widely implemented in nonclinical pharmaceutical studies, the respiratory system of the chicken
embryo has been used as a model for research purposes.
Antenatal corticosteroids are routinely given to pregnant
women when there is a threat of premature birth to accelerate
lung maturation and prevent respiratory distress. However,
after several decades, there is still no international consensus
on an optimal regimen of corticosteroid treatment. This is still
a highly relevant clinical problem, and experimental embryo
animal model systems in which the effects of different
corticosteroids on lung development can be monitored are
crucial. Hylka and Doneen (1983) used the chicken embryo
393
394
Bjørnstad et al.
Summary
Many features of the chicken embryo, including low cost, selfcontained development, short incubation time, conveniently
large size, accessibility, and availability of a large number of
techniques for experimental manipulation and characterization, make it a desirable laboratory animal model. The chicken
embryo has traditionally been used to address mechanisms of
development and neonatal function, but has an expanding
potential as an efficient and inexpensive screening model for
drug development. The development of the CNS and the
cardiovascular and respiratory systems is well characterized,
as are the main differences from human development. We
therefore propose that the chicken embryo should be included
as a mainstay model for early nonclinical safety assessment.
Acknowledgments
The authors thank Anne Soleng at the Norwegian Medicines
Agency for valuable discussion.
Authorship Contributions
Wrote or contributed to the writing of the manuscript: Bjørnstad,
Austdal, Roald, Glover, Paulsen.
References
Adams J (2010) The neurobehavioral teratology of retinoids: a 50-year history. Birth
Defects Res A Clin Mol Teratol 88:895–905.
Aden P, Goverud I, Liestøl K, Løberg EM, Paulsen RE, Maehlen J, and Lømo J (2008)
Low-potency glucocorticoid hydrocortisone has similar neurotoxic effects as highpotency glucocorticoid dexamethasone on neurons in the immature chicken cerebellum. Brain Res 1236:39–48.
Aden P, Paulsen RE, Mæhlen J, Løberg EM, Goverud IL, Liestøl K, and Lømo J
(2011) Glucocorticoids dexamethasone and hydrocortisone inhibit proliferation and
accelerate maturation of chicken cerebellar granule neurons. Brain Res 1418:
32–41.
Aleksandrowicz E and Herr I (2015) Ethical euthanasia and short-term anesthesia of
the chick embryo. ALTEX 32:143–147.
Andermatt I and Stoeckli ET (2014) RNAi-based gene silencing in chicken brain
development. Methods Mol Biol 1082:253–266.
Anderson T, Khan NK, Tassinari MS, and Hurtt ME (2009) Comparative juvenile
safety testing of new therapeutic candidates: relevance of laboratory animal data to
children. J Toxicol Sci 34 (Suppl 2):SP209–SP215.
Auerbach R, Kubai L, Knighton D, and Folkman J (1974) A simple procedure for the
long-term cultivation of chicken embryos. Dev Biol 41:391–394.
Baeriswyl T and Stoeckli ET (2008) Axonin-1/TAG-1 is required for pathfinding of
granule cell axons in the developing cerebellum. Neural Dev 3:7.
Balaban E, Desco M, and Vaquero JJ (2012) Waking-like brain function in embryos.
Curr Biol 22:852–861.
Baldrick P (2010) Juvenile animal testing in drug development–is it useful? Regul
Toxicol Pharmacol 57:291–299.
Been JV, Zoer B, Kloosterboer N, Kessels CG, Zimmermann LJ, van Iwaarden JF,
and Villamor E (2010) Pulmonary vascular endothelial growth factor expression
and disaturated phospholipid content in a chicken model of hypoxia-induced fetal
growth restriction. Neonatology 97:183–189.
Bekoff A (1976) Ontogeny of leg motor output in the chick embryo: a neural analysis.
Brain Res 106:271–291.
Bekoff A (1992) Neuroethological approaches to the study of motor development in
chicks: achievements and challenges. J Neurobiol 23:1486–1505.
Bjørnstad S, Paulsen RE, Erichsen A, Glover JC, and Roald B (2014) Type I and II
pneumocyte differentiation in the developing fetal chicken lung: conservation of
pivotal proteins from birds to human in the struggle for life at birth. Neonatology
105:112–120.
