* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Chapter 38
Survey
Document related concepts
Transcript
LECTURE PRESENTATIONS For CAMPBELL BIOLOGY, NINTH EDITION Jane B. Reece, Lisa A. Urry, Michael L. Cain, Steven A. Wasserman, Peter V. Minorsky, Robert B. Jackson Chapter 38 Angiosperm Reproduction and Biotechnology Lectures by Erin Barley Kathleen Fitzpatrick © 2011 Pearson Education, Inc. Overview: Flowers of Deceit • Insects help angiosperms to reproduce sexually with distant members of their own species – For example, male Campsoscolia wasps mistake Ophrys flowers for females and attempt to mate with them – The flower is pollinated in the process – Unusually, the flower does not produce nectar and the male receives no benefit © 2011 Pearson Inc. Inc., publishing as Pearson Benjamin Cummings Copyright © 2008Education, Pearson Education, Figure 38.1 • Many angiosperms lure insects with nectar; both plant and pollinator benefit • Mutualistic symbioses are common between plants and other species • Angiosperms can reproduce sexually and asexually • Angiosperms are the most important group of plants in terrestrial ecosystems and in agriculture © 2011 Pearson Inc. Inc., publishing as Pearson Benjamin Cummings Copyright © 2008Education, Pearson Education, Concept 38.1: Flowers, double fertilization, and fruits are unique features of the angiosperm life cycle • Plant lifecycles are characterized by the alternation between a multicellular haploid (n) generation and a multicellular diploid (2n) generation • Diploid sporophytes (2n) produce spores (n) by meiosis; these grow into haploid gametophytes (n) • Gametophytes produce haploid gametes (n) by mitosis; fertilization of gametes produces a sporophyte © 2011 Pearson Education, Inc. • In angiosperms, the sporophyte is the dominant generation, the large plant that we see • The gametophytes are reduced in size and depend on the sporophyte for nutrients • The angiosperm life cycle is characterized by “three Fs”: flowers, double fertilization, and fruits © 2011 Pearson Education, Inc. Figure 38.2 Stamen Anther Filament Petal Carpel Stigma Style Ovary Germinated pollen grain (n) (male gametophyte) Ovary Ovule Embryo sac (n) (female gametophyte) Anther Pollen tube FERTILIZATION Sepal Egg (n) Sperm (n) Receptacle (a) Structure of an idealized flower Key Zygote (2n) Mature sporophyte plant (2n) Haploid (n) Diploid (2n) (b) Simplified angiosperm life cycle Germinating seed Seed Seed Simple fruit Embryo (2n) (sporophyte) Figure 38.2a Stamen Anther Filament Petal Stigma Carpel Style Ovary Sepal Receptacle (a) Structure of an idealized flower Figure 38.2b Anther Germinated pollen grain (n) (male gametophyte) Ovary Ovule Embryo sac (n) (female gametophyte) Pollen tube FERTILIZATION Egg (n) Sperm (n) Key Zygote (2n) Mature sporophyte plant (2n) Haploid (n) Diploid (2n) (b) Simplified angiosperm life cycle Germinating seed Seed Seed Simple fruit Embryo (2n) (sporophyte) Flower Structure and Function • Flowers are the reproductive shoots of the angiosperm sporophyte; they attach to a part of the stem called the receptacle • Flowers consist of four floral organs: sepals, petals, stamens, and carpels • Stamens and carpels are reproductive organs; sepals and petals are sterile © 2011 Pearson Education, Inc. • A stamen consists of a filament topped by an anther with pollen sacs that produce pollen • A carpel has a long style with a stigma on which pollen may land • At the base of the style is an ovary containing one or more ovules • A single carpel or group of fused carpels is called a pistil © 2011 Pearson Education, Inc. • Complete flowers contain all four floral organs • Incomplete flowers lack one or more floral organs, for example stamens or carpels • Clusters of flowers are called inflorescences © 2011 Pearson Education, Inc. Development of Male Gametophytes in Pollen Grains • Pollen develops from microspores within the microsporangia, or pollen sacs, of anthers • Each microspore undergoes mitosis to produce two cells: the