Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
專題討論參考題目 一、 作物栽培與生理生化 1 J.L. Bowman, Y. Eshed and S.F. Baum, Establishment of polarity in angiosperm lateral organs, Trends Genet 18 (2002), pp. 134–141. SummaryPlus | Full Text + Links | PDF (2451 K) | View Record in Scopus | Cited By in Scopus 2 M.C.P. Timmermans, M.T. Juarez and T.L. Phelps-Durr, A conserved microRNA signal specifies leaf polarity, Cold Spring Harb Symp Quant Biol 69 (2004), pp. 409–417. View Record in Scopus | Cited By in Scopus 3 I.M. Sussex, Experiments on the cause of dorsiventrality in leaves, Nature 167 (1951), pp. 651–652. Full Text via CrossRef 4 D. Reinhardt, M. Frenz, T. Mandel and C. Kuhlemeier, Microsurgical and laser ablation analysis of leaf positioning and dorsoventral patterning in tomato, Development 132 (2005), pp. 15–26. View Record in Scopus | Cited By in Scopus 5 J.R. McConnell, J. Emery, Y. Eshed, N. Bao, J. Bowman and M.K. Barton, Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots, Nature 411 (2001), pp. 709–713. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 6 J.F. Emery, S.K. Floyd, J. Alvarez, Y. Eshed, N.P. Hawker, A. Izhaki, S.F. Baum and J.L. Bowman, Radial patterning of Arabidopsis shoots by Class III HD-ZIP and KANADI genes, Curr Biol 13 (2003), pp. 1768–1774. SummaryPlus | Full Text + Links | PDF (483 K) | View Record in Scopus | Cited By in Scopus 7 M.J. Prigge, D. Otsuga, J.M. Alonso, J.R. Ecker, G.N. Drews and S.E. Clark, Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development, Plant Cell 17 (2005), pp. 61–76. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 8 D. Otsuga, B. DeGuzman, M.J. Prigge, G.N. Drews and S.E. Clark, REVOLUTA regulates meristem initiation at lateral positions, Plant J 25 (2001), pp. 223–236. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 9 R.A. Kerstetter, K. Bollman, R.A. Taylor, K. Bomblies and R.S. Poethig, KANADI regulates organ polarity in Arabidopsis, Nature 411 (2001), pp. 706–709. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 10 Y. Eshed, S.F. Baum, J.V. Perea and J.L. Bowman, Establishment of polarity in lateral organs of plants, Curr Biol 11 (2001), pp. 1251–1260. SummaryPlus | Full Text + Links | PDF (713 K) | View Record in Scopus | Cited By in Scopus 11 Y. Eshed, A. Izhaki, S.F. Baum, S.K. Floyd and J.L. Bowman, Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities, Development 131 (2004), pp. 2997–3006. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 12•• I. Pekker, J.P. Alvarez and Y. Eshed, Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity, Plant Cell 17 (2005), pp. 2899–2910. 13 S. Hake, H.M. Smith, H. Holtan, E. Magnani, G. Mele and J. Ramirez, The role of knox genes in plant development, Annu Rev Cell Dev Biol 20 (2004), pp. 125–151. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 14•• H. Li, L. Xu, H. Wang, Z. Yuan, X. Cao, Z. Yang, D. Zhang, Y. Xu and H. Huang, The putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and microRNA165/166 in Arabidopsis leaf development, Plant Cell 17 (2005), pp. 2157–2171. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 15•• D. Garcia, S.A. Collier, M.E. Byrne and R.A. Martienssen, Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway, Curr Biol 16 (2006), pp. 933–938. SummaryPlus | Full Text + Links | PDF (338 K) | View Record in Scopus | Cited By in Scopus 16 L. Xu, L. Yang, L. Pi, Q. Liu, Q. Ling, H. Wang, R.S. Poethig and H. Huang, Genetic interaction between the AS1-AS2 and RDR6-SGS3-AGO7 pathways for leaf morphogenesis, Plant Cell Physiol 47 (2006), pp. 853–863. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 17 R. Waites and A. Hudson, phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus, Development 121 (1995), pp. 2143–2154. View Record in Scopus | Cited By in Scopus 18 R. Waites, H.R. Selvadurai, I.R. Oliver and A. Hudson, The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum, Cell 93 (1998), pp. 779–789. SummaryPlus | Full Text + Links | PDF (632 K) | View Record in Scopus | Cited By in Scopus 19 W.C. Lin, B. Shuai and P.S. Springer, The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial–abaxial patterning, Plant Cell 15 (2003), pp. 2241–2252. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 20 K.R. Siegfried, Y. Eshed, S.F. Baum, D. Otsuga, G.N. Drews and J.L. Bowman, Members of the YABBY gene family specify abaxial cell fate in Arabidopsis, Development 126 (1999), pp. 4117–4128. View Record in Scopus | Cited By in Scopus 21 C.A. Kidner and R.A. Martienssen, The developmental role of microRNA in plants, Curr Opin Plant Biol 8 (2005), pp. 38–44. SummaryPlus | Full Text + Links | PDF (348 K) | View Record in Scopus | Cited By in Scopus 22 M.W. Jones-Rhoades, D.P. Bartel and B. Bartel, MicroRNAs and their regulatory roles in plants, Annu Rev Plant Biol 57 (2006), pp. 19–53. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 23 B.J. Reinhart, E.G. Weinstein, M.W. Rhoades, B. Bartel and D.P. Bartel, MicroRNAs in plants, Genes Dev 16 (2002), pp. 1616–1626. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 24 M.T. Juarez, J.S. Kui, J. Thomas, B.A. Heller and M.C.P. Timmermans, microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity, Nature 428 (2004), pp. 84–88. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 25 C.A. Kidner and R.A. Martienssen, Spatially restricted microRNA directs leaf polarity through ARGONAUTE1, Nature 428 (2004), pp. 81–84. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 26 A.C. Mallory, B.J. Reinhart, M.W. Jones-Rhoades, G. Tang, P.D. Zamore, M.K. Barton and D.P. Bartel, MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region, EMBO J 23 (2004), pp. 3356–3364. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 27•• J.P. Alvarez, I. Pekker, A. Goldshmidt, E. Blum, Z. Amsellem and Y. Eshed, Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species, Plant Cell 18 (2006), pp. 1134–1151. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 28 N. Bao, K.W. Lye and M.K. Barton, MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome, Dev Cell 7 (2004), pp. 653–662. SummaryPlus | Full Text + Links | PDF (359 K) | View Record in Scopus | Cited By in Scopus 29•• E. Allen, Z. Xie, A.M. Gustafson and J.C. Carrington, microRNA-directed phasing during trans-acting siRNA biogenesis in plants, Cell 121 (2005), pp. 207–221. SummaryPlus | Full Text + Links | PDF (1042 K) | View Record in Scopus | Cited By in Scopus 30• L. Williams, C.C. Carles, K.S. Osmont and J.C. Fletcher, A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes, Proc Natl Acad Sci USA 102 (2005), pp. 9703–9708. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus The authors identify a conserved ta-siRNA that targets members of the ARF family. 31 P. Brodersen and O. Voinnet, The diversity of RNA silencing pathways in plants, Trends Genet 22 (2006), pp. 268–280. SummaryPlus | Full Text + Links | PDF (288 K) | View Record in Scopus | Cited By in Scopus 32 A. Peragine, M. Yoshikawa, G. Wu, H.L. Albrecht and R.S. Poethig, SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis, Genes Dev 18 (2004), pp. 2368–2379. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 33• X. Adenot, T. Elmayan, D. Lauressergues, S. Boutet, N. Bouche, V. Gasciolli and H. Vaucheret, DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7, Curr Biol 16 (2006), pp. 927–932. SummaryPlus | Full Text + Links | PDF (376 K) | View Record in Scopus | Cited By in Scopus 34•• N. Fahlgren, T.A. Montgomery, M.D. Howell, E. Allen, S.K. Dvorak, A.L. Alexander and J.C. Carrington, Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis, Curr Biol 16 (2006), pp. 939–944. SummaryPlus | Full Text + Links | PDF (435 K) | View Record in Scopus | Cited By in Scopus 35• C. Hunter, M.R. Willmann, G. Wu, M. Yoshikawa, M. de la Luz Gutierrez-Nava and S.R. Poethig, Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates heteroblasty in Arabidopsis, Development 133 (2006), pp. 2973–2981. