Download Daniell, H

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
專題討論參考題目
一、
作物栽培與生理生化
1 J.L. Bowman, Y. Eshed and S.F. Baum, Establishment of polarity in angiosperm lateral
organs, Trends Genet 18 (2002), pp. 134–141. SummaryPlus | Full Text + Links | PDF (2451
K) | View Record in Scopus | Cited By in Scopus
2 M.C.P. Timmermans, M.T. Juarez and T.L. Phelps-Durr, A conserved microRNA signal
specifies leaf polarity, Cold Spring Harb Symp Quant Biol 69 (2004), pp. 409–417. View
Record in Scopus | Cited By in Scopus
3 I.M. Sussex, Experiments on the cause of dorsiventrality in leaves, Nature 167 (1951), pp.
651–652. Full Text via CrossRef
4 D. Reinhardt, M. Frenz, T. Mandel and C. Kuhlemeier, Microsurgical and laser ablation
analysis of leaf positioning and dorsoventral patterning in tomato, Development 132 (2005),
pp. 15–26. View Record in Scopus | Cited By in Scopus
5 J.R. McConnell, J. Emery, Y. Eshed, N. Bao, J. Bowman and M.K. Barton, Role of
PHABULOSA and PHAVOLUTA in determining radial patterning in shoots, Nature 411
(2001), pp. 709–713. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus
6 J.F. Emery, S.K. Floyd, J. Alvarez, Y. Eshed, N.P. Hawker, A. Izhaki, S.F. Baum and J.L.
Bowman, Radial patterning of Arabidopsis shoots by Class III HD-ZIP and KANADI genes,
Curr Biol 13 (2003), pp. 1768–1774. SummaryPlus | Full Text + Links | PDF (483 K) | View
Record in Scopus | Cited By in Scopus
7 M.J. Prigge, D. Otsuga, J.M. Alonso, J.R. Ecker, G.N. Drews and S.E. Clark, Class III
homeodomain-leucine zipper gene family members have overlapping, antagonistic, and
distinct roles in Arabidopsis development, Plant Cell 17 (2005), pp. 61–76. Full Text via
CrossRef | View Record in Scopus | Cited By in Scopus
8 D. Otsuga, B. DeGuzman, M.J. Prigge, G.N. Drews and S.E. Clark, REVOLUTA regulates
meristem initiation at lateral positions, Plant J 25 (2001), pp. 223–236. Full Text via
CrossRef | View Record in Scopus | Cited By in Scopus
9 R.A. Kerstetter, K. Bollman, R.A. Taylor, K. Bomblies and R.S. Poethig, KANADI
regulates organ polarity in Arabidopsis, Nature 411 (2001), pp. 706–709. Full Text via
CrossRef | View Record in Scopus | Cited By in Scopus
10 Y. Eshed, S.F. Baum, J.V. Perea and J.L. Bowman, Establishment of polarity in lateral
organs of plants, Curr Biol 11 (2001), pp. 1251–1260. SummaryPlus | Full Text + Links |
PDF (713 K) | View Record in Scopus | Cited By in Scopus
11 Y. Eshed, A. Izhaki, S.F. Baum, S.K. Floyd and J.L. Bowman, Asymmetric leaf
development and blade expansion in Arabidopsis are mediated by KANADI and YABBY
activities, Development 131 (2004), pp. 2997–3006. Full Text via CrossRef | View Record in
Scopus | Cited By in Scopus
12•• I. Pekker, J.P. Alvarez and Y. Eshed, Auxin response factors mediate Arabidopsis
organ asymmetry via modulation of KANADI activity, Plant Cell 17 (2005), pp. 2899–2910.
13 S. Hake, H.M. Smith, H. Holtan, E. Magnani, G. Mele and J. Ramirez, The role of knox
genes in plant development, Annu Rev Cell Dev Biol 20 (2004), pp. 125–151. Full Text via
CrossRef | View Record in Scopus | Cited By in Scopus
14•• H. Li, L. Xu, H. Wang, Z. Yuan, X. Cao, Z. Yang, D. Zhang, Y. Xu and H. Huang,
The putative RNA-dependent RNA polymerase RDR6 acts synergistically with
ASYMMETRIC LEAVES1 and 2 to repress BREVIPEDICELLUS and microRNA165/166 in
Arabidopsis leaf development, Plant Cell 17 (2005), pp. 2157–2171. Full Text via CrossRef |
View Record in Scopus | Cited By in Scopus
15•• D. Garcia, S.A. Collier, M.E. Byrne and R.A. Martienssen, Specification of leaf
polarity in Arabidopsis via the trans-acting siRNA pathway, Curr Biol 16 (2006), pp.
933–938. SummaryPlus | Full Text + Links | PDF (338 K) | View Record in Scopus | Cited
By in Scopus
16 L. Xu, L. Yang, L. Pi, Q. Liu, Q. Ling, H. Wang, R.S. Poethig and H. Huang, Genetic
interaction between the AS1-AS2 and RDR6-SGS3-AGO7 pathways for leaf morphogenesis,
Plant Cell Physiol 47 (2006), pp. 853–863. Full Text via CrossRef | View Record in Scopus |
Cited By in Scopus
17 R. Waites and A. Hudson, phantastica: a gene required for dorsoventrality of leaves in
Antirrhinum majus, Development 121 (1995), pp. 2143–2154. View Record in Scopus | Cited
By in Scopus
18 R. Waites, H.R. Selvadurai, I.R. Oliver and A. Hudson, The PHANTASTICA gene encodes
a MYB transcription factor involved in growth and dorsoventrality of lateral organs in
Antirrhinum, Cell 93 (1998), pp. 779–789. SummaryPlus | Full Text + Links | PDF (632 K) |
View Record in Scopus | Cited By in Scopus
19 W.C. Lin, B. Shuai and P.S. Springer, The Arabidopsis LATERAL ORGAN
BOUNDARIES-domain gene ASYMMETRIC LEAVES2 functions in the repression of
KNOX gene expression and in adaxial–abaxial patterning, Plant Cell 15 (2003), pp.