generative cell and the tube cell • A pollen grain consists of the two-celled male gametophyte and the spore wall © 2011 Pearson Education, Inc. • If pollination succeeds, a pollen grain produces a pollen tube that grows down into the ovary and discharges two sperm cells near the embryo sac © 2011 Pearson Education, Inc. Figure 38.3 (a) Development of a male gametophyte (in pollen grain) (b) Development of a female gametophyte (embryo sac) Microsporangium (pollen sac) Megasporangium Microsporocyte Ovule MEIOSIS Megasporocyte Integuments Microspores (4) Micropyle Surviving megaspore Each of 4 microspores Ovule Male gametophyte (in pollen grain) Generative cell (will form 2 sperm) Antipodal cells (3) Polar nuclei (2) Egg (1) Nucleus of tube cell Integuments 20 m (LM) Key to labels Haploid (n) Diploid (2n) 100 m 75 m Ragweed pollen grain (colorized SEM) Synergids (2) Embryo sac (LM) Female gametophyte (embryo sac) MITOSIS Figure 38.3a (a) Development of a male gametophyte (in pollen grain) Microsporangium (pollen sac) Microsporocyte MEIOSIS Microspores (4) Each of 4 microspores MITOSIS Male gametophyte (in pollen grain) Generative cell (will form 2 sperm) Nucleus of tube cell 20 m Key to labels 75 m (LM) Ragweed pollen grain (colorized SEM) Haploid (n) Diploid (2n) Development of Female Gametophytes (Embryo Sacs) • The embryo sac, or female gametophyte, develops within the ovule • Within an ovule, two integuments surround a megasporangium • One cell in the megasporangium undergoes meiosis, producing four megaspores, only one of which survives • The megaspore divides, producing a large cell with eight nuclei © 2011 Pearson Education, Inc. • This cell is partitioned into a multicellular female gametophyte, the embryo sac © 2011 Pearson Education, Inc. Figure 38.3b (b) Development of a female gametophyte (embryo sac) Megasporangium Ovule MEIOSIS Megasporocyte Integuments Micropyle Surviving megaspore Ovule Antipodal cells (3) Polar nuclei (2) Egg (1) Integuments Synergids (2) Haploid (n) Diploid (2n) 100 m Key to labels Embryo sac (LM) Female gametophyte (embryo sac) MITOSIS Figure 38.3c Generative cell (will form 2 sperm) Nucleus of tube cell (LM) 75 m Figure 38.3d 20 m Ragweed pollen grain (colorized SEM) 100 m Figure 38.3e Embryo sac (LM) Pollination • In angiosperms, pollination is the transfer of pollen from an anther to a stigma • Pollination can be by wind, water, or animals • Wind-pollinated species (e.g., grasses and many trees) release large amounts of pollen © 2011 Pearson Education, Inc. Figure 38.4a Abiotic Pollination by Wind Pollination by Bees Common dandelion under normal light Hazel staminate flowers (stamens only) Hazel carpellate flower (carpels only) Common dandelion under ultraviolet light Figure 38.4aa Hazel staminate flowers (stamens only) Figure 38.4ab Hazel carpellate flower (carpels only) Figure 38.4ac Common dandelion under normal light Figure 38.4ad Common dandelion under ultraviolet light Figure 38.4b Pollination by Moths and Butterflies Pollination by Flies Pollination by Bats Anther Moth Fly egg Stigma Moth on yucca flower Blowfly on carrion flower Pollination by Birds Hummingbird drinking nectar of columbine flower Long-nosed bat feeding on cactus flower at night Figure 38.4ba Anther Moth Stigma Moth on yucca flower Figure 38.4bb Fly egg Blowfly on carrion flower Figure 38.4bc Long-nosed bat feeding on cactus flower at night Figure 38.4bd Hummingbird drinking nectar of columbine flower Coevolution of Flower and Pollinator • Coevolution is the evolution of interacting species in response to changes in each other • Many flowering plants have coevolved with specific pollinators • The shapes and sizes of flowers often correspond to the pollen transporting parts of their animal pollinators – For example, Darwin correctly predicted a moth with a 28 cm long tongue based on the morphology of a particular flower © 2011 Pearson Education, Inc. Figure 38.5 Double Fertilization • After landing on a receptive stigma, a pollen grain produces a pollen