Blencowe H, Cousens S, Oestergaard MZ, Chou D, Moller AB, Narwal R, Adler A,
Vera Garcia C, Rohde S, and Say L, et al. (2012) National, regional, and worldwide
estimates of preterm birth rates in the year 2010 with time trends since 1990 for
selected countries: a systematic analysis and implications. Lancet 379:2162–2172.
Boulland JL, Halasi G, Kasumacic N, and Glover JC (2010) Xenotransplantation of
human stem cells into the chicken embryo. J Vis Exp (41):2071.
Brownfoot FC, Gagliardi DI, Bain E, Middleton P, and Crowther CA (2013) Different
corticosteroids and regimens for accelerating fetal lung maturation for women at
risk of preterm birth. Cochrane Database Syst Rev 8:CD006764.
Butts T, Green MJ, and Wingate RJ (2014) Development of the cerebellum: simple
steps to make a ‘little brain’. Development 141:4031–4041.
Chambers CD, Hernandez-Diaz S, Van Marter LJ, Werler MM, Louik C, Jones KL,
and Mitchell AA (2006) Selective serotonin-reuptake inhibitors and risk of persistent pulmonary hypertension of the newborn. N Engl J Med 354:579–587.
Cicero TJ and Provine RR (1972) The levels of the brain-specific proteins, S-100 and
14-3-2, in the developing chick spinal cord. Brain Res 44:294–298.
Clarke JD (2008) Using fluorescent dyes for fate mapping, lineage analysis, and axon
tracing in the chick embryo. Methods Mol Biol 461:351–361.
Contestabile A (2002) Cerebellar granule cells as a model to study mechanisms of
neuronal apoptosis or survival in vivo and in vitro. Cerebellum 1:41–55.
Dai R, Rossello R, Chen CC, Kessler J, Davison I, Hochgeschwender U, and Jarvis
ED (2014) Maintenance and neuronal differentiation of chicken induced pluripotent stem-like cells. Stem Cells Int 2014:182737.
Downloaded from jpet.aspetjournals.org at ASPET Journals on May 5, 2017
E17 (Bjornstad et al., 2014). Qualitative and quantitative
assessment of relevant biomarkers related to morphology and
protein expression are thus established methods to study the
chicken embryo lung, and have shown that, despite the
phylogenetic distance, central aspects of lung development
are similar at cellular and protein levels in humans and
chickens. Hence, as cross-species comparative knowledge on
relevant biomarker panels (Table 1) continues to grow, there is
an expanding potential for translation from the developing
chicken lung to the human context, despite the anatomic and
physiologic differences.
Future Possibilities. Utilization of the chicken model has
evolved over time in parallel with technological innovations.
Sophisticated techniques combining structural and functional
tracing witness this advance (Table 2). Positron emission
tomography imaging (Balaban et al., 2012), for example,
enables (among other things) far more effective monitoring of
the uptake and elimination of radiolabeled drugs than before,
without sacrificing the animal. Molecular targeting of cell
populations combined with viral vector–mediated labeling
and imaging techniques has created new possibilities for
reliable and high-throughput structural and functional characterization of cells and cell populations, as recently shown in
studies of the developing spinal cord of the chicken (Hadas
et al., 2014). As genes can be delivered into the chicken embryo
using in ovo electroporation or retroviral vectors (Luo and
Redies, 2004; Sato, 2004), and gene expression can be knocked
down using small interfering RNA (Sauka-Spengler and
Barembaum, 2008), gain and loss of function may additionally
be used to induce disease and alter receptor expression and
enzymatic activity. For example, retroviral vectors have been
used to generate mis-/overexpression of Wnt5a in the chicken
embryo, demonstrating its role in coordinating lung development (Loscertales et al., 2008). Several protocols have been
described for gene silencing by RNA interference in the
nervous system of the developing chicken, both at very early
stages of brain development (from E3 to E3.5) and at later
stages in specific brain regions, such as the cerebellum
(Andermatt and Stoeckli, 2014). For example, an important
role for axonin-1/TAG-1 in the pathfinding of granule cell
axons in the developing cerebellum was established using this
approach (Baeriswyl and Stoeckli, 2008).
These new technologies will likely lead to the discovery of
novel biomarker panels central to lung, cardiovascular, and
CNS development. The chicken model will thus be a more
comprehensive animal model with highly accurate gene
targeting analogous to that provided by transgenic rodents.
This expanded toolbox, now available for the chicken embryo
model, increases its usefulness with regard to testing pharmaceuticals, as it is possible to link adverse effects to individual variability in, for example, receptor or enzyme profiles.