2241–2252. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus
20 K.R. Siegfried, Y. Eshed, S.F. Baum, D. Otsuga, G.N. Drews and J.L. Bowman, Members
of the YABBY gene family specify abaxial cell fate in Arabidopsis, Development 126 (1999),
pp. 4117–4128. View Record in Scopus | Cited By in Scopus
21 C.A. Kidner and R.A. Martienssen, The developmental role of microRNA in plants, Curr
Opin Plant Biol 8 (2005), pp. 38–44. SummaryPlus | Full Text + Links | PDF (348 K) | View
Record in Scopus | Cited By in Scopus
22 M.W. Jones-Rhoades, D.P. Bartel and B. Bartel, MicroRNAs and their regulatory roles in
plants, Annu Rev Plant Biol 57 (2006), pp. 19–53. Full Text via CrossRef | View Record in
Scopus | Cited By in Scopus
23 B.J. Reinhart, E.G. Weinstein, M.W. Rhoades, B. Bartel and D.P. Bartel, MicroRNAs in
plants, Genes Dev 16 (2002), pp. 1616–1626. Full Text via CrossRef | View Record in
Scopus | Cited By in Scopus
24 M.T. Juarez, J.S. Kui, J. Thomas, B.A. Heller and M.C.P. Timmermans,
microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity, Nature 428 (2004),
pp. 84–88. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus
25 C.A. Kidner and R.A. Martienssen, Spatially restricted microRNA directs leaf polarity
through ARGONAUTE1, Nature 428 (2004), pp. 81–84. Full Text via CrossRef | View
Record in Scopus | Cited By in Scopus
26 A.C. Mallory, B.J. Reinhart, M.W. Jones-Rhoades, G. Tang, P.D. Zamore, M.K. Barton
and D.P. Bartel, MicroRNA control of PHABULOSA in leaf development: importance of
pairing to the microRNA 5′ region, EMBO J 23 (2004), pp. 3356–3364. Full Text via
CrossRef | View Record in Scopus | Cited By in Scopus
27•• J.P. Alvarez, I. Pekker, A. Goldshmidt, E. Blum, Z. Amsellem and Y. Eshed,
Endogenous and synthetic microRNAs stimulate simultaneous, efficient, and localized
regulation of multiple targets in diverse species, Plant Cell 18 (2006), pp. 1134–1151. Full
Text via CrossRef | View Record in Scopus | Cited By in Scopus
28 N. Bao, K.W. Lye and M.K. Barton, MicroRNA binding sites in Arabidopsis class III
HD-ZIP mRNAs are required for methylation of the template chromosome, Dev Cell 7 (2004),
pp. 653–662. SummaryPlus | Full Text + Links | PDF (359 K) | View Record in Scopus |
Cited By in Scopus
29•• E. Allen, Z. Xie, A.M. Gustafson and J.C. Carrington, microRNA-directed phasing
during trans-acting siRNA biogenesis in plants, Cell 121 (2005), pp. 207–221. SummaryPlus
| Full Text + Links | PDF (1042 K) | View Record in Scopus | Cited By in Scopus
30• L. Williams, C.C. Carles, K.S. Osmont and J.C. Fletcher, A database analysis method
identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2,
ARF3, and ARF4 genes, Proc Natl Acad Sci USA 102 (2005), pp. 9703–9708. Full Text via
CrossRef | View Record in Scopus | Cited By in Scopus
The authors identify a conserved ta-siRNA that targets members of the ARF family.
31 P. Brodersen and O. Voinnet, The diversity of RNA silencing pathways in plants, Trends
Genet 22 (2006), pp. 268–280. SummaryPlus | Full Text + Links | PDF (288 K) | View
Record in Scopus | Cited By in Scopus
32 A. Peragine, M. Yoshikawa, G. Wu, H.L. Albrecht and R.S. Poethig, SGS3 and
SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting
siRNAs in Arabidopsis, Genes Dev 18 (2004), pp. 2368–2379. Full Text via CrossRef | View
Record in Scopus | Cited By in Scopus
33• X. Adenot, T. Elmayan, D. Lauressergues, S. Boutet, N. Bouche, V. Gasciolli and H.
Vaucheret, DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through
AGO7, Curr Biol 16 (2006), pp. 927–932. SummaryPlus | Full Text + Links | PDF (376 K) |
View Record in Scopus | Cited By in Scopus
34•• N. Fahlgren, T.A. Montgomery, M.D. Howell, E. Allen, S.K. Dvorak, A.L. Alexander
and J.C. Carrington, Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects
developmental timing and patterning in Arabidopsis, Curr Biol 16 (2006), pp. 939–944.
SummaryPlus | Full Text + Links | PDF (435 K) | View Record in Scopus | Cited By in Scopus
35• C. Hunter, M.R. Willmann, G. Wu, M. Yoshikawa, M. de la Luz Gutierrez-Nava and
S.R. Poethig, Trans-acting siRNA-mediated repression of ETTIN and ARF4 regulates
heteroblasty in Arabidopsis, Development 133 (2006), pp. 2973–2981. Full Text via
CrossRef | View Record in Scopus | Cited By in Scopus
36•• S.P. Grigg, C. Canales, A. Hay and M. Tsiantis, SERRATE coordinates shoot
meristem function and leaf axial patterning in Arabidopsis, Nature 437 (2005), pp.
1022–1026. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus
37• L. Yang, Z. Liu, F. Lu, A. Dong and H. Huang, SERRATE is a novel nuclear regulator
in primary microRNA processing in Arabidopsis, Plant J 47 (2006), pp. 841–850. Full Text
via CrossRef | View Record in Scopus | Cited By in Scopus
38 D. Reinhardt, E.R. Pesce, P. Stieger, T. Mandel, K. Baltensperger, M. Bennett, J. Traas, J.
Friml and C. Kuhlemeier, Regulation of phyllotaxis by polar auxin transport, Nature 426
(2003), pp. 255–260. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus
39 S.B. Tiwari, G. Hagen and T. Guilfoyle, The roles of auxin response factor domains in
auxin-responsive transcription, Plant Cell 15 (2003), pp. 533–543. Full Text via CrossRef |
View Record in Scopus | Cited By in Scopus
40•• M.G. Heisler, C. Ohno, P. Das, P. Sieber, G.V. Reddy, J.A. Long and E.M.
