Download ECE 342 – Jose Schutt-Aine

Document related concepts

Electrical substation wikipedia , lookup

Power inverter wikipedia , lookup

Three-phase electric power wikipedia , lookup

Pulse-width modulation wikipedia , lookup

Heterodyne wikipedia , lookup

Ground loop (electricity) wikipedia , lookup

Ohm's law wikipedia , lookup

Electrical ballast wikipedia , lookup

Transistor wikipedia , lookup

Tube sound wikipedia , lookup

Islanding wikipedia , lookup

Scattering parameters wikipedia , lookup

Variable-frequency drive wikipedia , lookup

Rectifier wikipedia , lookup

Stray voltage wikipedia , lookup

Voltage optimisation wikipedia , lookup

Power MOSFET wikipedia , lookup

Voltage regulator wikipedia , lookup

Current source wikipedia , lookup

Wien bridge oscillator wikipedia , lookup

Power electronics wikipedia , lookup

Amplifier wikipedia , lookup

Schmitt trigger wikipedia , lookup

Mains electricity wikipedia , lookup

Switched-mode power supply wikipedia , lookup

Alternating current wikipedia , lookup

Buck converter wikipedia , lookup

Resistive opto-isolator wikipedia , lookup

Current mirror wikipedia , lookup

Opto-isolator wikipedia , lookup

Transcript
ECE 342
Solid-State Devices & Circuits
17. Differential Amplifiers
Jose E. Schutt-Aine
Electrical & Computer Engineering
University of Illinois
[email protected]
ECE 342 – Jose Schutt-Aine
1
Background
• Differential Amplifiers
– The input stage of every op amp is a differential
amplifier
– Immunity to temperature effects
– Ability to amplify dc signals
– Well-suited for IC fabrication because
– (a) they depend on matching of elements
– (b) they use more components
– Less sensitive to noise and interference
– Enable to bias amplifier and connect to other
stage without the use of coupling capacitors
ECE 342 – Jose Schutt-Aine
2
Differential Amplifiers
• Practical Considerations
– Both inputs to a differential amplifier may have
different voltages applied to them
– In the ideal situation with perfectly symmetric
stages, the common-mode input would lead to
zero output
– Temperature drifts in each stage are often
common-mode signals
– Power supply noise is a common-mode signal
and has little effect on the output signal
ECE 342 – Jose Schutt-Aine
3
MOS Differential Pair
 Assume current
source is ideal
 Transistors
should not enter
triode region
ECE 442 – Jose Schutt-Aine
4
Common-Mode Operation
 Input voltage
vcm to both gates
 Difference in
voltage between
the two drains is
zero
ECE 442 – Jose Schutt-Aine
5
Differential Input Voltage
 Differential pair
responds to
differntial input
signals by providing
corresponding
differential output
signal between the
two drains.
ECE 442 – Jose Schutt-Aine
6
MOS Differential Pair
Assume current source is ideal
vID=vgs1-vgs2
Output is collected as vD2-vD1
ECE 342 – Jose Schutt-Aine
7
MOS Differential Pair
- If vID is positive, vD2-vD1 is
positive
vID>0  vgs1>vgs2 ID1 > ID2
vD1 lower voltage point than vD2
For proper operation,
MOSFETS should not
enter triode region
ECE 342 – Jose Schutt-Aine
8
DC Analysis
IRD
VD1  VDD 
2
ID 
VGS
CoxW
2L
VGS  VT 
LI
 VT 
CoxW
2
IRD
VD 2  VDD 
2
I
ID 
2

LI 
VSQ   VT 

CoxW 

ECE 342 – Jose Schutt-Aine
9
Incremental Analysis
1
1
vg 2  vcm  vid
vg1  vcm  vid
2
2
Neglecting the body effect
vin
vo1   g m R
2
vin
vo 2  g m R
2
R  RD || rout
vo 2  vo1
AD 
 g m RD'
vin
'
D
'
D
'
D
ECE 342 – Jose Schutt-Aine
10
Frequency Response
When driven by a low-impedance signal source, the
upper corner frequency is determined by the output
circuit
f high
1