Increased use of the chicken model will contribute to the
documentation necessary for approval as a safety pharmacology model by the regulatory authorities in the future. With
this in mind, the time has come for the chicken embryo model
to leave the realms of academia and become an industrial
worker.
The Chicken Model for Nonclinical Safety Studies of Drugs
Hamburger V and Balaban M (1963) Observations and experiments on spontaneous
rhythmical behavior in the chick embryo. Dev Biol 6:533–545.
Hamburger V and Hamilton HL (1951) A series of normal stages in the development
of the chick embryo. J Morphol 88:49–92.
Hamdam J, Sethu S, Smith T, Alfirevic A, Alhaidari M, Atkinson J, Ayala M, Box H,
Cross M, and Delaunois A, et al. (2013) Safety pharmacology–current and
emerging concepts. Toxicol Appl Pharmacol 273:229–241.
Haworth R, McCormack N, Selway S, Pilling AM, and Williams TC (2006) Calbindin
D-28 and microtubule-associated protein-2: their use as sensitive immunohistochemical markers of cerebellar neurotoxicity in a regulatory toxicity study. Exp
Toxicol Pathol 57:419–426.
Himmel HM (2008) Safety pharmacology assessment of central nervous system
function in juvenile and adult rats: effects of pharmacological reference compounds.
J Pharmacol Toxicol Methods 58:129–146.
Hogers B, van der Weerd L, Olofsen H, van der Graaf LM, DeRuiter MC,
Gittenberger-de Groot AC, and Poelmann RE (2009) Non-invasive tracking of
avian development in vivo by MRI. NMR Biomed 22:365–373.
Hunziker W and Schrickel S (1988) Rat brain calbindin D28: six domain structure
and extensive amino acid homology with chicken calbindin D28. Mol Endocrinol 2:
465–473.
Hylka VW and Doneen BA (1983) Ontogeny of embryonic chicken lung: effects of
pituitary gland, corticosterone, and other hormones upon pulmonary growth and
synthesis of surfactant phospholipids. Gen Comp Endocrinol 52:108–120.
ICH (2009): M3(R2) - Guidance on Nonclinical Safety Studies for the Conduct of
Human Clinical Trials and Marketing Authorization for Pharmacetuicals, The
International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland. Retrieved 2015
October 16th from: http://www.ich.org/products/guidelines/multidisciplinary/article/multidisciplinary-guidelines.html
ICH (2000a): S7A - Safety Pharmacology Studies for Human Pharmaceuticals,
The International Conference on Harmonisation of Technical Requirements for
Registration of Pharmaceuticals for Human Use, Geneva, Switzerland. Retrieved 2015 October 16th from: http://www.ich.org/products/guidelines/safety/
article/safety-guidelines.html
ICH (2000b): E11 - Clinical Investigation of Medicinal Products in the Pediatric
Population, The International Conference on Harmonisation of Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland. Retrieved 2015 October 16th from: http://www.ich.org/products/guidelines/
efficacy/article/efficacy-guidelines.html
ICH (2014): S11 - Nonclinical Safety Testing in Support of Development of Pediatric
Medicines. Final concept paper, The International Conference on Harmonisation of
Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland. Retrieved 2015 October 16th from: http://www.ich.org/products/
guidelines/safety/article/safety-guidelines.html
ICH (2000c): S5(R2) – Detection of Toxicity of Reproduction for Medicinal Products &
Toxicity to Male Fertility, The International Conference on Harmonisation of
Technical Requirements for Registration of Pharmaceuticals for Human Use, Geneva, Switzerland. Retrieved 2015 October 16th from: http://www.ich.org/products/
guidelines/safety/article/safety-guidelines.html
Intarapat S and Stern CD (2013) Chick stem cells: current progress and future
prospects. Stem Cell Res (Amst) 11:1378–1392.
Jacobs A (2006) Use of nontraditional animals for evaluation of pharmaceutical
products. Expert Opin Drug Metab Toxicol 2:345–349.
Jacobs CM, Aden P, Mathisen GH, Khuong E, Gaarder M, Løberg EM, Lømo J,
Maehlen J, and Paulsen RE (2006) Chicken cerebellar granule neurons rapidly
develop excitotoxicity in culture. J Neurosci Methods 156:129–135.