tube that extends between the cells of the style toward the ovary • Double fertilization results from the discharge of two sperm from the pollen tube into the embryo sac • One sperm fertilizes the egg, and the other combines with the polar nuclei, giving rise to the triploid food-storing endosperm (3n) © 2011 Pearson Education, Inc. Animation: Plant Fertilization Right-click slide / select “Play” © 2011 Pearson Education, Inc. Figure 38.6-1 1 Stigma Pollen grain Pollen tube 2 sperm Style Ovary Ovule Polar nuclei Egg Micropyle Figure 38.6-2 2 1 Stigma Pollen grain Pollen tube Ovule 2 sperm Polar nuclei Style Ovary Egg Ovule Synergid Polar nuclei Egg Micropyle 2 sperm Figure 38.6-3 2 1 Stigma Pollen grain Pollen tube Ovule 2 sperm Polar nuclei Style Ovary Egg Ovule Synergid Polar nuclei Egg Micropyle 3 Endosperm nucleus (3n) (2 polar nuclei plus sperm) 2 sperm Zygote (2n) Seed Development, Form, and Function • After double fertilization, each ovule develops into a seed • The ovary develops into a fruit enclosing the seed(s) © 2011 Pearson Education, Inc. Endosperm Development • Endosperm development usually precedes embryo development • In most monocots and some eudicots, endosperm stores nutrients that can be used by the seedling • In other eudicots, the food reserves of the endosperm are exported to the cotyledons © 2011 Pearson Education, Inc. Embryo Development • The first mitotic division of the zygote splits the fertilized egg into a basal cell and a terminal cell • The basal cell produces a multicellular suspensor, which anchors the embryo to the parent plant • The terminal cell gives rise to most of the embryo • The cotyledons form and the embryo elongates © 2011 Pearson Education, Inc. Animation: Seed Development Right-click slide / select “Play” © 2011 Pearson Education, Inc. Figure 38.7 Ovule Proembryo Endosperm nucleus Integuments Zygote Suspensor Cotyledons Basal cell Shoot apex Root apex Terminal cell Basal cell Zygote Suspensor Seed coat Endosperm Figure 38.7a Ovule Endosperm nucleus Integuments Zygote Terminal cell Basal cell Zygote Figure 38.7b Proembryo Suspensor Cotyledons Basal cell Shoot apex Root apex Suspensor Seed coat Endosperm Structure of the Mature Seed • The embryo and its food supply are enclosed by a hard, protective seed coat • The seed enters a state of dormancy • A mature seed is only about 5–15% water © 2011 Pearson Education, Inc. • In some eudicots, such as the common garden bean, the embryo consists of the embryonic axis attached to two thick cotyledons (seed leaves) • Below the cotyledons the embryonic axis is called the hypocotyl and terminates in the radicle (embryonic root); above the cotyledons it is called the epicotyl • The plumule comprises the epicotyl, young leaves, and shoot apical meristem © 2011 Pearson Education, Inc. Figure 38.8 Seed coat Epicotyl Hypocotyl Radicle Cotyledons (a) Common garden bean, a eudicot with thick cotyledons Seed coat Endosperm Cotyledons Epicotyl Hypocotyl Radicle (b) Castor bean, a eudicot with thin cotyledons Scutellum (cotyledon) Coleoptile Coleorhiza Pericarp fused with seed coat Endosperm Epicotyl Hypocotyl Radicle (c) Maize, a monocot Figure 38.8a Seed coat Epicotyl Hypocotyl Radicle Cotyledons (a) Common garden bean, a eudicot with thick cotyledons • The seeds of some eudicots, such as castor beans, have thin cotyledons © 2011 Pearson Education, Inc. Figure 38.8b Seed coat Endosperm Cotyledons Epicotyl Hypocotyl Radicle (b) Castor bean, a eudicot with thin cotyledons • A monocot embryo has one cotyledon • Grasses, such as maize and wheat, have a special cotyledon called a scutellum • Two sheathes enclose the embryo of a grass seed: a coleoptile covering the young shoot and a coleorhiza covering the young root © 2011 Pearson Education, Inc. Figure 38.8c Scutellum (cotyledon) Coleoptile Coleorhiza (c) Maize, a monocot Pericarp fused with seed coat Endosperm Epicotyl Hypocotyl Radicle Seed Dormancy: An Adaptation for Tough Times • Seed dormancy increases the chances that germination