2 Cout RD'
ECE 342 – Jose Schutt-Aine
11
Common-Mode Rejection Ratio
vo1 vo 2
RD


1
vicm vicm
 2 RSS
gm
Assume RSS >> 1/gm
ECE 342 – Jose Schutt-Aine
12
Common-Mode Rejection Ratio
(a) For single-ended output:
vo1 vo 2
RD


vicm vicm 2 RSS
Acm
RD
1

, Ad  g m RD
2 RSS
2
Ad
CMRR 
 g m RSS
Acm
ECE 342 – Jose Schutt-Aine
13
Common-Mode Rejection Ratio
(b) For differential output:
vo 2  vo1
Acm 
0
vicm
vo 2  vo1
Ad 
 g m RD
vid
CMRR  
ECE 342 – Jose Schutt-Aine
14
BJT Differential Pair
Assume perfect match
between the devices and
symmetry in the circuit
ECE 342 – Jose Schutt-Aine
15
BJT Differential Pair
Rin  2r
Base currents:
vin
iin 
2r
vin
ib1 
2r
R  rout1 || Rc1  rout 2 || Rc 2
'
C
Rc1  Rc 2  RC
vin
ib 2 
2r
ECE 342 – Jose Schutt-Aine
16
BJT Differential Pair – Incremental Model
'
v
r
g
R
vo1   g mv 1RC'   g m RC' in    m C vin
r
2
'
v
r
g
R
vo 2  g mv 2 RC'  g m RC' in   m C vin
r
2
'
Single-ended gain of first stage: AS1   g m RC
Double-ended differential gain (with vout=vo2-vo1):
'
C
gm R
AD 
2
g


'
C
mR
2
g
ECE 342 – Jose Schutt-Aine
m
R 
'
C
R
'
C
r
17
BJT Differential Pair – General
RB1  RB 2  RB
RC1  RC 2  RC
Rin  2 RB  2 RE    1  2r
AD 
 RC'
RE    1  r  RB
ECE 342 – Jose Schutt-Aine
18
Differential Amplifiers - Observations
• Observations
– The differential pair attenuates the input signal of
each stage by a factor of one-half cutting the gain
of each stage by one-half
– The double-ended output causes the two singleended gains to be additive
– Thus, the voltage gain of a perfectly matched
differential stage is equal to that of a single stage
ECE 342 – Jose Schutt-Aine
19
Remarks on Differential Amplifiers
1. In many applications, the differential amplifier is not
fed in a complementary fashion
2. Rather, the input signal may be applied to one of
the input terminals while the other terminal is
grounded
3. In this case, the signal voltage at the emitters will
not be zero and thus the resistor REE will have an
effect on the operation
4. However, if REE is large (REE >> re) as is usually the
case, vid will still divide equally between the 2
junctions
5. The operation of the differential amplifier will still be
almost identical to that of the symmetrical feed and
the CE equivalence can still be employed
ECE 342 – Jose Schutt-Aine
20
Common Mode
RC 2  RC  RC
RC1  RC
Can show that
vc1  vicm
vc 2  vicm
ECE 342 – Jose Schutt-Aine
 RC
2 REE  re
  RC  RC 
2 REE  re
21
BJT Diff Pair - Common Mode
vo  vc1  vc 2  vicm
Acm 
RC
2 REE  re
Acm 
RC
2 REE  re

RC
2 REE
 RC RC
2 REE

RC
ECE 342 – Jose Schutt-Aine
22
Example - I
=100
Collector resistance accurate
within 1%
Early voltage = 100V
ECE 342 – Jose Schutt-Aine
23
Example – I (cont’)
Emitter current in both transistors is: 0.5 mA
VT 25 mV
re 

 50 
I E 0.5 mA
Rid  2    1  re  RE   2 101  50  150  40 k 
vid
Rid
40


 0.8
vsig Rsig  Rid 5  5  40
vo Total resistance in the collectors

vid
Total resistance in the emitters
ECE 342 – Jose Schutt-Aine
24
Example - I (cont’)
vo
2 RC
2  10


 50
3
vid 2  re  RE  2  50  150  10
Overall differential gain:
vo
vid vo
Ad 


 0.8  50  40
vsig vsig vid
RC RC
Acm 
2 REE RC
common-mode
gain
Where RC is the worst
case variation in
collector resistance
ECE 342 – Jose Schutt-Aine
25
Example – I (cont’)
10
Acm 
 0.02  5  104
2  200
Common-Mode Rejection ratio CMRR
Ad
CMRR  20 log
Acm
40
CMRR  20 log
 98 dB
4
5 10
ECE 342 – Jose Schutt-Aine
26
Example – I (cont’)
Input common-mode resistance: Ricm
Ricm
VA 100
ro 