Meyerowitz, Patterns of auxin transport and gene expression during primordium development
revealed by live imaging of the Arabidopsis inflorescence meristem, Curr Biol 15 (2005), pp.
1899–1911. SummaryPlus | Full Text + Links | PDF (840 K) | View Record in Scopus | Cited
By in Scopus
41•• S.K. Floyd, C.S. Zalewski and J.L. Bowman, Evolution of class III
homeodomain-leucine zipper genes in streptophytes, Genetics 173 (2006), pp. 373–388. Full
Text via CrossRef | View Record in Scopus | Cited By in Scopus
42 S.K. Floyd and J.L. Bowman, Gene regulation: ancient microRNA target sequences in
plants, Nature 428 (2004), pp. 485–486. Full Text via CrossRef | View Record in Scopus |
Cited By in Scopus
43 A. Carlsbecker and Y. Helariutta, Phloem and xylem specification: pieces of the puzzle
emerge, Curr Opin Plant Biol 8 (2005), pp. 512–517. SummaryPlus | Full Text + Links | PDF
(182 K) | View Record in Scopus | Cited By in Scopus
44•• C.J. Harrison, S.B. Corley, E.C. Moylan, D.L. Alexander, R.W. Scotland and J.A.
Langdale, Independent recruitment of a conserved developmental mechanism during leaf
evolution, Nature 434 (2005), pp. 509–514. Full Text via CrossRef | View Record in Scopus |
Cited By in Scopus
45 N.A. McHale and R.E. Koning, PHANTASTICA regulates development of the adaxial
mesophyll in Nicotiana leaves, Plant Cell 16 (2004), pp. 1251–1262. Full Text via CrossRef |
View Record in Scopus | Cited By in Scopus
46 M. Kim, S. McCormick, M. Timmermans and N. Sinha, The expression domain of
PHANTASTICA determines leaflet placement in compound leaves, Nature 424 (2003), pp.
438–443. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus
47• J.H. Luo, J. Yan, L. Weng, J. Yang, Z. Zhao, J.H. Chen, X.H. Hu and D. Luo, Different
expression patterns of duplicated PHANTASTICA-like genes in Lotus japonicus suggest their
divergent functions during compound leaf development, Cell Res 15 (2005), pp. 665–677.
Full Text via CrossRef | View Record in Scopus | Cited By in Scopus
48 M.E. Byrne, R. Barley, M. Curtis, J.M. Arroyo, M. Dunham, A. Hudson and R.A.
Martienssen, Asymmetric leaves1 mediates leaf patterning and stem cell function in
Arabidopsis, Nature 408 (2000), pp. 967–971. View Record in Scopus | Cited By in Scopus
49•• A. Hay and M. Tsiantis, The genetic basis for differences in leaf form between
Arabidopsis thaliana and its wild relative Cardamine hirsuta, Nat Genet 38 (2006), pp.
942–947. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus
50• A.D. Tattersall, L. Turner, M.R. Knox, M.J. Ambrose, T.H. Ellis and J.M. Hofer, The
mutant crispa reveals multiple roles for PHANTASTICA in pea compound leaf development,
Plant Cell 17 (2005), pp. 1046–1060. View Record in Scopus | Cited By in Scopus
51 T. Arazi, M. Talmor-Neiman, R. Stav, M. Riese, P. Huijser and D.C. Baulcombe, Cloning
and characterization of micro-RNAs from moss, Plant J 43 (2005), pp. 837–848. View
Record in Scopus | Cited By in Scopus
52 M.J. Axtell and D.P. Bartel, Antiquity of microRNAs and their targets in land plants, Plant
Cell 17 (2005), pp. 1658–1673. Full Text via CrossRef | View Record in Scopus | Cited By in
Scopus
53 T.J. Cooke, D. Poli, A.E. Sztein and J.D. Cohen, Evolutionary patterns in auxin action,
Plant Mol Biol 49 (2002), pp. 319–338. Full Text via CrossRef | View Record in Scopus |
Cited By in Scopus
54 M.C.P. Timmermans, N.P. Schultes, J.P. Jankovsky and T. Nelson, Leafbladeless1 is
required for dorsoventrality of lateral organs in maize, Development 125 (1998), pp.
2813–2823. View Record in Scopus | Cited By in Scopus
55 P. Dunoyer, C. Himber and O. Voinnet, DICER-LIKE 4 is required for RNA interference
and produces the 21-nucleotide small interfering RNA component of the plant cell-to-cell
silencing signal, Nat Genet 37 (2005), pp. 1356–1360. Full Text via CrossRef | View Record
in Scopus | Cited By in Scopus
56 M.C.P. Timmermans, A. Hudson, P.W. Becraft and T. Nelson, ROUGH SHEATH2: a Myb
protein that represses knox homeobox genes in maize lateral organ primordia, Science 284
(1999), pp. 151–153. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus
57 M. Tsiantis, R. Schneeberger, J.F. Golz, M. Freeling and J.A. Langdale, The maize rough
sheath2 gene and leaf development programs in monocot and dicot plants, Science 284 (1999),
pp. 154–156. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus
58 J.F. Golz, M. Roccaro, R. Kuzoff and A. Hudson, GRAMINIFOLIA promotes growth and
polarity of Antirrhinum leaves, Development 131 (2004), pp. 3661–3670. Full Text via