Johnson DD, Wilcox R, Tuchek JM, and Crawford RD (1985) Experimental febrile
convulsions in epileptic chickens: the anticonvulsant effect of elevated gammaaminobutyric acid concentrations. Epilepsia 26:466–471.
Johnson GV and Jope RS (1992) The role of microtubule-associated protein 2 (MAP-2)
in neuronal growth, plasticity, and degeneration. J Neurosci Res 33:505–512.
Johnston MV, Jeon OH, Pevsner J, Blue ME, and Naidu S (2001) Neurobiology of
Rett syndrome: a genetic disorder of synapse development. Brain Dev 23 (Suppl 1):
S206–S213.
Kaarteenaho R, Lappi-Blanco E, and Lehtonen S (2010) Epithelial N-cadherin and
nuclear b-catenin are up-regulated during early development of human lung. BMC
Dev Biol 10:113.
Kain KH, Miller JW, Jones-Paris CR, Thomason RT, Lewis JD, Bader DM, Barnett
JV, and Zijlstra A (2014) The chick embryo as an expanding experimental model
for cancer and cardiovascular research. Dev Dyn 243:216–228.
Kharazi A, Levy ML, Visperas MC, and Lin CM (2013) Chicken embryonic brain: an
in vivo model for verifying neural stem cell potency. Journal of neurosurgery 119:
512–519.
Koeppen AH, Ramirez RL, Bjork ST, Bauer P, and Feustel PJ (2013) The reciprocal
cerebellar circuitry in human hereditary ataxia. Cerebellum 12:493–503.
Kola I and Landis J (2004) Can the pharmaceutical industry reduce attrition rates?
Nat Rev Drug Discov 3:711–715.
Kos R, Reedy MV, Johnson RL, and Erickson CA (2001) The winged-helix transcription factor FoxD3 is important for establishing the neural crest lineage and
repressing melanogenesis in avian embryos. Development 128:1467–1479.
Kos R, Tucker RP, Hall R, Duong TD, and Erickson CA (2003) Methods for introducing morpholinos into the chicken embryo. Dev Dyn 226:470–477.
Koszka C, Brent VA, and Rostas JA (1991) Developmental changes in phosphorylation of MAP-2 and synapsin I in cytosol and taxol polymerised microtubules from
chicken brain. Neurochem Res 16:637–644.
Kreda SM, Gynn MC, Fenstermacher DA, Boucher RC, and Gabriel SE (2001) Expression and localization of epithelial aquaporins in the adult human lung. Am J
Respir Cell Mol Biol 24:224–234.
Krogh-Madsen T, Schaffer P, Skriver AD, Taylor LK, Pelzmann B, Koidl B,
and Guevara MR (2005) An ionic model for rhythmic activity in small clusters of
Downloaded from jpet.aspetjournals.org at ASPET Journals on May 5, 2017
Danielsson BR, Danielsson C, and Nilsson MF (2007) Embryonic cardiac arrhythmia
and generation of reactive oxygen species: common teratogenic mechanism for IKr
blocking drugs. Reprod Toxicol 24:42–56.
Daston GP, Baines D, and Yonker JE (1991) Chick embryo neural retina cell culture
as a screen for developmental toxicity. Toxicol Appl Pharmacol 109:352–366.
Datar SP and Bhonde RR (2011) Modeling chick to assess diabetes pathogenesis and
treatment. Rev Diabet Stud 8:245–253.
De Groef B, Grommen SV, and Darras VM (2008) The chicken embryo as a model for
developmental endocrinology: development of the thyrotropic, corticotropic, and
somatotropic axes. Mol Cell Endocrinol 293:17–24.
Dhokarh R, Li G, Schmickl CN, Kashyap R, Assudani J, Limper AH, and Gajic O
(2012) Drug-associated acute lung injury: a population-based cohort study. Chest
142:845–850.
Dholakiya SL and Barile FA (2013) Alternative methods for ocular toxicology testing:
validation, applications and troubleshooting. Expert Opin Drug Metab Toxicol 9:
699–712.
Di Pascoli S, Puntin D, Pinciaroli A, Balaban E, and Pompeiano M (2013) Design and
implementation of a wireless in-ovo EEG/EMG recorder. IEEE Trans Biomed
Circuits Syst 7:832–840.
Dietrich HM, Cole RK, and Wick G (1999) The natural history of the obese strain of
chickens–an animal model for spontaneous autoimmune thyroiditis. Poult Sci 78:
1359–1371.