 200 k 
I / 2 0.5
ro 

    1  REE ||   101 200 k  ||100k    6.7 M 
2

ECE 342 – Jose Schutt-Aine
27
Example - II
In the circuit shown, the dc bias current is 4 mA. If  =
0.993, RB1 = RB2 = RB3 = 1,000 , RE = 30 , RC =
1.6 k, VCC = 10 V, and VBE(on) = 0.7 V,
(a) Calculate the dc collector currents
(b) Calculate the dc or quiescent collector voltages
(c) Calculate the maximum peak value of vout before
serious distortion results
(d) Calculate the incremental differential voltage gain of
the circuit
(e) If the base resistor of Q2 is changed to RB2= 400 ,
calculate the dc collector current through each device
ECE 342 – Jose Schutt-Aine
28
Example - II
ECE 342 – Jose Schutt-Aine
29
Example - II
(a) Assuming perfect match between Q1 and
Q2, DC bias current will split equally IE1 = IE2
= 2mA. IC=IE=1.986 mA
(b) The quiescent collector voltages will equal
VCC  IC RC  10  1.986 1.6  6.82 V
(c) Maximum collector voltage is 10 V (at cutoff)
minimum is 0 V (at saturation).Therefore,
positive peak voltage is 10-6.82 = 3.18 V, and
negative peak is 6.82 V p-p voltage = 6.36 V
ECE 342 – Jose Schutt-Aine
30
Example - II
(d) The incremental differential voltage gain
of the circuit is defined as:
Calculate re and 
vout vo 2  vo1
AD 

vin
vin
26 26
re 

 13 
IE
2

0.993


 142
1   0.007
ECE 342 – Jose Schutt-Aine
31
Example - II
Applying the gain equation and assuming rout
>> 1.6 k gives
142  1600
AD 
 31.8 V / V
143  13  30   1000
(e) The voltage at the node above the dc
current source can be found from
V1    I B1RB1  VBE ( on )     1 I B1RE 
V2    I B 2 RB 2  VBE ( on )     1 I B 2 RE 
ECE 342 – Jose Schutt-Aine
32
Example - II
Effects of non-balance
ECE 342 – Jose Schutt-Aine
33
Example - II
   1 I B1     1 I B 2  4 mA
I B1  13.1  A
I B 2  14.8  A
The corresponding emitter and collector currents are
I E 2  2.12 mA
I E1  1.88 mA
IC 2  2.10 mA
IC1  1.86 mA
The two quiescent collector voltages are no longer
equal, resulting in a nonzero quiescent output voltage
VCQ 2  10  1.6  2.1  6.64 V
VCQ1  10  1.6  1.86  7.02 V
ECE 342 – Jose Schutt-Aine
34
Example - II
VoutQ  VCQ 2  VCQ1  6.64  7.02  0.38 V
Nonzero quiescent voltage serious consequences
when this stage is followed by additional gain stages,
creating an output offset voltage when the inputs are
shorted together
ECE 342 – Jose Schutt-Aine
35
Nonideal Characteristics
Input offset voltage of
MOS differential pair
Mismatch can result in a
dc output voltage Vo
(output dc offset voltage)
Vos=Vo/Ad is input offset
voltage
ECE 342 – Jose Schutt-Aine
36
Nonideal Characteristics
If Vos is applied (differentially) at the input, a zero
voltage difference should result at the output
•
Factors contributing to dc offset voltage
1.
2.
3.
Mismatch in load resistance
Mismatch in W/L
Mismatch in VT
2
 Vov RD   Vov  W / L  
Vos  


   VT 
 
2   2
W /L 
 2
2
ECE 342 – Jose Schutt-Aine
2
37
Input Offset Voltage for BJT Diff Pair
•
Offset results from
1.
2.
3.
Mismatch in RC’s
Mismatch in 
Mismatch in junction area
2
Vos  VT
ECE 342 – Jose Schutt-Aine
 RC   I S 

 