CrossRef | View Record in Scopus | Cited By in Scopus
59 C. Navarro, N. Efremova, J.F. Golz, R. Rubiera, M. Kuckenberg, R. Castillo, O. Tietz, H.
Saedler and Z. Schwarz-Sommer, Molecular and genetic interactions between STYLOSA and
GRAMINIFOLIA in the control of Antirrhinum vegetative and reproductive development,
Development 131 (2004), pp. 3649–3659. Full Text via CrossRef | View Record in Scopus |
Cited By in Scopus
60 M. Kim, T. Pham, A. Hamidi, S. McCormick, R.K. Kuzoff and N. Sinha, Reduced leaf
complexity in tomato wiry mutants suggests a role for PHAN and KNOX genes in generating
compound leaves, Development 130 (2003), pp. 4405–4415. Full Text via CrossRef | View
Record in Scopus | Cited By in Scopus
61 T. Yamaguchi, N. Nagasawa, S. Kawasaki, M. Matsuoka, Y. Nagato and H.Y. Hirano, The
YABBY gene DROOPING LEAF regulates carpel specification and midrib development in
Oryza sativa, Plant Cell 16 (2004), pp. 500–509. Full Text via CrossRef | View Record in
Scopus | Cited By in Scopus
62• S. Gleissberg, E.P. Groot, M. Schmalz, M. Eichert, A. Kolsch and S. Hutter,
Developmental events leading to peltate leaf structure in Tropaeolum majus (Tropaeolaceae)
are associated with expression domain changes of a YABBY gene, Dev Genes Evol 215
(2005), pp. 313–319. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus
63 M.T. Juarez, R.W. Twigg and M.C.P. Timmermans, Specification of adaxial cell fate
during maize leaf development, Development 131 (2004), pp. 4533–4544. Full Text via
CrossRef | View Record in Scopus | Cited By in Scopus
64 S.K. Floyd and J.L. Bowman, Distinct developmental mechanisms reflect the independent
origins of leaves in vascular plants, Curr Biol 16 (2006), pp. 1911–1917. SummaryPlus | Full
Text + Links | PDF (722 K) | View Record in Scopus | Cited By in Scopus
Rice mutants
Bustin SA (2000) Absolute quantification of mRNA using real-time reverse transcription
polymerase chain reaction assays. J Mol Endocrinol 25:169–193
Chuang CF, Meyerowitz EM (2000) Specific and heritable genetic interference by
double-stranded RNA in Arabidopsis thaliana. Proc Natl Acad Sci USA 97:4985–4990
Honma T, Goto K (2001) Complexes of MADS-box proteins are sufficient to convert leaves
into floral organs. Nature 409: 525–529
Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH (2000) Leafy hull sterile 1 is a homeotic
mutation in a rice MADS Box gene affecting rice flower development. Plant Cell
128:871–884
Kyozuka J, Kobayashi T, Morita M, Shimamoto K (2000) Spatially and temporally regulated
expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes.
Plant Cell Physiol 41:710–718
Lee S, Jeon JS, An K, Moon YH, Lee S, Chung YY, An G (2003) Alteration of floral organ
identity in rice through ectopic expression of OsMADS16. Planta 217:904–911
Lim J, Moon YH, An G, Jang SK (2000) Two rice MADS domain proteins interact with
OsMADS1. Plant Mol Bio 44:513–527
Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2002)
SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice.
Development 130:705–718
Pelaz S, Gary SD, Baumann E, Wisman E, Yanofsky MF (2000) B and C floral organ identity
functions require SEPALLATA MADS-box genes. Nature 405:200–203
Prasad K, Sriram P, Kumar CS, Kushalappa K, Vijayraghavan U (2001) Ectopic expression of
rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous
to sepals. Dev Genes Evol 211:281–290
Suzaki T, Sato M, Ashikari M, Miyoshi M, Nagato Y, Hirano H (2004) The gene FLORAL
ORGAN NUMBER1 regulates floral meristem size in rice and encodes a leucine-rich repeat
receptor kinase orthologous to Arabidopsis CLAVATA1. Development 131:5649–5657
Theissen G, Saedler H (2001) Floral quartets. Nature 409:469–471
Thomas J (2001) Relearning our ABCs: new twists on an old model. Trends Plant Sci
6:310–316
Wu JG, Shi CH, Chen SY, Xiao JF (2004) The cytological mechanism of low fertility in the
naked seed rice. Genetica 121:259–267
Xiao H, Wang Y, Liu D, Wang W, Li X, Zhao X, Xu J, Zhai W, Zhu L (2003) Functional
analysis of the rice AP3 homologue OsMADS16 by RNA interference. Plant Mol Biol
52:957–966
Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004) The
YABBY gene DROOPING LEAF regulates carpel specification and midrib development in
Oryza sativa. Plant Cell 16:500–509
Yokoyama R, Nishitani K (2001) A comprehensive expression analysis of all the members of
a gene family encoding cell-wall enzymes allowed us to predict cis-regulatory regions
involved in cell-wall construction in specific organs of Arabidopsis. Plant Cell Physiol
42:1025–1033
Ambrose BA, Lerner DR, Ciceri P, Padilla CM, Yanofsky MF, Schmidt RJ (2000) Molecular
and genetic analyses of the silky1 gene reveal conservation in floral organ specification
between eudicots and monocots. Mol Cell 5:569–579
Barry GF (2001) The use of the Monsanto draft rice genome sequence in research. Plant
Physiol 125:1164–1165
Becker A, Theissen G (2003) The major clades of MADS-box genes and their role in the
development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489
Delseny M (2004) Re-evaluating the relevance of ancestral shared synteny as a tool for crop
improvement. Curr Opin Plant Biol 7:126–131
Eckardt NA (2000) Sequencing the rice genome. Plant Cell 12:2011–2017
Feng Q, Zhang Y, Hao P, Wang S, Fu G, Huang Y, Li Y, Zhu J, Liu Y, Hu X, Jia P, Zhao Q,