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 36•• S.P. Grigg, C. Canales, A. Hay and M. Tsiantis, SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis, Nature 437 (2005), pp. 1022–1026. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 37• L. Yang, Z. Liu, F. Lu, A. Dong and H. Huang, SERRATE is a novel nuclear regulator in primary microRNA processing in Arabidopsis, Plant J 47 (2006), pp. 841–850. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 38 D. Reinhardt, E.R. Pesce, P. Stieger, T. Mandel, K. Baltensperger, M. Bennett, J. Traas, J. Friml and C. Kuhlemeier, Regulation of phyllotaxis by polar auxin transport, Nature 426 (2003), pp. 255–260. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 39 S.B. Tiwari, G. Hagen and T. Guilfoyle, The roles of auxin response factor domains in auxin-responsive transcription, Plant Cell 15 (2003), pp. 533–543. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 40•• M.G. Heisler, C. Ohno, P. Das, P. Sieber, G.V. Reddy, J.A. Long and E.M. Meyerowitz, Patterns of auxin transport and gene expression during primordium development revealed by live imaging of the Arabidopsis inflorescence meristem, Curr Biol 15 (2005), pp. 1899–1911. SummaryPlus | Full Text + Links | PDF (840 K) | View Record in Scopus | Cited By in Scopus 41•• S.K. Floyd, C.S. Zalewski and J.L. Bowman, Evolution of class III homeodomain-leucine zipper genes in streptophytes, Genetics 173 (2006), pp. 373–388. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 42 S.K. Floyd and J.L. Bowman, Gene regulation: ancient microRNA target sequences in plants, Nature 428 (2004), pp. 485–486. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 43 A. Carlsbecker and Y. Helariutta, Phloem and xylem specification: pieces of the puzzle emerge, Curr Opin Plant Biol 8 (2005), pp. 512–517. SummaryPlus | Full Text + Links | PDF (182 K) | View Record in Scopus | Cited By in Scopus 44•• C.J. Harrison, S.B. Corley, E.C. Moylan, D.L. Alexander, R.W. Scotland and J.A. Langdale, Independent recruitment of a conserved developmental mechanism during leaf evolution, Nature 434 (2005), pp. 509–514. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 45 N.A. McHale and R.E. Koning, PHANTASTICA regulates development of the adaxial mesophyll in Nicotiana leaves, Plant Cell 16 (2004), pp. 1251–1262. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 46 M. Kim, S. McCormick, M. Timmermans and N. Sinha, The expression domain of PHANTASTICA determines leaflet placement in compound leaves, Nature 424 (2003), pp. 438–443. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 47• J.H. Luo, J. Yan, L. Weng, J. Yang, Z. Zhao, J.H. Chen, X.H. Hu and D. Luo, Different expression patterns of duplicated PHANTASTICA-like genes in Lotus japonicus suggest their divergent functions during compound leaf development, Cell Res 15 (2005), pp. 665–677. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 48 M.E. Byrne, R. Barley, M. Curtis, J.M. Arroyo, M. Dunham, A. Hudson and R.A. Martienssen, Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis, Nature 408 (2000), pp. 967–971. View Record in Scopus | Cited By in Scopus 49•• A. Hay and M. Tsiantis, The genetic basis for differences in leaf form between Arabidopsis thaliana and its wild relative Cardamine hirsuta, Nat Genet 38 (2006), pp. 942–947. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 50• A.D. Tattersall, L. Turner, M.R. Knox, M.J. Ambrose, T.H. Ellis and J.M. Hofer, The mutant crispa reveals multiple roles for PHANTASTICA in pea compound leaf development, Plant Cell 17 (2005), pp. 1046–1060. View Record in Scopus | Cited By in Scopus 51 T. Arazi, M. Talmor-Neiman, R. Stav, M. Riese, P. Huijser and D.C. Baulcombe, Cloning and characterization of micro-RNAs from moss, Plant J 43 (2005), pp. 837–848. View Record in Scopus | Cited By in Scopus 52 M.J. Axtell and D.P. Bartel, Antiquity of microRNAs and their targets in land plants, Plant Cell 17 (2005), pp. 1658–1673. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 53 T.J. Cooke, D. Poli, A.E. Sztein and J.D. Cohen, Evolutionary patterns in auxin action, Plant Mol Biol 49 (2002), pp. 319–338. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 54 M.C.P. Timmermans, N.P. Schultes, J.P. Jankovsky and T. Nelson, Leafbladeless1 is required for dorsoventrality of lateral organs in maize, Development 125 (1998), pp. 2813–2823. View Record in Scopus | Cited By in Scopus 55 P. Dunoyer, C. Himber and O. Voinnet, DICER-LIKE 4 is required for RNA interference and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell silencing signal, Nat Genet 37 (2005), pp. 1356–1360. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 56 M.C.P. Timmermans, A. Hudson, P.W. Becraft and T. Nelson, ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia, Science 284 (1999), pp. 151–153. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 57 M. Tsiantis, R. Schneeberger, J.F. Golz, M. Freeling and J.A. Langdale, The maize rough sheath2 gene and leaf development programs in monocot and dicot plants, Science 284 (1999), pp. 154–156. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 58 J.F. Golz, M. Roccaro, R. Kuzoff and A. Hudson, GRAMINIFOLIA promotes growth and polarity of Antirrhinum leaves, Development 131 (2004), pp. 3661–3670. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 59 C. Navarro, N. Efremova, J.F. Golz, R. Rubiera, M. Kuckenberg, R. Castillo, O. Tietz, H. Saedler and Z. Schwarz-Sommer, Molecular and genetic interactions between STYLOSA and GRAMINIFOLIA in the control of Antirrhinum vegetative and reproductive development, Development 131 (2004), pp. 3649–3659. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 60 M. Kim, T. Pham, A. Hamidi, S. McCormick, R.K. Kuzoff and N. Sinha, Reduced leaf complexity in tomato wiry mutants suggests a role for PHAN and KNOX genes in generating compound leaves, Development 130 (2003), pp. 4405–4415. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 61 T. Yamaguchi, N. Nagasawa, S. Kawasaki, M. Matsuoka, Y. Nagato and H.Y. Hirano, The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa, Plant Cell 16 (2004), pp. 500–509. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 62• S. Gleissberg, E.P. Groot, M. Schmalz, M. Eichert, A. Kolsch and S. Hutter, Developmental events leading to peltate leaf structure in Tropaeolum majus (Tropaeolaceae) are associated with expression domain changes of a YABBY gene, Dev Genes Evol 215 (2005), pp. 313–319. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 63 M.T. Juarez, R.W. Twigg and M.C.P. Timmermans, Specification of adaxial cell fate during maize leaf development, Development 131 (2004), pp. 4533–4544. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 64 S.K. Floyd and J.L. Bowman, Distinct developmental mechanisms reflect the independent origins of leaves in vascular plants, Curr Biol 16 (2006), pp. 1911–1917. SummaryPlus | Full Text + Links | PDF (722 K) | View Record in Scopus | Cited By in Scopus Rice mutants Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J Mol Endocrinol 25:169–193 Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:4985–4990 Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525–529 Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH (2000) Leafy hull sterile 1 is a homeotic mutation in a rice MADS Box gene affecting rice flower development. Plant Cell 128:871–884 Kyozuka J, Kobayashi T, Morita M, Shimamoto K (2000) Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol 41:710–718 Lee S, Jeon JS, An K, Moon YH, Lee S, Chung YY, An G (2003) Alteration of floral organ identity in rice through ectopic expression of OsMADS16. Planta 217:904–911 Lim J, Moon YH, An G, Jang SK (2000) Two rice MADS domain proteins interact with OsMADS1. Plant Mol Bio 44:513–527 Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2002) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130:705–718 Pelaz S, Gary SD, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405:200–203 Prasad K, Sriram P, Kumar CS, Kushalappa K, Vijayraghavan U (2001) Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Dev Genes Evol 211:281–290 Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano H (2004) The gene FLORAL ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat receptor kinase orthologous to Arabidopsis CLAVATA1. Development 131:5649–5657 Theissen G, Saedler H (2001) Floral quartets. Nature 409:469–471 Thomas J (2001) Relearning our ABCs: new twists on an old model. Trends Plant Sci 6:310–316 Wu JG, Shi CH, Chen SY, Xiao JF (2004) The cytological mechanism of low fertility in the naked seed rice. Genetica 121:259–267 Xiao H, Wang Y, Liu D, Wang W, Li X, Zhao X, Xu J, Zhai W, Zhu L (2003) Functional analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Mol Biol 52:957–966 Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509 Yokoyama R, Nishitani K (2001) A comprehensive expression analysis of all the members of a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol 42:1025–1033 Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular and genetic analyses of the silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol Cell 5:569–579 Barry GF (2001) The use of the Monsanto draft rice genome sequence in research. Plant Physiol 125:1164–1165 Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489 Delseny M (2004) Re-evaluating the relevance of ancestral shared synteny as a tool for crop improvement. Curr Opin Plant Biol 7:126–131 Eckardt NA (2000) Sequencing the rice genome. Plant Cell 12:2011–2017 Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X, Jia P, Zhao Q, Ying K, Yu S, Tang Y, Weng Q, Zhang L, Lu Y, Mu J, Zhang LS, Yu Z, Fan D, Liu X, Lu T, Li C, Wu Y, Sun T, Lei H, Li T, Hu H, Guan J, Wu M, Zhang R, Zhou B, Chen Z, Chen L, Jin Z, Wang R, Yin H, Cai Z, Ren S, Lv G, Gu W, Zhu G, Tu Y, Jia J, Chen J, Kang H, Chen X, Shao C, Sun Y, Hu Q, Zhang X, Zhang W, Wang L, Ding C, Sheng H, Gu J, Chen S, Ni L, Zhu F, Chen W, Lan L, Lai Y, Cheng Z, Gu M, Jiang J, Li J, Hong G, Xue Y, Han B (2002) Sequence and analysis of rice chromosome 4. Nature 420:316–320 Ferrario S, Immink RG, Angenent GC (2004) Conservation and diversity in flower land. Curr Opin Plant Biol 7:84–91 Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y, Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L, Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R, Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J, Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R, Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296:92–100 Goto K, Kyozuka J, Bowman JL (2001) Turning floral organs into leaves, leaves into floral organs. Curr Opin Genet Dev 11:449–456 Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, Lee YH, Cho YG, An G (2000) leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice flower development. Plant Cell 12:871–884 Keck E, McSteen P, Carpenter R, Coen E (2003) Separation of genetic functions controlling organ identity in flowers. Embo J 22:1058–1066 Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development 130:3841–3850 Kyozuka J, Kobayashi T, Morita M, Shimamoto K (2000) Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol 41:710–718 Lohmann JU, Weigel D (2002) Building beauty: the genetic control of floral patterning. Dev Cell 2:135–142 Ma H, dePamphilis C (2000) The ABCs of floral evolution. Cell 101:5–8 Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development 130:705–718 Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family. Nat Rev Genet 2:186–195 Pozzi C, Faccioli P, Terzi V, Stanca AM, Cerioli S, Castiglioni P, Fink R, Capone R, Muller KJ, Bossinger G, Rohde W, Salamini F (2000) Genetics of mutations affecting the development of a barley floral bract. Genetics 154:1335–1346 Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors. Biol Chem 379:633–646 Theissen G (2000) Plant biology. Shattering developments. Nature 404:711–713 Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4:75–85 Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409:469–471 Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H (2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149 References for flower development 1. A. Mouradov et al., Control of flowering time: interacting pathways as a basis for diversity. Plant Cell 14 Suppl (2002), pp. S111–S130. View Record in Scopus | Cited By in Scopus 2. M.J. Yanovsky and S.A. Kay, Living by the calendar: how plants know when to flower. Nat. Rev. Mol. Cell Biol. 4 (2003), pp. 265–275. View Record in Scopus | Cited By in Scopus 3. A. Samach et al., Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288 (2000), pp. 1613–1616. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 4. I. Kardailsky et al., Activation tagging of the floral inducer FT. Science 286 (1999), pp. 1962–1965. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 5. Y. Kobayashi et al., A pair of related genes with antagonistic roles in mediating flowering signals. Science 286 (1999), pp. 1960–1962. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 6. J. Moon et al., The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J. 35 (2003), pp. 613–623. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 7. S.R. Hepworth et al., Antagonistic regulation of flowering-time gene SOC1 by CONSTANS and FLC via separate promoter motifs. EMBO J. 21 (2002), pp. 4327–4337. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 8. M. Yano et al., Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12 (2000), pp. 2473–2483. View Record in Scopus | Cited By in Scopus 9. S. Kojima et al., Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 43 (2002), pp. 1096–1105. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 10. T. Izawa et al., Comparative biology comes into bloom: genomic and genetic comparison of flowering pathways in rice and Arabidopsis. Curr. Opin. Plant Biol. 6 (2003), pp. 113–120. Abstract | PDF (153 K) | View Record in Scopus | Cited By in Scopus 11. M. Tadege et al., Reciprocal control of flowering time by OsSOC1 in transgenic Arabidopsis and by FLC in transgenic rice. Plant Biotech. J. 1 (2003), pp. 361–369. Full Text via CrossRef 12. L. Yan et al., Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), pp. 6263–6268. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 13. J. Danyluk et al., TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol. 132 (2003), pp. 1849–1860. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 14. B. Trevaskis et al., MADS box genes control vernalization-induced flowering in cereals. Proc. Natl. Acad. Sci. U. S. A. 100 (2003), pp. 13099–13104. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 15. J. Dubcovsky et al., Comparative RFLP mapping of Triticum monococcum genes controlling vernalization requirement. Theor. Appl. Genet. 97 (1998), pp. 968–975. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 16. D.A. Laurie et al., RFLP mapping of 5 major genes and 8 quantitative trait loci controlling flowering time in winterspring barley (Hordeum vulgare L) cross. Genome 38 (1995), pp. 575–585. View Record in Scopus | Cited By in Scopus 17. G.F. Gocal et al., Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol. 125 (2001), pp. 1788–1801. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus 18. J.S. Jeon et al., Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol. Breed. 6 (2000), pp. 581–592. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus References for plant development Ambrose, B.A., Lerner, D.R., Ciceri, P., Padilla, C.M., Yanofsky, M.F. and Schmidt, R.J. (2000) Molecular and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between eudicots and monocots. Mol. Cell, 5, 569–579. CrossRef, Medline, ISI, CSA • Cacharron, J., Saedler, H. and Theissen, G. (1999) Expression of MADS box genes ZMM8 and ZMM14 during inflorescence development of Zea mays discriminates between the upper and lower floret of each spikelet. Dev. Genes Evol. 7, 411–420. • Coen, E. and Meyerowitz, E.M. (1991) The war of the whorls: genetic interactions controlling flower development. Nature, 353, 31–37. CrossRef, Medline, ISI, CSA • Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. and Yanofsky, M.F. (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr. Biol. 14, 1935–1940. CrossRef, Medline, ISI, Chemport • Doebley, J. and Lukens, L. (1998) Transcriptional regulators and the evolution of plant form. Plant Cell, 10, 1075–1082. CrossRef, Medline, ISI, CSA • Doyle, J.A. (1973) Fossil evidences on early evolution of monocotyledons. Q. Rev. Biol. 48, 339–413. CrossRef • Ferrario, S., Immink, R.G. and Angenent, G.C. (2004) Conservation and diversity in flower land. Curr. Opin. Plant Biol. 7, 84–91. CrossRef, Medline, ISI, CSA • Hagen, G., Martin, G., Li, Y. and Guilfoyle, T.J. (1991) Auxin-induced expression of the soybean GH3 promoter in transgenic tobacco plants. Plant Mol. Biol. 17, 567–579. CrossRef, Medline, ISI, Chemport, CSA • Hay, A., Jackson, D., Ori, N. and Hake, S. (2003) Analysis of the competence to respond to KNOTTED1 activity in Arabidopsis leaves using a steroid induction system. Plant Physiol. 131, 1671–1680. CrossRef, Medline, ISI, CSA • Hoshikawa, K. (1989) Growing the Rice Plant: An Anatomical Monograph. Minato-ku, Tokyo : Nosan Gyosan Bunka Kyokai (Nobunkyo). • Huelsenbeck, J.P. and Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics, 17, 745–755. CrossRef, Medline • Irish, V.F. (2000) Variations on a theme: flower development and evolution. Genome Biol. 2, 1015. • Jenik, P.D. and Irish, V.F. (2000) Regulation of cell proliferation patterns by homeotic genes during Arabidopsis floral development. Development, 127, 1267–1276. Medline, ISI, CSA • Jeon, J.S., Jang, S., Lee, S. et al. (2000) leafy hull sterile1 is a homeotic mutation in a rice MADS-box gene affecting rice flower development. Plant Cell, 12, 871–889. CrossRef, Medline, ISI, CSA • Kang, H.G., Jeon, J.S., Lee, S. and An, G. (1998) Identification of class B and class C floral organ identity genes from rice plants. Plant Mol. Biol. 38, 1021–1029. CrossRef, Medline, ISI, Chemport, CSA • Kinoshita,T. (ed.) (1991) Report of the Committee on Gene Symbolization, Nomenclature and Linkage Groups. Rice Genet. Newsl. 8, 2–38. • Komatsu, M., Chujo, A., Nagato, Y., Shimamoto, K. and Kyozuka, J. (2003) FRIZZY PANICLE is required to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets. Development, 130, 3841–3850. CrossRef, Medline, ISI, CSA • Kumar, S., Tamura, K., Jakobsen, I.B. and Nei, M. (2001) MEGA2: Molecular Evolutionary Genetics Analysis software. Bioinformatics, 17, 1244–1245. CrossRef, Medline, ISI, Chemport, CSA • Kyozuka, J. and Shimamoto, K. (2002) Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS, caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol. 43, 130–135. CrossRef, Medline, ISI, CSA • Kyozuka, J., Kobayashi, T., Morita, M. and Shimamoto, K. (2000) Spatially and temporally regulated expression of rice MADS-box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol. 41, 710–718. Medline, ISI, CSA • Lee, S., Jeon, J.S., An, K., Moon, Y.H., Lee, S., Chung, Y.Y. and An, G. (2003) Alteration of floral organ identity in rice through ectopic expression of OsMADS16. Planta, 17, 904–911. CrossRef, Medline • Lim, J., Moon, Y.H., An, G. and Jang, S.K. (2000) Two rice MADS domain proteins interact with OsMADS1. Plant Mol. Biol. 44, 513–527. CrossRef, Medline, ISI, CSA • Lloyd, A. M., Schena, M., Walbot, V. and Davis, R.W. (1994) Epidermal cell fate determination in Arabidopsis: patterns defined by a steroid-inducible regulator. Science, 21, 436–439. • Lohmann, J.U. and Weigel, D. (2002) Building beauty: the genetic control of floral patterning. Dev. Cell, 2, 135–142. CrossRef, Medline, ISI, Chemport, CSA • Malcomber, S.T. and Kellogg, E.A. (2004) Heterogeneous expression patterns and separate roles of the SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell, 16, 1692–1706. CrossRef, Medline, ISI, Chemport, CSA • Mann, R.S. and Carroll, S.B. (2002) Molecular mechanisms of selector gene function. Curr. Opin. Genet. Dev. 12, 592–600. CrossRef, Medline, ISI, CSA • Nagasawa, N., Miyoshi, M., Sano, Y., Satoh, H., Hirano, H., Sakai, H. and Nagato, Y. (2003) SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development, 130, 705–718. CrossRef, Medline, ISI, Chemport, CSA • Page, R.D.M. (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput. Appl. Biosci. 12, 357–358. Medline, CSA • Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. (2000) B and C function floral organ identity functions require SEPALLATA MADS-box genes. Nature, 405, 200–203. CrossRef, Medline, ISI, CSA • Pozzi, C., Faccioli, P., Terzi, V. et al. (2000) Genetics of mutations affecting the development of a barley floral bract. Genetics, 154, 1335–1346. Medline, ISI, CSA • Prasad, K. and Vijayraghavan, U. (2003) Double-stranded RNA interference of a rice PI/GLO paralog, OsMADS2, uncovers its second whorl-specific function in floral organ patterning. Genetics, 165, 2301–2305. Medline, ISI, CSA • Prasad, K., Sriram, P., Kumar, C.S., Kushalappa, K. and Vijayraghavan, U. (2001) Ectopic expression of rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to sepals. Dev. Genes Evol. 211, 281–290. CrossRef, Medline, ISI, CSA • Purugganan, M.D., Rounsley, S.D., Schmidt, R.J. and Yanofsky, M.F. (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics, 140, 345–356. Medline, ISI, CSA • Reddy, G.V., Heisler, M.G., Ehrhardt, D.W. and Meyerowitz, E.M. (2004) Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development, 131, 4225–4237. CrossRef, Medline, ISI, CSA • Roux, C. and Perrot-Rechenmann, C. (1997) Isolation by differential display and characterization of a tobacco auxin-responsive cDNA Nt-gh3, related to GH3. FEBS Lett. 419, 131–136. CrossRef, Medline, ISI, CSA • Sablowski, R.W. and Meyerowitz, E.M. (1998) A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 92, 93–100. CrossRef, Medline, ISI, CSA • Schmidt, R.J. and Ambrose, B.A. (1998) The blooming of grass flower development. Curr. Opin. Plant Biol. 1, 60–67. CrossRef, Medline, ISI, CSA • Tamura, K. and Nei, M. (1993) Estimation of the number of nucleotide substitutions in the control regions of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526. Medline, ISI, CSA • Theissen, G. (2001) Development of floral organ identity: stories from the MADS house. Curr. Opin. Plant Biol. 4, 75–85. CrossRef, Medline, ISI, Chemport, CSA • Thompson, J.D., Gibson, T.J., Plewnaik, F., Jeanmougin, F. and Higgins, D.G. (1997) The CLUSTAL × windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882. CrossRef, Medline, ISI, Chemport, CSA • Wagner, D., Wellmer, F., Dilks, K., William, D., Smith, M.R., Kumar, P.P., Riechmann, J. L., Greenland, A. J. and Meyerowitz, E.M. (2004) Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation. Plant J. 39, 273–282. Synergy, Medline, ISI, CSA • Zhu, Q.H., Hoque, M.S., Dennis, E.S. and Upadhyaya, N.M. (2003) Ds tagging of BRANCHED FLORETLESS1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa L). BMC Plant Biol. 3, 6. CrossRef, Medline References for MADS gene Guixia Xu and Hongzhi Kong. (2007) Duplication and Divergence of Floral MADS-Box Genes in Grasses: Evidence for the Generation and Modification of Novel Regulators. Journal of Integrative Plant Biology 49:6, 927–939 Abstract Abstract and References Full Article PDF Taiyo Toriba, Kohsuke Harada, Atsushi Takamura, Hidemitsu Nakamura, Hiroaki Ichikawa, Takuya Suzaki, Hiro-Yuki Hirano. (2007) Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1 . Molecular Genetics and Genomics 277:5, 457 CrossRef Adachi, J., and M. Hasegawa. 