will occur at a time and place most advantageous to the seedling • The breaking of seed dormancy often requires environmental cues, such as temperature or lighting changes © 2011 Pearson Education, Inc. Seed Germination and Seedling Development • Germination depends on imbibition, the uptake of water due to low water potential of the dry seed • The radicle (embryonic root) emerges first • Next, the shoot tip breaks through the soil surface © 2011 Pearson Education, Inc. • In many eudicots, a hook forms in the hypocotyl, and growth pushes the hook above ground • Light causes the hook to straighten and pull the cotyledons and shoot tip up © 2011 Pearson Education, Inc. Figure 38.9 Foliage leaves Cotyledon Epicotyl Hypocotyl Cotyledon Cotyledon Hypocotyl Hypocotyl Radicle Seed coat (a) Common garden bean Foliage leaves Coleoptile Coleoptile Radicle (b) Maize Figure 38.9a Foliage leaves Cotyledon Hypocotyl Cotyledon Epicotyl Cotyledon Hypocotyl Hypocotyl Radicle Seed coat (a) Common garden bean • In maize and other grasses, which are monocots, the coleoptile pushes up through the soil © 2011 Pearson Education, Inc. Figure 38.9b Foliage leaves Coleoptile Coleoptile Radicle (b) Maize Fruit Form and Function • A fruit develops from the ovary • It protects the enclosed seeds and aids in seed dispersal by wind or animals • A fruit may be classified as dry, if the ovary dries out at maturity, or fleshy, if the ovary becomes thick, soft, and sweet at maturity © 2011 Pearson Education, Inc. Animation: Fruit Development Right-click slide / select “Play” © 2011 Pearson Education, Inc. • Fruits are also classified by their development – Simple, a single or several fused carpels – Aggregate, a single flower with multiple separate carpels – Multiple, a group of flowers called an inflorescence © 2011 Pearson Education, Inc. Figure 38.10 Stigma Carpels Stamen Flower Style Petal Ovary Stamen Sepal Ovule Stigma Ovule Pea flower Raspberry flower Carpel (fruitlet) Seed Stigma Ovary Stamen Pineapple inflorescence Each segment develops from the carpel of one flower Stamen Ovary (in receptacle) Apple flower Remains of stamens and styles Sepals Seed Pea fruit (a) Simple fruit Raspberry fruit (b) Aggregate fruit Pineapple fruit (c) Multiple fruit Receptacle Apple fruit (d) Accessory fruit Figure 38.10a Carpels Stamen Ovary Stamen Stigma Ovule Pea flower Raspberry flower Carpel (fruitlet) Seed Stigma Ovary Stamen Pea fruit (a) Simple fruit Raspberry fruit (b) Aggregate fruit Figure 38.10b Stigma Flower Petal Sepal Ovule Pineapple inflorescence Each segment develops from the carpel of one flower Style Stamen Ovary (in receptacle) Apple flower Remains of stamens and styles Sepals Seed Pineapple fruit (c) Multiple fruit Receptacle Apple fruit (d) Accessory fruit • An accessory fruit contains other floral parts in addition to ovaries © 2011 Pearson Education, Inc. • Fruit dispersal mechanisms include – Water – Wind – Animals © 2011 Pearson Education, Inc. Figure 38.11a Dispersal by Wind Dandelion fruit Dandelion “seeds” (actually one-seeded fruits) Tumbleweed Winged seed of the tropical Asian climbing gourd Alsomitra macrocarpa Winged fruit of a maple Dispersal by Water Coconut seed embryo, endosperm, and endocarp inside buoyant husk Figure 38.11aa Coconut seed embryo, endosperm, and endocarp inside buoyant husk Figure 38.11ab Winged seed of the tropical Asian climbing gourd Alsomitra macrocarpa Figure 38.11ac Dandelion fruit Dandelion “seeds” (actually one-seeded fruits) Figure 38.11ad Winged fruit of a maple Figure 38.11ae Tumbleweed Figure 38.11b Dispersal by Animals Fruit of puncture vine (Tribulus terrestris) Squirrel hoarding seeds or fruits underground Ant carrying seed with nutritious “food body” to its nest Seeds dispersed in black bear feces Figure 38.11ba Fruit of puncture vine (Tribulus terrestris) Figure 38.11bb Squirrel hoarding seeds or fruits underground Figure 38.11bc Seeds dispersed in black bear feces Figure 38.11bd Ant carrying seed with nutritious “food body” to its nest