Ying K, Yu S, Tang Y, Weng Q, Zhang L, Lu Y, Mu J, Zhang LS, Yu Z, Fan D, Liu X, Lu T,
Li C, Wu Y, Sun T, Lei H, Li T, Hu H, Guan J, Wu M, Zhang R, Zhou B, Chen Z, Chen L, Jin
Z, Wang R, Yin H, Cai Z, Ren S, Lv G, Gu W, Zhu G, Tu Y, Jia J, Chen J, Kang H, Chen X,
Shao C, Sun Y, Hu Q, Zhang X, Zhang W, Wang L, Ding C, Sheng H, Gu J, Chen S, Ni L,
Zhu F, Chen W, Lan L, Lai Y, Cheng Z, Gu M, Jiang J, Li J, Hong G, Xue Y, Han B (2002)
Sequence and analysis of rice chromosome 4. Nature 420:316–320
Ferrario S, Immink RG, Angenent GC (2004) Conservation and diversity in flower land. Curr
Opin Plant Biol 7:84–91
Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller
P, Varma H, Hadley D, Hutchison D, Martin C, Katagiri F, Lange BM, Moughamer T, Xia Y,
Budworth P, Zhong J, Miguel T, Paszkowski U, Zhang S, Colbert M, Sun WL, Chen L,
Cooper B, Park S, Wood TC, Mao L, Quail P, Wing R, Dean R, Yu Y, Zharkikh A, Shen R,
Sahasrabudhe S, Thomas A, Cannings R, Gutin A, Pruss D, Reid J, Tavtigian S, Mitchell J,
Eldredge G, Scholl T, Miller RM, Bhatnagar S, Adey N, Rubano T, Tusneem N, Robinson R,
Feldhaus J, Macalma T, Oliphant A, Briggs S (2002) A draft sequence of the rice genome
(Oryza sativa L. ssp. japonica). Science 296:92–100
Goto K, Kyozuka J, Bowman JL (2001) Turning floral organs into leaves, leaves into floral
organs. Curr Opin Genet Dev 11:449–456
Jeon JS, Jang S, Lee S, Nam J, Kim C, Lee SH, Chung YY, Kim SR, Lee YH, Cho YG, An G
(2000) leafy hull sterile1 is a homeotic mutation in a rice MADS box gene affecting rice
flower development. Plant Cell 12:871–884
Keck E, McSteen P, Carpenter R, Coen E (2003) Separation of genetic functions controlling
organ identity in flowers. Embo J 22:1058–1066
Komatsu M, Chujo A, Nagato Y, Shimamoto K, Kyozuka J (2003) FRIZZY PANICLE is
required to prevent the formation of axillary meristems and to establish floral meristem
identity in rice spikelets. Development 130:3841–3850
Kyozuka J, Kobayashi T, Morita M, Shimamoto K (2000) Spatially and temporally regulated
expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes.
Plant Cell Physiol 41:710–718
Lohmann JU, Weigel D (2002) Building beauty: the genetic control of floral patterning. Dev
Cell 2:135–142
Ma H, dePamphilis C (2000) The ABCs of floral evolution. Cell 101:5–8
Nagasawa N, Miyoshi M, Sano Y, Satoh H, Hirano H, Sakai H, Nagato Y (2003)
SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice.
Development 130:705–718
Ng M, Yanofsky MF (2001) Function and evolution of the plant MADS-box gene family. Nat
Rev Genet 2:186–195
Pozzi C, Faccioli P, Terzi V, Stanca AM, Cerioli S, Castiglioni P, Fink R, Capone R, Muller
KJ, Bossinger G, Rohde W, Salamini F (2000) Genetics of mutations affecting the
development of a barley floral bract. Genetics 154:1335–1346
Riechmann JL, Meyerowitz EM (1998) The AP2/EREBP family of plant transcription factors.
Biol Chem 379:633–646
Theissen G (2000) Plant biology. Shattering developments. Nature 404:711–713
Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr
Opin Plant Biol 4:75–85
Theissen G, Saedler H (2001) Plant biology. Floral quartets. Nature 409:469–471
Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H
(2000) A short history of MADS-box genes in plants. Plant Mol Biol 42:115–149
References for flower development
1. A. Mouradov et al., Control of flowering time: interacting pathways as a basis for diversity.
Plant Cell 14 Suppl (2002), pp. S111–S130. View Record in Scopus | Cited By in Scopus
2. M.J. Yanovsky and S.A. Kay, Living by the calendar: how plants know when to flower.
Nat. Rev. Mol. Cell Biol. 4 (2003), pp. 265–275. View Record in Scopus | Cited By in
Scopus
3. A. Samach et al., Distinct roles of CONSTANS target genes in reproductive development of
Arabidopsis. Science 288 (2000), pp. 1613–1616. Full Text via CrossRef | View Record in
Scopus | Cited By in Scopus
4. I. Kardailsky et al., Activation tagging of the floral inducer FT. Science 286 (1999), pp.
1962–1965. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus
5. Y. Kobayashi et al., A pair of related genes with antagonistic roles in mediating flowering
signals. Science 286 (1999), pp. 1960–1962. Full Text via CrossRef | View Record in Scopus
| Cited By in Scopus
6. J. Moon et al., The SOC1 MADS-box gene integrates vernalization and gibberellin signals
for flowering in Arabidopsis. Plant J. 35 (2003), pp. 613–623. Full Text via CrossRef | View
Record in Scopus | Cited By in Scopus
7. S.R. Hepworth et al., Antagonistic regulation of flowering-time gene SOC1 by CONSTANS
and FLC via separate promoter motifs. EMBO J. 21 (2002), pp. 4327–4337. Full Text via
CrossRef | View Record in Scopus | Cited By in Scopus
8. M. Yano et al., Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is
closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12 (2000), pp.
2473–2483. View Record in Scopus | Cited By in Scopus
9. S. Kojima et al., Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to
flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol. 43 (2002), pp.
1096–1105. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus
10. T. Izawa et al., Comparative biology comes into bloom: genomic and genetic comparison
of flowering pathways in rice and Arabidopsis. Curr. Opin. Plant Biol. 6 (2003), pp.