1996. MOLPHY, a computer program package for molecular phylogenetics. Version 2.3. The Institute of Statistical Mathematics, Tokyo. Alvarez-Buylla, E. R., S. J. Liljegren, S. Pelaz, S. E. Gold, C. Burgeff, G. S. Ditta, F. Vergara-Silva, and M. F. Yanofsky. 2000a. MADS gene evolution beyond flowers, expression in pollen, endosperm, guard cells, roots, and trichomes. Plant J. 24:457-466.[CrossRef][ISI][Medline] Alvarez-Buylla, E. R., S. Pelaz, S. J. Liljegren, S. E. Gold, C. Burgeff, G. S. Ditta, L. Ribas de Pouplana, L. Martinez-Castilla, and M. F. Yanofsky. 2000b. An ancestral MADS-box gene duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci. USA 97:5328-5333.[Abstract/FreeFullText] Becker, A., K. Kaufmann, A. Freialdenhoven, C. Vincent, M. A. Li, H. Saedler, and G. Theissen. 2002. A novel MADS-box gene subfamily with a sister-group relationship to class B floral homeotic genes. Mol. Genet. Genomics 266:942-950.[CrossRef][ISI][Medline] Becker, A., K. U. Winter, B. Meyer, H. Saedler, and G. Theissen. 2000. MADS gene diversity in seed plants 300 million years ago. Mol. Biol. Evol. 17:1425-1434.[Abstract/FreeFullText] Benton, M. J. 1993. The fossil records 2. Chapman and Hall, New York. Brocks, J. J., G. A. Logan, R. Buick, and R. E. Summons. 1999. Archean molecular fossils and the early rise of eukaryotes. Science 285:1033-1036.[Abstract/FreeFullText] Burglin, T. R. 1997. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX, Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic Acids Res. 25:4173-4180.[Abstract/FreeFullText] Butterfield, N. J. 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes. Paleobiology 26:386-404.[Abstract/FreeFullText] Cavalier-Smith, T. 2002. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52:297-354.[Abstract] Chen, M., and Z. Xiao. 1991. Discovery of the macrofossils in the Upper Sinain Doushantuo Formation at Miaohe, eastern Yangtze Gorges. Sci. Geol. Sinica 4:317-324. Conway Morris, S. 2002. Ancient animals or something else entirely? Science 298:57-58. Dickerson, R. E. 1971. The structures of cytochrome c and the rates of molecular evolution. J. Mol. Evol. 1:26-45.[CrossRef][Medline] Feng, D. F., G. Cho, and R. F. Doolittle. 1997. Determining divergence times with a protein clock: update and reevaluation. Proc. Natl. Acad. Sci. USA 94:13028-13033.[Abstract/FreeFullText] Ferrier, D. E., and P. W. Holland. 2001. Ancient origin of the Hox gene cluster. Nat. Rev. Genet. 2:33-38.[ISI][Medline] Glazko, G. V., and M. Nei. 2003. Estimation of divergence times for major lineages of primate species. Mol. Biol. Evol. 20:424-434.[Abstract/FreeFullText] Goremykin, V. V., S. Hansmann, and W. F. Martin. 1997. Evolutionary analysis of 58 proteins encoded in six completely sequenced chloroplast genomes: revised molecular estimates of two seed plant divergence times. Plant Syst. Evol. 206:337-351.[CrossRef] Gu, X., and J. Zhang. 1997. A simple method for estimating the parameter of substitution rate variation among sites. Mol. Biol. Evol. 14:1106-1113.[Abstract] Han, T. M., and B. Runnegar. 1992. Megascopic eukaryotic algae from the 2.1-billion-year-old Negaunee Iron Formation, Michigan. Science 257:232-235.[Abstract/FreeFullText] Hartmann, U., S. Hohmann, K. Nettesheim, E. Wisman, H. Saedler, and P. Huijser. 2000. Molecular cloning of SVP, a negative regulator of the floral transition in Arabidopsis. Plant J. 21:351-360.[CrossRef][ISI][Medline] Hasebe, M., C. K. Wen, M. Kato, and J. A. Banks. 1998. Characterization of MADS homeotic genes in the fern Ceratopteris richardii. Proc. Natl. Acad. Sci. USA 95:6222-6227.[Abstract/FreeFullText] Hashimoto, T., Y. Nakamura, F. Nakamura, T. Shirakura, J. Adachi, N. Goto, K. Okamoto, and M. Hasegawa. 1994. Protein phylogeny gives a robust estimation for early divergences of eukaryotes: phylogenetic place of a mitochondria-lacking protozoan, Giardia lamblia. Mol. Biol. Evol. 11:65-71.[Abstract] Henschel, K., R. Kofuji, M. Hasebe, H. Saedler, T. Münster, and G. Theissen. 2002. Two ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella patens. Mol. Biol. Evol. 19:801-814.[Abstract/FreeFullText] Hohe, A., S. A. Rensing, M. Mildner, and R. Reski. 2002. Day length and temperature strongly influence sexual reproduction and expression of a novel MADS-box gene in the moss Physcomitrella patens. Plant Biol. 4:595-602.[CrossRef] Honma, T., and K. Goto. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409:525-529.[CrossRef][Medline] Huang, H., M. Tudor, C. A. Weiss, Y. Hu, and H. Ma. 1995. The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein. Plant Mol. Biol. 28:549-567.[CrossRef][ISI][Medline] Ji, Q., Z. X. Luo, C. X. Yuan, J. R. Wible, J. P. Zhang, and J. A. Georgi. 2002. The earliest known eutherian mammal. Nature 416:816-822. Kappen, C. 2000. Analysis of a complete homeobox gene repertoire: implications for the evolution of diversity. Proc. Natl. Acad. Sci. USA 97:4481-4486.[Abstract/FreeFullText] Kramer, E. M., R. L. Dorit, and V. F. Irish. 1998. Molecular evolution of genes controlling petal and stamen development: duplication and divergence within the APETALA3 and PISTILLATA MADS-box gene lineages. Genetics 149:765-783.[Abstract/FreeFullText] Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244-1245.[Abstract/FreeFullText] Laroche, J., P. Li, and J. Bousquet. 1995. Mitochondrial DNA and monocot-dicot divergence time. Mol. Biol. Evol. 12:1151-1156.[ISI] Lee, H., S. S. Suh, E. Park, E. Cho, J. H. Ahn, S. G. Kim, J. S. Lee, Y. M. Kwon, and I. Lee. 2000. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in Arabidopsis. Genes Dev. 14:2366-2376.[Abstract/FreeFullText] Ma, H., and C. dePamphilis. 2000. The ABCs of floral evolution. Cell 101:5-8.[CrossRef][ISI][Medline] Maisey, J. G. 1996. Discovering fossil fishes. Henry Holt and Co., New York. Meyerowitz, E. M. 2002. Plants compared to animals: the broadest comparative study of development. Science 295:1482-1485.[Abstract/FreeFullText] Michaels, S. D., and R. M. Amasino. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949-956.[Abstract/FreeFullText] Michaels, S. D., G. Ditta, C. Gustafson-Brown, S. Pelaz, M. F. Yanofsky, and R. M. Amasino. 2003. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by vernalization. Plant J. 33:867-874.[CrossRef][ISI][Medline] Moon, Y., J. S. Jeon, S. K. Sung, and G. An. 1999. Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system. Plant Physiol. 120:1193-1204.[Abstract/FreeFullText] Münster, T., J. Pahnke, A. Di Rosa, J. T. Kim, W. Martin, H. Saedler, and G. Theissen. 