Dilaveris D, Chen C, Kaiser P, and Russell PH (2007) The safety and immunogenicity
of an in ovo vaccine against Newcastle disease virus differ between two lines of
chicken. Vaccine 25:3792–3799.
Dohle DS, Pasa SD, Gustmann S, Laub M, Wissler JH, Jennissen HP, and Dünker N
(2009) Chick ex ovo culture and ex ovo CAM assay: how it really works. J Vis Exp
(33):1620.
Dupin E, Ziller C, and Le Douarin NM (1998) The avian embryo as a model in
developmental studies: chimeras and in vitro clonal analysis. Curr Top Dev Biol 36:
1–35.
Eide AL and Glover JC (1995) Development of the longitudinal projection patterns of
lumbar primary sensory afferents in the chicken embryo. J Comp Neurol 353:
247–259.
Eide AL and Glover JC (1997) Developmental dynamics of functionally specific primary sensory afferent projections in the chicken embryo. Anat Embryol (Berl) 195:
237–250.
Engelkamp D, Rashbass P, Seawright A, and van Heyningen V (1999) Role of Pax6 in
development of the cerebellar system. Development 126:3585–3596.
EU (2006a): REGULATION (EC) No 1901/2006 OF THE EUROPEAN PARLIAMENT
AND OF THE COUNCIL of 12 December 2006 on medicinal products for paediatric
use and amending Regulation (EEC) No 1768/92, Directive 2001/20/EC, Directive
2001/83/EC and Regulation (EC) No 726/2004, The Official Journal of the European
Union, L378/1
EU (2006b): REGULATION (EC) No 1902/2006 OF THE EUROPEAN PARLIAMENT
AND OF THE COUNCIL of 20 December 2006 amending Regulation 1901/2006 on
medicinal products for paediatric use, The Official Journal of the European Union,
L378/20
EU (2010): DIRECTIVE 2010/63/EU OF THE EUROPEAN PARLIAMENT AND OF
THE COUNCIL of 22 September 2010 on the protection of animals used for scientific purposes, The Official Journal of the European Union, L276/33
Fabene PF and Sbarbati A (2004) In vivo MRI in different models of experimental
epilepsy. Curr Drug Targets 5:629–636.
Flace P, Lorusso L, Laiso G, Rizzi A, Cagiano R, Nico B, Ribatti D, Ambrosi G,
and Benagiano V (2014) Calbindin-D28K immunoreactivity in the human cerebellar cortex. Anat Rec (Hoboken) 297:1306–1315.
Forehand CJ, Ezerman EB, Goldblatt JP, Skidmore DL, and Glover JC (1998)
Segment-specific pattern of sympathetic preganglionic projections in the chicken
embryo spinal cord is altered by retinoids. Proc Natl Acad Sci USA 95:
10878–10883.
Fujita S (1967) Quantitative analysis of cell proliferation and differentiation in the
cortex of the postnatal mouse cerebellum. J Cell Biol 32:277–287.
Giacoia GP, Taylor-Zapata P, and Zajicek A (2012) Drug studies in newborns: a
therapeutic imperative. Clin Perinatol 39:11–23.
Glover JC, Boulland JL, Halasi G, and Kasumacic N (2009) Chimeric animal models
in human stem cell biology. ILAR J 51:62–73.
Glover JC, Petursdottir G, and Jansen JK (1986) Fluorescent dextran-amines used as
axonal tracers in the nervous system of the chicken embryo. J Neurosci Methods
18:243–254.
Gong Z, Obenaus A, Li N, Sarty GE, and Kendall EJ (2003) Recurrent nonstatus
generalized seizures alter the developing chicken brain. Epilepsia 44:1380–1387.
Gray GE, Glover JC, Majors J, and Sanes JR (1988) Radial arrangement of clonally
related cells in the chicken optic tectum: lineage analysis with a recombinant
retrovirus. Proc Natl Acad Sci USA 85:7356–7360.
Greer JJ (2012) Control of breathing activity in the fetus and newborn. Compr
Physiol 2:1873–1888.
Guihard-Costa AM and Larroche JC (1990) Differential growth between the fetal
brain and its infratentorial part. Early Hum Dev 23:27–40.
Guy NT, Fadlallah N, Naquet R, and Batini C (1995) Development of epileptic activity in embryos and newly hatched chicks of the Fayoumi mutant chicken. Epilepsia 36:101–107.