113–120. Abstract | PDF (153 K) | View Record in Scopus | Cited By in Scopus
11. M. Tadege et al., Reciprocal control of flowering time by OsSOC1 in transgenic
Arabidopsis and by FLC in transgenic rice. Plant Biotech. J. 1 (2003), pp. 361–369. Full Text
via CrossRef
12. L. Yan et al., Positional cloning of the wheat vernalization gene VRN1. Proc. Natl. Acad.
Sci. U. S. A. 100 (2003), pp. 6263–6268. Full Text via CrossRef | View Record in Scopus |
Cited By in Scopus
13. J. Danyluk et al., TaVRT-1, a putative transcription factor associated with vegetative to
reproductive transition in cereals. Plant Physiol. 132 (2003), pp. 1849–1860. Full Text via
CrossRef | View Record in Scopus | Cited By in Scopus
14. B. Trevaskis et al., MADS box genes control vernalization-induced flowering in cereals.
Proc. Natl. Acad. Sci. U. S. A. 100 (2003), pp. 13099–13104. Full Text via CrossRef | View
Record in Scopus | Cited By in Scopus
15. J. Dubcovsky et al., Comparative RFLP mapping of Triticum monococcum genes
controlling vernalization requirement. Theor. Appl. Genet. 97 (1998), pp. 968–975. Full Text
via CrossRef | View Record in Scopus | Cited By in Scopus
16. D.A. Laurie et al., RFLP mapping of 5 major genes and 8 quantitative trait loci controlling
flowering time in winterspring barley (Hordeum vulgare L) cross. Genome 38 (1995), pp.
575–585. View Record in Scopus | Cited By in Scopus
17. G.F. Gocal et al., Evolution of floral meristem identity genes. Analysis of Lolium
temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol. 125
(2001), pp. 1788–1801. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus
18. J.S. Jeon et al., Production of transgenic rice plants showing reduced heading date and
plant height by ectopic expression of rice MADS-box genes. Mol. Breed. 6 (2000), pp.
581–592. Full Text via CrossRef | View Record in Scopus | Cited By in Scopus
References for plant development
Ambrose, B.A., Lerner, D.R., Ciceri, P., Padilla, C.M., Yanofsky, M.F. and Schmidt, R.J. (2000) Molecular
and genetic analyses of the Silky1 gene reveal conservation in floral organ specification between
eudicots and monocots. Mol. Cell, 5, 569–579.
CrossRef, Medline, ISI, CSA
•
Cacharron, J., Saedler, H. and Theissen, G. (1999) Expression of MADS box genes ZMM8 and ZMM14
during inflorescence development of Zea mays discriminates between the upper and lower floret of
each spikelet. Dev. Genes Evol. 7, 411–420.
•
Coen, E. and Meyerowitz, E.M. (1991) The war of the whorls: genetic interactions controlling flower
development. Nature, 353, 31–37.
CrossRef, Medline, ISI, CSA
•
Ditta, G., Pinyopich, A., Robles, P., Pelaz, S. and Yanofsky, M.F. (2004) The SEP4 gene of Arabidopsis
thaliana functions in floral organ and meristem identity. Curr. Biol. 14, 1935–1940.
CrossRef, Medline, ISI, Chemport
•
Doebley, J. and Lukens, L. (1998) Transcriptional regulators and the evolution of plant form. Plant Cell,
10, 1075–1082.
CrossRef, Medline, ISI, CSA
•
Doyle, J.A. (1973) Fossil evidences on early evolution of monocotyledons. Q. Rev. Biol. 48, 339–413.
CrossRef
•
Ferrario, S., Immink, R.G. and Angenent, G.C. (2004) Conservation and diversity in flower land. Curr.
Opin. Plant Biol. 7, 84–91.
CrossRef, Medline, ISI, CSA
•
Hagen, G., Martin, G., Li, Y. and Guilfoyle, T.J. (1991) Auxin-induced expression of the soybean GH3
promoter in transgenic tobacco plants. Plant Mol. Biol. 17, 567–579.
CrossRef, Medline, ISI, Chemport, CSA
•
Hay, A., Jackson, D., Ori, N. and Hake, S. (2003) Analysis of the competence to respond to KNOTTED1
activity in Arabidopsis leaves using a steroid induction system. Plant Physiol. 131, 1671–1680.
CrossRef, Medline, ISI, CSA
•
Hoshikawa, K. (1989) Growing the Rice Plant: An Anatomical Monograph.
Minato-ku, Tokyo
: Nosan Gyosan Bunka Kyokai (Nobunkyo).
•
Huelsenbeck, J.P. and Ronquist, F. (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics,
17, 745–755.
CrossRef, Medline
•
Irish, V.F. (2000) Variations on a theme: flower development and evolution. Genome Biol. 2, 1015.
•
Jenik, P.D. and Irish, V.F. (2000) Regulation of cell proliferation patterns by homeotic genes during
Arabidopsis floral development. Development, 127, 1267–1276.
Medline, ISI, CSA
•
Jeon, J.S., Jang, S., Lee, S. et al. (2000) leafy hull sterile1 is a homeotic mutation in a rice MADS-box
gene affecting rice flower development. Plant Cell, 12, 871–889.
CrossRef, Medline, ISI, CSA
•
Kang, H.G., Jeon, J.S., Lee, S. and An, G. (1998) Identification of class B and class C floral organ
identity genes from rice plants. Plant Mol. Biol. 38, 1021–1029.
CrossRef, Medline, ISI, Chemport, CSA
•
Kinoshita,T. (ed.) (1991) Report of the Committee on Gene Symbolization, Nomenclature and Linkage
Groups. Rice Genet. Newsl. 8, 2–38.
•
Komatsu, M., Chujo, A., Nagato, Y., Shimamoto, K. and Kyozuka, J. (2003) FRIZZY PANICLE is required
to prevent the formation of axillary meristems and to establish floral meristem identity in rice spikelets.
Development, 130, 3841–3850.