1997. Floral homeotic genes were recruited from homologous MADS genes preexisting in the common ancestor of ferns and seed plants. Proc. Natl. Acad. Sci. USA 94:2415-2420.[Abstract/FreeFullText] Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York. Nei, M., X. Gu, and T. Sitnikova. 1997. Evolution by the birth-and-death process in multigene families of the vertebrate immune system. Proc. Natl. Acad. Sci. USA 94:7799-7806.[Abstract/FreeFullText] Nei, M., and S. Kumar. 2000. Molecular evolution and phylogenetics. Oxford University Press, New York. Nei, M., P. Xu, and G. Glazko. 2001. Estimation of divergence times from multiprotein sequences for a few mammalian species and several distantly related organisms. Proc. Natl. Acad. Sci. USA 98:2497-2502.[Abstract/FreeFullText] Nesi, N., I. Debeaujon, C. Jond, A. J. Stewart, G. I. Jenkins, M. Caboche, and L. Lepiniec. 2002. The TRANSPARENT TESTA16 locus encodes the Arabidopsis Bsister MADS domain protein and is required for proper development and pigmentation of the seed coat. Plant Cell 14:2463-2479.[Abstract/FreeFullText] Purugganan, M. D. 1997. The MADS-box floral homeotic gene lineages predate the origin of seed plants: phylogenetic and molecular clock estimates. J. Mol. Evol. 45:392-396.[CrossRef][ISI][Medline] Purugganan, M. D. 1998. The molecular evolution of development. Bioessays 20:700-711.[CrossRef][ISI][Medline] Rasmussen, B., S. Bengtson, I. R. Fletcher, and N. J. McNaughton. 2002. Discoidal impressions and trace-like fossils more than 1200 million years old. Science 296:1112-1115.[Abstract/FreeFullText] Russo, C. A., N. Takezaki, and M. Nei. 1996. Efficiencies of different genes and different tree-building methods in recovering a known vertebrate phylogeny. Mol. Biol. Evol. 13:525-536.[Abstract] Sanderson, M. J. 2003. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics 19:301-302.[Abstract/FreeFullText] Savard, L., P. Li, S. H. Strauss, M. W. Chase, M. Michaud, and J. Bousquet. 1994. Chloroplast and nuclear gene sequences indicate late Pennsylvanian time for the last common ancestor of extant seed plants. Proc. Natl. Acad. Sci. USA 91:5163-5167.[Abstract/FreeFullText] Seilacher, A., P. K. Bose, and F. Pfluger. 1998. Triploblastic animals more than 1 billion years ago: trace fossil evidence from India. Science 282:80-83.[Abstract/FreeFullText] Sheldon, C. C., P. P. Perez, J. Metzger, J. A. Edwards, W. J. Peacock, and E. S. Dennis. 1999. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11:445-458.[Abstract/FreeFullText] Shore, P., and A. D. Sharrocks. 1995. The MADS-box family of transcription factors. Eur. J. Biochem. 229:1-13.[Abstract] Soltis, P. S., D. E. Soltis, V. Savolainen, P. R. Crane, and T. G. Barraclough. 2002. Rate heterogeneity among lineages of tracheophytes: integration of molecular and fossil data and evidence for molecular living fossils. Proc. Natl. Acad. Sci. USA 99:4430-4435.[Abstract/FreeFullText] Stewart, W. N., and G. W. Rothwell. 1993. Paleobotany and the evolution of plants. Cambridge University Press, New York. Svensson, M. E., and P. Engstrom. 2002. Closely related MADS-box genes in club moss (Lycopodium) show broad expression patterns and are structurally similar to, but phylogenetically distinct from, typical seed plant MADS-box genes. New Phytol. 154:439-450.[CrossRef] Swofford, D. L. 1998. PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4. Sinauer Associates, Sunderland, Mass. Takezaki, N., A. Rzhetsky, and M. Nei. 1995. Phylogenetic test of the molecular clock and linearized trees. Mol. Biol. Evol. 12:823-833.[Abstract] The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796-815.[CrossRef][Medline] Theissen, G. 2001. Development of floral organ identity, stories from the MADS house. Curr. Opin. Plant Biol. 4:75-85.[CrossRef][ISI][Medline] Theissen, G. 2002. Secret life of genes. Nature 415:741.[Medline] Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX windows interface, flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24:4876-4882. Wang, D. Y., S. Kumar, and S. B. Hedges. 1999. Divergence time estimates for the early history of animal phyla and the origin of plants, animals, and fungi. Proc. R. Soc. Lond. Ser. B. 266:163-171.[Medline] Weigel, D., and E. M. Meyerowitz. 1994. The ABCs of floral homeotic genes. Cell 78:203-209.[CrossRef][ISI][Medline] Winter, K-U., A. Becker, T. Munster, J. T. Kim, H. Saedler, and G. Theissen. 1999. MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc. Natl. Acad. Sci. USA 96:7342-7347.[Abstract/FreeFullText] Wolfe, K. H., M. Gouy, Y. W. Yang, P. M. Sharp, and W. H. Li. 1989. Date of the monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc. Natl. Acad. Sci. USA 86:6201-6205.[Abstract/FreeFullText] Xiao, S., Y. Zhang, and A. H. Knoll. 1998. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite. Nature 391:553-558.[CrossRef] Yang, Z. 2002. Phylogenetic analysis by maximum likelihood (PAML). Version 3.13. University College London, London. Yoder, A. D., and Z. Yang. 2000. Estimation of primate speciation dates using local molecular clocks. Mol. Biol. Evol. 17:1081-1090.[Abstract/FreeFullText] Yu, J., S. Hu, and J. Wang, et al. (100 co-authors). 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. indica). Science 296:79-92.[Abstract/FreeFullText] Zhang, H., and B. G. Forde. 1998. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 279:407-409.[Abstract/FreeFullText] Zhang, J., and M. Nei. 1996. Evolution of Antennapedia-class homeobox genes. Genetics 142:295-303.[Abstract] Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509 二、 遺傳與育種 Chilcutt, C. F., and B. E. Tabashnik. 2004. Contamination of refuges by Bacillus thuringiensis toxin genes from transgenic maize. Proceedings of the National Academy of Sciences 101(20): 7526-7529. Cruden, R.W. 2000. Pollen grains: why so many? Plant Systematics and Evolution 222:143-165. Gepts, P., and R. Papa. 2003. Possible effects of (trans)gene flow from crops on the genetic diversity from landraces and wild relatives. EnvironmentalBiosafety Research 2:89-103. Luna, V. S., M. J. Figueroa, M. B. Baltazar, L. R. Gomez, R. Townsend, and J. B. Schoper. 2001. Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Science 41:1551-1557. Nakayama, Y., and H. Yamaguchi. 2002. Natural hybridization in wild soybean (Glycine max ssp. soja) by pollen flow from cultivated soybean (Glycine max. ssp. max) in a designed population. Weed Biology and Management 2:5-30. Ohara, M., and Y. Shimamoto. 2002. Importance of genetic characterization and conservation of plant genetic resources: the breeding system and genetic diversity of wild soybean (Glycine soja). Plant Species Biology 17(1):51-58. Pleasants, J. M., R. L. Hellmich, G. P. Dively, M. K. Sears, D. E. Stanley-Horn, H. R. Mattila, J. E. Foster, P. Clark, and G. D. Jones. 2001. Corn pollen deposition on milkweeds in and near cornfields. Proceedings of the National Academy of Sciences 98:11919-11924. Westgate, M. E., J. Lizaso, and W. Batchelor. 2003. Quantitative relationships between pollen shed density and grain yield in maize. Crop Science 43:934-942. DeCosa, B., W. Moar, S. B. Lee, M. Miller, and H. Ding, D., J. Gai, Z. Cui, and J. Qiu. 2002. Development of a cytoplasmic-nuclear male-sterile line of soybean. Euphytica 124:85-91. Lee, S.B., M.O. Byun, and H. Daniell. 2003. Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Molecular Breeding 11:1-13. Westgate, M.E., J. Lizaso, and W. Batchelor. 2003. Quantitative relationships between pollen 三、 分子遺傳 Daniell, H. 2002. Molecular strategies for gene containment in transgenic crops. Nature Biotechnology. 20:581-586. Daniell, H., and A. Dhingra. 