Hadas Y, Etlin A, Falk H, Avraham O, Kobiler O, Panet A, Lev-Tov A, and Klar A
(2014) A ‘tool box’ for deciphering neuronal circuits in the developing chick spinal
cord. Nucleic Acids Res 42:e148.
Haller S, Ametamey SM, Schibli R, and Müller C (2015) Investigation of the chick
embryo as a potential alternative to the mouse for evaluation of radiopharmaceuticals. Nucl Med Biol 42:226–233.
Hallonet ME, Teillet MA, and Le Douarin NM (1990) A new approach to the development of the cerebellum provided by the quail-chick marker system. Development
108:19–31.
395
396
Bjørnstad et al.
Nunoya T, Tajima M, and Mizutani M (1983) A hereditary nervous disorder in
Fayoumi chickens. Lab Anim 17:298–302.
O’Donovan M, Ho S, and Yee W (1994) Calcium imaging of rhythmic network activity
in the developing spinal cord of the chick embryo. J Neurosci 14:6354–6369.
OECD (2009) Test No. 438: Isolated Chicken Eye Test Method for Identifying Ocular
Corrosives and Severe Irritants. OECD Publishing, Paris, France.
Partington JR (1956) The life and work of John Mayow (1641-1679). Part one. Isis 47:
217–230.
Pedder SC, Wilcox RI, Tuchek JM, Johnson DD, and Crawford RD (1990) Attenuation of febrile seizures in epileptic chicks by N-methyl-D-aspartate receptor antagonists. Can J Physiol Pharmacol 68:84–88.
Pinkas A, Turgeman G, Tayeb S, and Yanai J (2015) An avian model for ascertaining
the mechanisms of organophosphate neuroteratogenicity and its therapy with
mesenchymal stem cell transplantation. Neurotoxicol Teratol 50:73–81.
Price J, Turner D, and Cepko C (1987) Lineage analysis in the vertebrate nervous
system by retrovirus-mediated gene transfer. Proc Natl Acad Sci USA 84:156–160.
Pugsley MK, Authier S, and Curtis MJ (2008) Principles of safety pharmacology. Br J
Pharmacol 154:1382–1399.
Roberts D and Dalziel S (2006) Antenatal corticosteroids for accelerating fetal lung
maturation for women at risk of preterm birth. Cochrane Database Syst Rev (3):
CD004454.
Rosenbruch M (1997) Zur Sensitivität des Embryos im bebrüteten Hühnerei. ALTEX
14:111–113.
Ryu YU and Bradley NS (2009) Precocious locomotor behavior begins in the egg:
development of leg muscle patterns for stepping in the chick. PLoS One 4:e6111.
Sakiyama J, Yamagishi A, and Kuroiwa A (2003) Tbx4-Fgf10 system controls lung bud
formation during chicken embryonic development. Development 130:1225–1234.
Sanes JR (1989) Analysing cell lineage with a recombinant retrovirus. Trends Neurosci 12:21–28.
Sarnat HB, Nochlin D, and Born DE (1998) Neuronal nuclear antigen (NeuN): a marker
of neuronal maturation in early human fetal nervous system. Brain Dev 20:88–94.
Sasseville VG, Mansfield KG, and Brees DJ (2014) Safety biomarkers in preclinical
development: translational potential. Vet Pathol 51:281–291.
Sato N (2004) Gene delivery into the chicken embryo by using replication-competent
retroviral vectors. Fukushima J Med Sci 50:37–46.
Sauka-Spengler T and Barembaum M (2008) Gain- and loss-of-function approaches
in the chick embryo. Methods Cell Biol 87:237–256.
Schauenstein K, Fässler R, Dietrich H, Schwarz S, Krömer G, and Wick G (1987)
Disturbed immune-endocrine communication in autoimmune disease. Lack of
corticosterone response to immune signals in obese strain chickens with spontaneous autoimmune thyroiditis. J Immunol 139:1830–1833.
Smith SM, Flentke GR, and Garic A (2012) Avian models in teratology and developmental toxicology. Methods Mol Biol 889:85–103.
Solecki DJ, Govek EE, Tomoda T, and Hatten ME (2006) Neuronal polarity in CNS
development. Genes Dev 20:2639–2647.
Stern CD (2005) The chick; a great model system becomes even greater. Dev Cell 8:9–17.
Sultan F and Glickstein M (2007) The cerebellum: Comparative and animal studies.