 RC   I S 
2
38
Offset Current for BJT Diff Amp
In a perfectly symmetric differential pair, the 2 input
terminals carry equal dc current to support bias
I B1  I B 2
I /2

 1
Mismatches (primarily from ) make the 2 input
dc currents unequal
I os  I B1  I B 2
  
I os  I B 

  
ECE 342 – Jose Schutt-Aine
39
Differential-to-Single-Ended Conversion
ECE 342 – Jose Schutt-Aine
-
Beyond first
stage, signal can
be converted
from differential
to single-ended
-
Simply ignore the
drain current in
Q1 and eliminate
its drain resistor
40
Differential-to-Single-Ended Conversion
• Limitations
– Factor of 2 (6 dB) is lost in the gain if drain
current of Q1 is not used
– Much better approach consists of using drain
current of Q1
– Active load approach allows to perform
conversion without loss of gain by making use of
drain current in Q1
ECE 342 – Jose Schutt-Aine
41
MOS Differential Amp with Active Load
Replacing drain
resistances with current
sources, results in
much higher voltage
gain and savings in chip
area in diff amp
ECE 342 – Jose Schutt-Aine
42
MOS Differential Amp - Equilibrium
ECE 442 – Jose Schutt-Aine
43
MOS Differential Amp with Active Load
Current mirror action makes it possible to convert
the signal to single-ended form without loss of gain.
The differential gain is:
vo
Ad 
 g m  ro 2 || ro 4 
vid
If ro 2  ro 4  ro
1
Ad  g m ro
2
ECE 342 – Jose Schutt-Aine
44
MOS Differential Amp with Active Load
The active-loaded MOS differential amplifier has a
low common-mode gain  high CMRR
The common-mode gain is:
vo
ro 4
1
Acm 

vicm
2 RSS 1  g m 3ro 3
RSS is internal
impedance
of current
Usually , g m 3ro 3  1 and ro 3  ro 4 source
Acm  
1
2 g m 3 RSS
ECE 342 – Jose Schutt-Aine
45
MOS Differential Amp with Active Load
Since RSS is large, Acm will be small
Ad
CMRR 
  g m  ro 2 || ro 4    2 g m 3 RSS 
Acm
If ro 2  ro 4  ro and gm3  gm
CMRR   g m ro  g m RSS 
ECE 342 – Jose Schutt-Aine
46
BJT Differential Amp with Active Load
Current mirror & active load
Differential stage
ECE 342 – Jose Schutt-Aine
47
Active Loaded BJT Pair – Incremental Model
Virtual ground develops at common-emitter terminal
ECE 342 – Jose Schutt-Aine
48
BJT Differential Amp with Active Load
Output resistance is parallel equivalent of the output
resistance of the differential pair and the output
resistance of the current mirror
The differential gain is:
vo
Ad 
 g m  ro 2 || ro 4 
vid
If ro 2  ro 4  ro
1
Ad  g m ro
2
The differential input
impedance is:
Rid  2r
ECE 342 – Jose Schutt-Aine
49
BJT Differential Amp with Active Load
The active-loaded BJT differential amplifier has a low
common-mode gain  high CMRR
The common-mode gain is:
vo
ro 4
Acm 

vicm
3 REE
It is assumed that , gm3  gm4
REE is internal
impedance
of current
source
and r 4  r 3 and ro 3  r 3 , r 4
ECE 342 – Jose Schutt-Aine
50
BJT Differential Amp with Active Load
Ad
  3 REE 
CMRR 
  g m  ro 2 || ro 4   

Acm
 ro 4 
If ro 2  ro 4  ro
1
CMRR  3 g m REE
2
For large CMRR, bias current source should
have large output resistance REE
ECE 342 – Jose Schutt-Aine
51
Frequency Response of MOS Diff Amp
•
Resistively Loaded
1. Resistance RSS is
between node S and
ground
2. Capacitance CSS is
between node S and
ground
3. CSS includes Cdb, Cgd,
and Csb
ECE 342 – Jose Schutt-Aine
52
Frequency Response – Differential Half
Gain function of differential half
will be identical to that of
common-source amplifier
ECE 342 – Jose Schutt-Aine
53
Frequency Response – Common-Mode
CSS/2 will form dominant
real-axis zero at much lower
frequency
Zero dominates frequency
dependence of Acm
Common-mode gain is found
by analyzing the effect of a
mismatch RD in RD
ECE 342 – Jose Schutt-Aine
54
Frequency Response – Common-Mode
RD  RD 
Acm ( s )  