CrossRef, Medline, ISI, CSA
•
Kumar, S., Tamura, K., Jakobsen, I.B. and Nei, M. (2001) MEGA2: Molecular Evolutionary Genetics
Analysis software. Bioinformatics, 17, 1244–1245.
CrossRef, Medline, ISI, Chemport, CSA
•
Kyozuka, J. and Shimamoto, K. (2002) Ectopic expression of OsMADS3, a rice ortholog of AGAMOUS,
caused a homeotic transformation of lodicules to stamens in transgenic rice plants. Plant Cell Physiol.
43, 130–135.
CrossRef, Medline, ISI, CSA
•
Kyozuka, J., Kobayashi, T., Morita, M. and Shimamoto, K. (2000) Spatially and temporally regulated
expression of rice MADS-box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell
Physiol. 41, 710–718.
Medline, ISI, CSA
•
Lee, S., Jeon, J.S., An, K., Moon, Y.H., Lee, S., Chung, Y.Y. and An, G. (2003) Alteration of floral organ
identity in rice through ectopic expression of OsMADS16. Planta, 17, 904–911.
CrossRef, Medline
•
Lim, J., Moon, Y.H., An, G. and Jang, S.K. (2000) Two rice MADS domain proteins interact with
OsMADS1. Plant Mol. Biol. 44, 513–527.
CrossRef, Medline, ISI, CSA
•
Lloyd, A. M., Schena, M., Walbot, V. and Davis, R.W. (1994) Epidermal cell fate determination in
Arabidopsis: patterns defined by a steroid-inducible regulator. Science, 21, 436–439.
•
Lohmann, J.U. and Weigel, D. (2002) Building beauty: the genetic control of floral patterning. Dev.
Cell, 2, 135–142.
CrossRef, Medline, ISI, Chemport, CSA
•
Malcomber, S.T. and Kellogg, E.A. (2004) Heterogeneous expression patterns and separate roles of the
SEPALLATA gene LEAFY HULL STERILE1 in grasses. Plant Cell, 16, 1692–1706.
CrossRef, Medline, ISI, Chemport, CSA
•
Mann, R.S. and Carroll, S.B. (2002) Molecular mechanisms of selector gene function. Curr. Opin.
Genet. Dev. 12, 592–600.
CrossRef, Medline, ISI, CSA
•
Nagasawa, N., Miyoshi, M., Sano, Y., Satoh, H., Hirano, H., Sakai, H. and Nagato, Y. (2003)
SUPERWOMAN1 and DROOPING LEAF genes control floral organ identity in rice. Development, 130,
705–718.
CrossRef, Medline, ISI, Chemport, CSA
•
Page, R.D.M. (1996) TREEVIEW: an application to display phylogenetic trees on personal computers.
Comput. Appl. Biosci. 12, 357–358.
Medline, CSA
•
Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E. and Yanofsky, M.F. (2000) B and C function floral organ
identity functions require SEPALLATA MADS-box genes. Nature, 405, 200–203.
CrossRef, Medline, ISI, CSA
•
Pozzi, C., Faccioli, P., Terzi, V. et al. (2000) Genetics of mutations affecting the development of a barley
floral bract. Genetics, 154, 1335–1346.
Medline, ISI, CSA
•
Prasad, K. and Vijayraghavan, U. (2003) Double-stranded RNA interference of a rice PI/GLO paralog,
OsMADS2, uncovers its second whorl-specific function in floral organ patterning. Genetics, 165,
2301–2305.
Medline, ISI, CSA
•
Prasad, K., Sriram, P., Kumar, C.S., Kushalappa, K. and Vijayraghavan, U. (2001) Ectopic expression of
rice OsMADS1 reveals a role in specifying the lemma and palea, grass floral organs analogous to
sepals. Dev. Genes Evol. 211, 281–290.
CrossRef, Medline, ISI, CSA
•
Purugganan, M.D., Rounsley, S.D., Schmidt, R.J. and Yanofsky, M.F. (1995) Molecular evolution of
flower development: diversification of the plant MADS-box regulatory gene family. Genetics, 140,
345–356.
Medline, ISI, CSA
•
Reddy, G.V., Heisler, M.G., Ehrhardt, D.W. and Meyerowitz, E.M. (2004) Real-time lineage analysis
reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis
thaliana. Development, 131, 4225–4237.
CrossRef, Medline, ISI, CSA
•
Roux, C. and Perrot-Rechenmann, C. (1997) Isolation by differential display and characterization of a
tobacco auxin-responsive cDNA Nt-gh3, related to GH3. FEBS Lett. 419, 131–136.
CrossRef, Medline, ISI, CSA
•
Sablowski, R.W. and Meyerowitz, E.M. (1998) A homolog of NO APICAL MERISTEM is an immediate
target of the floral homeotic genes APETALA3/PISTILLATA. Cell, 92, 93–100.
CrossRef, Medline, ISI, CSA
•
Schmidt, R.J. and Ambrose, B.A. (1998) The blooming of grass flower development. Curr. Opin. Plant
Biol. 1, 60–67.
CrossRef, Medline, ISI, CSA
•
Tamura, K. and Nei, M. (1993) Estimation of the number of nucleotide substitutions in the control
regions of mitochondrial DNA in humans and chimpanzees. Mol. Biol. Evol. 10, 512–526.
Medline, ISI, CSA
•
Theissen, G. (2001) Development of floral organ identity: stories from the MADS house. Curr. Opin.
Plant Biol. 4, 75–85.
CrossRef, Medline, ISI, Chemport, CSA
•
Thompson, J.D., Gibson, T.J., Plewnaik, F., Jeanmougin, F. and Higgins, D.G. (1997) The
CLUSTAL × windows interface: flexible strategies for multiple sequence alignment aided by quality
analysis tools. Nucleic Acids Res. 25, 4876–4882.
CrossRef, Medline, ISI, Chemport, CSA
•
Wagner, D., Wellmer, F., Dilks, K., William, D., Smith, M.R., Kumar, P.P., Riechmann, J. L., Greenland, A.