2002. Multiple gene engineering: dawn of an exciting new era in biotechnology. Current Opinion in Biotechnology 13:136-141. Daniell, H., M. S. Khan, and L. Allison. 2001. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends in Plant Science 7:84-91. Daniell, H., S. B. Lee, T. Panchal, and P. O. Wiebe. 2001. Expression and assembly of the native cholera toxin B subunit gene as functional oligomers in transgenic tobacco chloroplasts. Journal of Molecular Biology 311:1001-1009. Daniell, H., B. Muthukumar, and S. B. Lee. 2001. Engineering the chloroplast genome without the use of antibiotic selection. Current Genetics 39:109-116. DeCosa, B., W. Moar, S. B. Lee, M. Miller, and H. Ding, D., J. Gai, Z. Cui, and J. Qiu. 2002. Development of a cytoplasmic-nuclear male-sterile line of soybean. Euphytica 124:85-91. Watson, J., V. Koya, S. H. Leppla, and H. Daniell. 2004. Expression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine 22:4374-4384. Law RD, Russell DA, Thompson LC, Schroeder SC, Middle CM, Tremaine MT, Jury TP, Delannay X, Slater SC (2006) Biochemical limitations to high-level expression of humanized monoclonal antibodies in transgenic maize seed endosperm. Biochim. Biophys. Acta (General Subjects) 1760:1434-1444. Law RD, Suttle JC (2005) Chromatin remodeling in plant cell culture: patterns of DNA methylation and histone H3 and H4 acetylation vary during growth of asynchronous potato cell suspensions. Plant Physiol. Biochem. 43: 527-534. Law RD, Suttle JC (2004) Changes in histone H3 and H4 multi-acetylation during natural and forced dormancy break in potato tubers. Physiol. Plant. 120: 642-649. Law RD, Suttle JC (2003) Transient decreases in methylation at 5'-CCGG-3' sequences in potato (Solanum tuberosum L.) meristem DNA during progression of tubers through dormancy precede the resumption of sprout growth. Plant Mol. Biol. 51: 437-447. Law RD, Crafts-Brandner SJ, Salvucci ME (2001) Heat stress induces the synthesis of a new form of ribulose-1,5-bisphosphate carboxylase/oxygenase activase in cotton leaves. Planta 214: 117-125. Law RD, Crafts-Brandner SJ (2001) High temperature stress increases the expression of wheat leaf ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein. Arch. Biochem. Biophys. 386: 261-267. Crafts-Brandner SJ, Law RD (2000) Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state. Planta 212: 67-74. Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y. Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple targets in diverse species. Plant Cell (2006) 18:1134–1151.[Abstract/FreeFullText] Bowman JL, Eshed Y, Baum SF. Establishment of polarity in angiosperm lateral organs. Trends Genet (2002) 18:134–141.[CrossRef][ISI][Medline] Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA. Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature (2000) 408:967–971.[CrossRef][Medline] Byrne M, Timmermans M, Kidner C, Martienssen R. Development of leaf shape. Curr. Opin. Plant Biol (2001) 4:38–43.[CrossRef][ISI][Medline] Chen C, Wang S, Huang H. LEUNIG has multiple functions in gynoecium development in Arabidopsis. Genesis (2000) 26:42–54.[CrossRef][ISI][Medline] Chen Q, Atkinson A, Otsuga D, Christensen T, Reynolds L, Drews GN. The Arabidopsis FILAMENTOUS FLOWER gene is required for flower formation. Development (1999) 126:2715–2726.[Abstract] Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL. Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol (2003) 13:1768–1774.[CrossRef][ISI][Medline] Eshed Y, Baum SF, Perea JV, Bowman JL. Establishment of polarity in lateral organs of plants. Curr. Biol (2001) 11:1251–1260.[CrossRef][ISI][Medline] Eshed Y, Izhaki A, Baum SF, Floyd SK, Bowman JL. Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development (2004) 131:2997–3006.[Abstract/FreeFullText] Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington JC. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental timing and patterning in Arabidopsis. Curr. Biol (2006) 16:939–944.[CrossRef][ISI][Medline] Garcia D, Collier SA, Byrne ME, Martienssen RA. Specification of leaf polarity in Arabidopsis via the trans-acting siRNA pathway. Curr. Biol (2006) 16:933–938.[CrossRef][ISI][Medline] Huang H, Tudor M, Weiss CA, Hu Y, Ma H. The Arabidopsis MADS-box gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein. Plant Mol. Biol (1995) 28:549–567.[CrossRef][ISI][Medline] Huang W, Pi L, Liang W, Xu B, Wang H, Cai R, Huang H. The proteolytic function of the Arabidopsis 26S proteasome is required for specifying leaf adaxial identity. Plant Cell (2006) 18:2479–2492.[Abstract/FreeFullText] Hudson A. Development of symmetry in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol (2000) 51:349–370.[CrossRef] Iwakawa H, Ueno Y, Semiart E, Onouchi H, Kojima S, Tsukaya H, Hasebe M, Soma T, Ikezaki M, Machida C, Machida Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol (2002) 43:467–478.[Abstract/FreeFullText] Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS. KANADI regulates organ polarity in Arabidopsis. Nature (2001) 411:706–709.[CrossRef][Medline] Kidner CA, Martienssen RA. Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature (2004) 428:81–84.[CrossRef][Medline] Kumaran MK, Bowman JL, Sundaresan V. YABBY polarity genes mediate the repression of KNOX homeobox genes in Arabidopsis. Plant Cell (2002) 14:2761–2770.[Abstract/FreeFullText] Li H, Xu L, Wang H, Yuan Z, Cao X, Yang Z, Zhang D, Xu Y, Huang H. The putative RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and microRNA165/166 in Arabidopsis leaf development. Plant Cell (2005) 17:2157–2171.[Abstract/FreeFullText] Lin WC, Shuai B, Springer PS. The Arabidopsis LATERAL ORGAN BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in adaxial–abaxial patterning. Plant Cell (2003) 15:2241–2252.[Abstract/FreeFullText] Long JA, Barton MK. The development of apical embryonic pattern in Arabidopsis. Development (1998) 125:3027–3035.[Abstract] Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton MK. The PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has overlapping functions with the ARGONAUTE1 gene. Development (1999) 126:469–481.[Abstract] Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP. MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5' region. EMBO J (2004) 23:3356–3364.[CrossRef][ISI][Medline] McConnell JR, Barton MK. Leaf polarity and meristem formation in Arabidopsis. Development (1998) 125:2935–2942.[Abstract] McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature (2001) 411:709–713.[CrossRef][Medline] Nakazawa M, Ichikawa T, Ishikawa A, Kobayashi H, Tsuhara Y, Kawashima M, Suzuki K, Muto S, Matsui M. Activation tagging, a novel tool to dissect the functions of a gene family. Plant J (2003) 34:741–750.[CrossRef][ISI][Medline] Ori N, Eshed Y, Chuck G, Bowman JL, Hake S. Mechanisms that control knox gene expression in the Arabidopsis shoot. Development (2000) 127:5523–5532.[Abstract] Pekker I, Alvarez JP, Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. Plant Cell (2005) 17:2899–2910.[Abstract/FreeFullText] Phelps-Durr TL, Thomas J, Vahab P, Timmermans MC. Maize rough sheath2 and its Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone chaperone, to maintain knox gene silencing and determinacy during organogenesis. Plant Cell (2005) 17:2886–98.[Abstract/FreeFullText] Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE. Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant Cell (2005) 17:61–76.[Abstract/FreeFullText] Qi Y, Sun Y, Xu L, Xu Y, Huang H. ERECTA is required for protection against heat-stress in the AS1/AS2 pathway to regulate adaxial–abaxial leaf polarity in Arabidopsis. Planta (2004) 219:270–276.