Cerebellum 6:168–176.
Sun J, Li J, Cheng G, Sha B, and Zhou W (2012) Effects of hypothermia on NSE and
S-100 protein levels in CSF in neonates following hypoxic/ischaemic brain damage.
Acta Paediatr 101:e316–e320.
Szdzuy K and Mortola JP (2007) Monitoring breathing in avian embryos and
hatchlings by the barometric technique. Respir Physiol Neurobiol 159:241–244.
Teillet MA, Ziller C, and Le Douarin NM (2008) Quail-chick chimeras. Methods Mol
Biol 461:337–350.
Umeda T, Takashima N, Nakagawa R, Maekawa M, Ikegami S, Yoshikawa T,
Kobayashi K, Okanoya K, Inokuchi K, and Osumi N (2010) Evaluation of Pax6
mutant rat as a model for autism. PLoS One 5:e15500.
Vargas A, Zeisser-Labouèbe M, Lange N, Gurny R, and Delie F (2007) The chick
embryo and its chorioallantoic membrane (CAM) for the in vivo evaluation of drug
delivery systems. Adv Drug Deliv Rev 59:1162–1176.
Vergara MN and Canto-Soler MV (2012) Rediscovering the chick embryo as a model
to study retinal development. Neural Dev 7:22.
Volpe JJ (2009) Cerebellum of the premature infant: rapidly developing, vulnerable,
clinically important. J Child Neurol 24:1085–1104.
Whitney ER, Kemper TL, Bauman ML, Rosene DL, and Blatt GJ (2008) Cerebellar
Purkinje cells are reduced in a subpopulation of autistic brains: a stereological
experiment using calbindin-D28k. Cerebellum 7:406–416.
Wick G, Sundick RS, and Albini B (1974) A review: The obese strain (OS) of chickens:
an animal model with spontaneous autoimmune thyroiditis. Clinical immunology
and immunopathology 3:272–300.
Yalcin HC, Shekhar A, Rane AA, and Butcher JT (2010) An ex-ovo chicken embryo
culture system suitable for imaging and microsurgery applications. J Vis Exp (44):2154.
Zhou Z, Chen Z, Shan J, Ma W, Li L, Zu J, and Xu J (2015) Monitoring brain
development of chick embryos in vivo using 3.0 T MRI: subdivision volume change
and preliminary structural quantification using DTI. BMC Dev Biol 15:29.
Address correspondence to: Ragnhild E. Paulsen, Department of Pharmaceutical Biosciences, University of Oslo, P.O. Box 1068 Blindern, N-0316 Oslo,
Norway. E-mail: [email protected]
Downloaded from jpet.aspetjournals.org at ASPET Journals on May 5, 2017
embryonic chick ventricular cells. Am J Physiol Heart Circ Physiol 289:
H398–H413.
Krull CE (2004) A primer on using in ovo electroporation to analyze gene function.
Dev Dyn 229:433–439.
Kulesa PM, McKinney MC, and McLennan R (2013) Developmental imaging: the
avian embryo hatches to the challenge. Birth Defects Res C Embryo Today 99:
121–133.
Le Douarin G and Renaud D (1969) [Morphologic and physiologic study of the differentiation in vitro of quail embryo precardial mesoderm]. Bull Biol Fr Belg 103:
453–468.
Le Douarin N, Dieterlen-Lièvre F, Creuzet S, and Teillet MA (2008) Quail-chick
transplantations. Methods Cell Biol 87:19–58.
Le Douarin NM (2004) The avian embryo as a model to study the development of the
neural crest: a long and still ongoing story. Mech Dev 121:1089–1102.
Le Douarin NM and Dieterlen-Lièvre F (2013) How studies on the avian embryo have
opened new avenues in the understanding of development: a view about the neural
and hematopoietic systems. Dev Growth Differ 55:1–14.
Loscertales M, Mikels AJ, Hu JK, Donahoe PK, and Roberts DJ (2008) Chick pulmonary Wnt5a directs airway and vascular tubulogenesis. Development 135:
1365–1376.
Löscher W (1984) Genetic animal models of epilepsy as a unique resource for the
evaluation of anticonvulsant drugs. A review. Methods Find Exp Clin Pharmacol 6:
531–547.
Luo J and Redies C (2004) Overexpression of genes in Purkinje cells in the embryonic chicken cerebellum by in vivo electroporation. J Neurosci Methods 139:
241–245.