 1  sCSS RSS 
2 RSS  RD 
Acm picks up a zero on the negative real axis of
the complex s-plane. The frequency is wZ
1
wZ 
CSS RSS
1
fZ 
2 CSS RSS
ECE 342 – Jose Schutt-Aine
55
Frequency Response – Common-Mode Gain
ECE 342 – Jose Schutt-Aine
56
Frequency Response – Differential Gain
ECE 342 – Jose Schutt-Aine
57
Frequency Response – CMRR
ECE 342 – Jose Schutt-Aine
58
Frequency Response – Actively Loaded MOS
Cm  Cgd 1  Cdb1  Cdb 3  Cgs 3  Cgs 4
Capacitance at input node
CL  Cgd 2  Cdb 2  Cgd 4  Cdb 4  Cload
Capacitance at output node
ECE 342 – Jose Schutt-Aine
59
Frequency Response – Actively Loaded MOS
Cm

1 s



vo
2 g m3
1
Ad ( s ) 
  g m Ro  

vid
 1  sCL Ro   1  s Cm

g m3

1
First pole: f P1 
2 CL Ro
Second pole: f P 2
Zero at:






g m3
g m3


 fT / 2
2 Cm 2  2C gs 3 
2 g m3
fZ 
 fT
2 Cm
Mirror pole and zero occur at very high frequencies
ECE 342 – Jose Schutt-Aine
60
Actively Loaded MOS - Transconductance
ECE 342 – Jose Schutt-Aine
61
CMOS OP Amp Example
In the differential amplifier shown, Q1 and Q2 form the differential
pair while the current source transistors Q4 and Q5 form the active
loads for Q1 and Q2 respectively. The dc bias circuit that establishes
an appropriate dc voltage at the drains of Q1 and Q2 is not shown.
The following specifications are desired: differential gain Ad =
80V/V, IREF = 100 A, the dc voltage at the gates of Q6 and Q3 is
+1.5V; the dc voltage at the gates of Q7, Q4 and Q5 is –1.5V.
The technology available is specified as follows: nCox=3pCox =
90A/V2; Vtn=|Vtp|=0.7V, VAn=|VAp| = 20V. Specify the required
value of R and the W/L ratios for all transistors. Also, specify ID
and VGS at which each transistor is operating. For dc bias
calculations, you may neglect channel-length modulation. Fill in
the entries in the table provided to show your results.
ECE 342 – Jose Schutt-Aine
62
CMOS OP Amp Example
ECE 342 – Jose Schutt-Aine
63
CMOS OP Amp Example
I REF
1.5  (1.5)
3V
 100 A 
R
 30k 
R
0.1mA
Drain currents are determined by symmetry and inspection
VGS values are also determined by inspection for all
transistors except Q1 and Q2. To determine VGS for Q1 and
Q2, we do the following: the equivalent load resistance will
consist of ro1 in parallel with ro4 for Q1 and ro2 in parallel
with ro5 for Q5. Since the ro’s are equal, this corresponds to
ro/2. We have:
ro
2 Ad
2  80
g m  Ad  g m 

 0.4mA / V
2
ro
400k 
ECE 342 – Jose Schutt-Aine
64
CMOS OP Amp Example
2I D
2 I D 2  0.05
gm 
 Vov 

 0.25
Vov
gm
0.4
Take polarity into account for PMOS
VGS 1,2  0.25  VT  0.95
To find W/L ratios, use
2I D
W
W
2
I D  Cox
(VGS  VT ) 