[CrossRef][ISI][Medline] Sawa S, Watanabe K, Goto K, Liu YG, Shibata D, Kanaya E, Morita EH, Okada K. FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev (1999) 13:1079–1088.[Abstract/FreeFullText] Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development (2001) 128:1771–1783.[Abstract] Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL. Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development (1999) 126:4117–4128.[Abstract] Sun Y, Zhou Q, Zhang W, Fu Y, Huang H. ASYMMETRIC LEAVES1, an Arabidopsis gene that is involved in the control of cell differentiation in leaves. Planta (2002) 214:694–702.[CrossRef][ISI][Medline] Sun Y, Zhang W, Li FL, Guo YL, Liu TL, Huang H. Identification and genetic mapping of four novel genes that regulate leaf development in Arabidopsis. Cell Res (2000) 10:325–335.[CrossRef][ISI][Medline] Waites R, Hudson A. phantastica: a gene required for dorsoventrality of leaves in Antirrhinum majus. Development (1995) 121:2143–2154.[Abstract] Waites R, Selvadurai HR, Oliver IR, Hudson A. The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell (1998) 93:779–789.[CrossRef][ISI][Medline] Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC. Regulation of Arabidopsis shoot apical meristerm and lateral organ formation by microRNA miR166g and its AtHD-ZIP target genes. Development (2005) 132:3657–3668.[Abstract/FreeFullText] Xu L, Xu Y, Dong A, Sun Y, Pi L, Huang H. Novel as1 and as2 defects in leaf adaxial–abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and ERECTA functions in specifying leaf adaxial identity. Development (2003) 130:4097–4107.[Abstract/FreeFullText] Xu L, Yang L, Pi L, Liu Q, Ling Q, Wang H, Poethig RS, Huang H. Genetic interaction between the AS1–AS2 and RDR6–SGS3–AGO7 pathways for leaf morphogenesis. Plant Cell Physiol (2006) 47:853–863.[Abstract/FreeFullText] Xu Y, Sun Y, Liang W, Huang H. The Arabidopsis AS2 gene encoding a predicted leucine-zipper protein is required for the leaf polarity formation. Acta Bot. Sin (2002) 44:1194–1202. Yang L, Huang W, Wang H, Cai R, Xu Y, Huang H. Characterizations of a hypomorphic argonaute1 mutant reveal novel AGO1 functions in Arabidopsis lateral organ development. Plant Mol. Biol (2006) 61:63–78.[CrossRef][ISI][Medline] Zhong R, Ye ZH. Amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell Physiol (2004) 45:369–385.[Abstract/FreeFullText] Genetic engineering and GMO Daniell, H. 2002. Molecular strategies for gene containment in transgenic crops. Nature Biotechnology. 20:581-586. Chilcutt, C. F. and B. E. Tabashnik. 2004. Contamination of refuges by Bacillus thuringiensis toxin genes from transgenic maize. Proceedings of the NationalAcademy of Sciences 101(20): 7526-7529. Cruden, R.W. 2000. Pollen grains: why so many? Plant Systematics and Evolution 222:143-165. Gepts, P., and R. Papa. 2003. Possible effects of (trans)gene flow from crops on the genetic diversity from landraces and wild relatives. EnvironmentalBiosafety Research 2:89-103. Luna, V.S., M.J. Figueroa, M.B. Baltazar, L.R. Gomez, R. Townsend, and J.B. Schoper. 2001. Maize pollen longevity and distance isolation requirements for effective pollen control. Crop Science 41:1551-1557. Nakayama, Y., and H. Yamaguchi. 2002. Natural hybridization in wild soybean (Glycine max ssp. soja) by pollen flow from cultivated soybean (Glycine max. ssp. max) in a designed population. Weed Biology and Management 2:5-30. Ohara, M., and Y. Shimamoto. 2002. Importance of genetic characterization and conservation of plant genetic resources: the breeding system and genetic diversity of wild soybean (Glycine soja). Plant Species Biology 17(1):51-58. Pleasants, J.M., R.L. Hellmich, G.P. Dively, M.K. Sears, D.E. Stanley-Horn, H.R. Mattila, J.E. Foster, P. Clark, and G.D. Jones. 2001. Corn pollen deposition on milkweeds in and near cornfields. Proceedings of the National Academy of Sciences 98:11919-11924. Westgate, M.E., J. Lizaso, and W. Batchelor. 2003. Quantitative relationships between pollen shed density and grain yield in maize. Crop Science 43:934-942. Daniell, H. 2002. Molecular strategies for gene containment in transgenic crops. Nature Biotechnology 20:581-586. Daniell, H., and A. Dhingra. 2002. Multiple gene engineering: dawn of an exciting new era in biotechnology. Current Opinion in Biotechnology 13:136-141. Daniell, H., M.S. Khan, and L. Allison. 2001. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends in Plant Science 7:84-91. Daniell, H., S.B. Lee, T. Panchal, and P.O. Wiebe. 2001. Expression and assembly of the native cholera toxin B subunit gene as functional oligomers in transgenic tobacco chloroplasts. Journal of Molecular Biology 311:1001-1009. Daniell, H., B. Muthukumar, and S.B. Lee. 2001. Engineering the chloroplast genome without the use of antibiotic selection. Current Genetics 39:109-116. DeCosa, B., W. Moar, S.B. Lee, M. Miller, and H. Ding, D., J. Gai, Z. Cui, and J. Qiu. 2002. Development of a cytoplasmic-nuclear male-sterile line of soybean. Euphytica 124:85-91. Koivu, K., A. Kanerva, and E. Pehu. 2001. Molecular control of transgene escape from genetically modified plants. Plant Science 160:517-522. Lee, S.B., M.O. Byun, and H. Daniell. 2003. Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Molecular Breeding 11:1-13. Ruf, S., M. Hermann, I. Berger, H. Carrer, and R. Bock. 2001. Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nature Biotechnology 19:870-875. Schernthaner, J.P., S.F. Fabijanski, P.G. Arnison, M. Racicot, and L.S. Robert. 2003. Control of seed germination in transgenic plants based on the segregation of a two-component genetic system. Proceedings of the National Academy of Sciences of the United States of America 100(11):6855-6859. Westgate, M.E., J. Lizaso, and W. Batchelor. 2003. Quantitative relationships between pollen shed density and grain yield in maize. Crop Science 43:934-942. Watson, J., V. Koya, S.H. Leppla, and H. Daniell. 2004. Expression of Bacillus anthracis protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine 22:4374-4384. 四、 生物統計與試驗設計 1. Chen, C. L. and W. H. Swallow. 1990. Using group testing to estimate a proportion and to test the binomial model. Biometrics 46: 1035-1046. 2. Dobermann, A. and J. L. Ping. 2004. Geostatistical integration of yield monitor data and remote sensing improves yield maps. Agron. J. 96: 285-297. 3. Gauch, H.G. Jr., J. T. Gene Hwang, and Gary W. Fick. 2003. Model Evaluation by Comparison of Model-Based Predictions and Measured Values. Agron. J. 2003; 95: 1442-1446. 4. Gilles Bélanger, John R. Walsh, John E. Richards, Paul H. Milburn, and Noura Ziadi. 2000. Comparison of Three Statistical Models Describing Potato Yield Response to Nitrogen Fertilizer. Agron. J. 2000; 92: 902-908. 5. Hughes, G. and L.V. Madden. 1992. Aggregation and incidence of disease. Plant Pathology. 42:657-660. 6. Johnson, D. A., J. R. Alldredge, and D. L. Vakoch. 1996. Potato late blight forecasting models for the semiarid environment of South-Central Washington. Phytopathology. 86:480-484. 7. Kobayashi, K. and M. U. Salam. 2000. Comparing simulated and measured values using mean squared deviation and its components. Agron. J. 92:345-352. 8. Madden, L. V. and G. Hughes. 1999. Sampling for plant disease incidence. Phytopathology. 89:1088-1103. 9. Pethybridge, S. J., C. R. Wilson, F. J. Ferrandino and G. W. Leggett. 2000. Spatial analyses of viral epidemics in Australian hop gardens implications for mechanisms of spread. Plant Dis.,84(5):513-515. 10. Yang, Rong-Cai, Terrance Z. Ye, Stanford F. Blade, and Manjula Bandara. 2004. Efficiency of Spatial Analyses of Field Pea Variety Trials. Crop Sci. 2004; 44: 49-55.