Maina JN (2003a) A systematic study of the development of the airway (bronchial)
system of the avian lung from days 3 to 26 of embryogenesis: a transmission
electron microscopic study on the domestic fowl, Gallus gallus variant domesticus.
Tissue Cell 35:375–391.
Maina JN (2003b) Developmental dynamics of the bronchial (airway) and air sac
systems of the avian respiratory system from day 3 to day 26 of life: a scanning
electron microscopic study of the domestic fowl, Gallus gallus variant domesticus.
Anat Embryol (Berl) 207:119–134.
Maina JN (2004a) Morphogenesis of the laminated, tripartite cytoarchitectural design of the blood-gas barrier of the avian lung: a systematic electron microscopic
study on the domestic fowl, Gallus gallus variant domesticus. Tissue Cell 36:
129–139.
Maina JN (2004b) Systematic analysis of hematopoietic, vasculogenetic, and angiogenetic phases in the developing embryonic avian lung, Gallus gallus variant
domesticus. Tissue Cell 36:307–322.
Makanya A, Anagnostopoulou A, and Djonov V (2013) Development and remodeling
of the vertebrate blood-gas barrier. BioMed Res Int 2013:101597.
Makanya AN, Hlushchuk R, Baum O, Velinov N, Ochs M, and Djonov V (2007)
Microvascular endowment in the developing chicken embryo lung. Am J Physiol
Lung Cell Mol Physiol 292:L1136–L1146.
Marzban H, Chung SH, Pezhouh MK, Feirabend H, Watanabe M, Voogd J,
and Hawkes R (2010) Antigenic compartmentation of the cerebellar cortex in the
chicken (Gallus domesticus). J Comp Neurol 518:2221–2239.
Marzban H, Del Bigio MR, Alizadeh J, Ghavami S, Zachariah RM, and Rastegar M
(2014) Cellular commitment in the developing cerebellum. Front Cell Neurosci 8:
450.
Mathisen GH, Yazdani M, Rakkestad KE, Aden PK, Bodin J, Samuelsen M, Nygaard
UC, Goverud IL, Gaarder M, and Løberg EM, et al. (2013) Prenatal exposure to
bisphenol A interferes with the development of cerebellar granule neurons in mice
and chicken. Int J Dev Neurosci 31:762–769.
McCutcheon IE, Metcalfe J, Metzenberg AB, and Ettinger T (1982) Organ growth in
hyperoxic and hypoxic chick embryos. Respir Physiol 50:153–163.
Mezey S, Krivokuca D, Bálint E, Adorján A, Zachar G, and Csillag A (2012)
Postnatal changes in the distribution and density of neuronal nuclei and doublecortin antigens in domestic chicks (Gallus domesticus). J Comp Neurol 520:
100–116.
Mondello S, Gabrielli A, Catani S, D’Ippolito M, Jeromin A, Ciaramella A, Bossù P,
Schmid K, Tortella F, and Wang KK, et al. (2012) Increased levels of serum MAP-2
at 6-months correlate with improved outcome in survivors of severe traumatic
brain injury. Brain Inj 26:1629–1635.
Mortola JP and Labbè K (2005) Oxygen consumption of the chicken embryo: interaction between temperature and oxygenation. Respir Physiol Neurobiol 146:
97–106.
Moses-Kolko EL, Bogen D, Perel J, Bregar A, Uhl K, Levin B, and Wisner KL
(2005) Neonatal signs after late in utero exposure to serotonin reuptake inhibitors: literature review and implications for clinical applications. JAMA 293:
2372–2383.
Murphy DJ (2002) Assessment of respiratory function in safety pharmacology.
Fundam Clin Pharmacol 16:183–196.
Murphy DJ (2014) Optimizing the use of methods and measurement endpoints in
respiratory safety pharmacology. J Pharmacol Toxicol Methods 70:204–209.
Nakamura H, Katahira T, Sato T, Watanabe Y, and Funahashi J (2004) Gain- and
loss-of-function in chick embryos by electroporation. Mech Dev 121:1137–1143.
Nieuwenhuys R (1967) Comparative anatomy of the cerebellum. Prog Brain Res 25:
1–93.
Nowak-Sliwinska P, Segura T, and Iruela-Arispe ML (2014) The chicken chorioallantoic membrane model in biology, medicine and bioengineering. Angiogenesis 17:
779–804.