2L
L Cox (VGS  VT ) 2
taking into account PMOS and NMOS devices separately
ECE 342 – Jose Schutt-Aine
65
CMOS OP-AMP DESIGN TABLE
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Units
Cox
30
30
30
90
90
30
90
A/V2
ID
50
50
100
50
50
100
100
A
VGS
-.95
-.95
-1
+1
+1
-1
+1
V
W/L
57.3
57.3
74 1.
12.3
12.3
73.1
24.7
ECE 342 – Jose Schutt-Aine
66
2-Stage CMOS Op Amp
ECE 342 – Jose Schutt-Aine
67
2-Stage CMOS Op Amp
Two-stage configuration with two power supplies
which can range from +/- 2.5 V for 0.5 m
technology to +/- 0.9 V for 0.18 m technology. IREF
is generated either externally or using on-chip CKT.
Current mirror formed by Q5-Q8 supplies differential
pair Q1-Q2 with bias current. The W/L of Q5 is
selected to control I. The diff pair is actively loaded
by current mirror Q3-Q4
ECE 342 – Jose Schutt-Aine
68
2-Stage CMOS Op Amp
Second stage is Q6 which is a CS amplifier for which Q7 is
the current source. A capacitor Cc is included for negative
feedback to enhance the Miller effect through Q6 
compensation. This op amp does not have a low output
impedance and is thus not suited for driving a lowimpedance load. The W/L ratios are given and listed below:
W/L
Q1
Q2 Q3
Q4
Q5
Q6
Q7
Q8
20/0.8
20/0.8 5/0.8
5/0.8
40/0.8
10/0.8
40/0.8
40/0.8
Let I REF  90  A, Vtn  0.7 V , Vtp  0.8 V
nCox  160  A / V ,  pCox  40  A / V
2
ECE 342 – Jose Schutt-Aine
2
69
2-Stage CMOS Op Amp
| VA | for all devices  10 V , VDD  VSS  2.5 V
•
Voltage Gain
First stage: A1   g m1  ro 2 || ro 4 
Since Q8 and Q5 are matched, I = IREF, Q1, Q2,
Q3 and Q4 will have I/2 = 45 A.
IQ7=IREF = 90 A = IQ6
Let VGS - VT = Vov (overdrive voltage)
ECE 342 – Jose Schutt-Aine
70
2-Stage CMOS Op Amp
1
2
From I D   Cox W / L Vov
2
We find Vov for each transistor.
2I D
Transconductance is: g m 
Vov
ro 
VA
ID
ECE 342 – Jose Schutt-Aine
71
2-Stage CMOS Op Amp – Voltage Gain
Gain for first stage: A1   g m1  ro 2 || ro 4 
A1  0.3  222 || 222   33.3 V / V
Gain for second stage: A2   gm6  ro6 ro7 
A2  0.6 111||111  33.3 V / V
Overall dc open loop gain is (-33.3)(-33.3) = 1109 V/V
20 log1109 = 61 dB
ECE 342 – Jose Schutt-Aine
72
2-Stage Op Amp Design Table
Q1
Q2 Q3
Q4
Q5
Q6
Q7
Q8
W/L
20/0.8
20/0.8 5/0.8
5/0.8
40/0.8
10/0.8
40/0.8
40/0.8
ID(A)
45
45
45
45
90
90
90
90
|Vov| (v)
0.3
0.3 0.3
0.3
0.3
0.3
0.3
0.3
|VGS| (v)
1.1
1.1 1.0
1.0
1.1
1.0
1.1
1.1
gm(mA/V)
0.3
0.3 0.3
0.4
0.6
0.6
0.6
0.6
ro(k)
222 222 222
222
111
111
111
111
ECE 342 – Jose Schutt-Aine
73
2-Stage Op Amp – Frequency Response
Incremental Circuit
Gm1  g m1  g m 2
R1  ro 2 || ro 4 , C1  C gd 4  Cdb 4  C gd 2  Cdb 2  C gs 6
ECE 342 – Jose Schutt-Aine
74
2-Stage Op Amp – Frequency Response
Gm 2  g m 6
R2  ro 6 || ro 7 , C2  Cdb 6  Cdb 7  C gd 7  CL
CL is the load capacitance (usually large)  C2
C1
Vo Gm1  Gm 2  sCC  R1R2

Vid
1  sA  s 2 B
ECE 342 – Jose Schutt-Aine
75
2-Stage Op Amp – Frequency Response
A  C1R1  C2 R2  CC  Gm2 R1R2  R1  R2 
B  C1C2  CC  C1  C2   R1 R2
Transmission zero at s = sZ with
Gm 2
wZ 
CC
Two poles that are the root of the denominator
1
w p1 
R1CC Gm 2 R2
w p2
ECE 342 – Jose Schutt-Aine
Gm 2

C2
76