J. and Meyerowitz, E.M. (2004) Floral induction in tissue culture: a system for the analysis of
LEAFY-dependent gene regulation. Plant J. 39, 273–282.
Synergy, Medline, ISI, CSA
•
Zhu, Q.H., Hoque, M.S., Dennis, E.S. and Upadhyaya, N.M. (2003) Ds tagging of BRANCHED
FLORETLESS1 (BFL1) that mediates the transition from spikelet to floret meristem in rice (Oryza sativa
L). BMC Plant Biol. 3, 6.
CrossRef, Medline
 References
for MADS gene
Guixia Xu and Hongzhi Kong. (2007) Duplication and Divergence of Floral MADS-Box Genes in Grasses:
Evidence for the Generation and Modification of Novel Regulators. Journal of Integrative Plant
Biology 49:6, 927–939
Abstract Abstract and References Full Article PDF

Taiyo Toriba, Kohsuke Harada, Atsushi Takamura, Hidemitsu Nakamura, Hiroaki Ichikawa,
Takuya Suzaki, Hiro-Yuki Hirano. (2007) Molecular characterization the YABBY gene family in Oryza
sativa and expression analysis of OsYABBY1 . Molecular Genetics and Genomics 277:5, 457
CrossRef
Adachi, J., and M. Hasegawa. 1996. MOLPHY, a computer program package for molecular
phylogenetics. Version 2.3. The Institute of Statistical Mathematics, Tokyo.
Alvarez-Buylla, E. R., S. J. Liljegren, S. Pelaz, S. E. Gold, C. Burgeff, G. S. Ditta, F.
Vergara-Silva, and M. F. Yanofsky. 2000a. MADS gene evolution beyond flowers,
expression in pollen, endosperm, guard cells, roots, and trichomes. Plant J.
24:457-466.[CrossRef][ISI][Medline]
Alvarez-Buylla, E. R., S. Pelaz, S. J. Liljegren, S. E. Gold, C. Burgeff, G. S. Ditta, L. Ribas de
Pouplana, L. Martinez-Castilla, and M. F. Yanofsky. 2000b. An ancestral MADS-box gene
duplication occurred before the divergence of plants and animals. Proc. Natl. Acad. Sci.
USA 97:5328-5333.[Abstract/FreeFullText]
Becker, A., K. Kaufmann, A. Freialdenhoven, C. Vincent, M. A. Li, H. Saedler, and G.
Theissen. 2002. A novel MADS-box gene subfamily with a sister-group relationship to
class B floral homeotic genes. Mol. Genet. Genomics
266:942-950.[CrossRef][ISI][Medline]
Becker, A., K. U. Winter, B. Meyer, H. Saedler, and G. Theissen. 2000. MADS gene diversity
in seed plants 300 million years ago. Mol. Biol. Evol.
17:1425-1434.[Abstract/FreeFullText]
Benton, M. J. 1993. The fossil records 2. Chapman and Hall, New York.
Brocks, J. J., G. A. Logan, R. Buick, and R. E. Summons. 1999. Archean molecular fossils and
the early rise of eukaryotes. Science 285:1033-1036.[Abstract/FreeFullText]
Burglin, T. R. 1997. Analysis of TALE superclass homeobox genes (MEIS, PBC, KNOX,
Iroquois, TGIF) reveals a novel domain conserved between plants and animals. Nucleic
Acids Res. 25:4173-4180.[Abstract/FreeFullText]
Butterfield, N. J. 2000. Bangiomorpha pubescens n. gen., n. sp.: implications for the evolution
of sex, multicellularity, and the Mesoproterozoic/Neoproterozoic radiation of eukaryotes.
Paleobiology 26:386-404.[Abstract/FreeFullText]
Cavalier-Smith, T. 2002. The phagotrophic origin of eukaryotes and phylogenetic
classification of Protozoa. Int. J. Syst. Evol. Microbiol. 52:297-354.[Abstract]
Chen, M., and Z. Xiao. 1991. Discovery of the macrofossils in the Upper Sinain Doushantuo
Formation at Miaohe, eastern Yangtze Gorges. Sci. Geol. Sinica 4:317-324.
Conway Morris, S. 2002. Ancient animals or something else entirely? Science 298:57-58.
Dickerson, R. E. 1971. The structures of cytochrome c and the rates of molecular evolution. J.
Mol. Evol. 1:26-45.[CrossRef][Medline]
Feng, D. F., G. Cho, and R. F. Doolittle. 1997. Determining divergence times with a protein
clock: update and reevaluation. Proc. Natl. Acad. Sci. USA
94:13028-13033.[Abstract/FreeFullText]
Ferrier, D. E., and P. W. Holland. 2001. Ancient origin of the Hox gene cluster. Nat. Rev.
Genet. 2:33-38.[ISI][Medline]
Glazko, G. V., and M. Nei. 2003. Estimation of divergence times for major lineages of primate
species. Mol. Biol. Evol. 20:424-434.[Abstract/FreeFullText]
Goremykin, V. V., S. Hansmann, and W. F. Martin. 1997. Evolutionary analysis of 58 proteins
encoded in six completely sequenced chloroplast genomes: revised molecular estimates of
two seed plant divergence times. Plant Syst. Evol. 206:337-351.[CrossRef]
Gu, X., and J. Zhang. 1997. A simple method for estimating the parameter of substitution rate
variation among sites. Mol. Biol. Evol. 14:1106-1113.[Abstract]
Han, T. M., and B. Runnegar. 1992. Megascopic eukaryotic algae from the 2.1-billion-year-old
Negaunee Iron Formation, Michigan. Science 257:232-235.[Abstract/FreeFullText]
Hartmann, U., S. Hohmann, K. Nettesheim, E. Wisman, H. Saedler, and P. Huijser. 2000.
Molecular cloning of SVP, a negative regulator of the floral transition in Arabidopsis.
Plant J. 21:351-360.[CrossRef][ISI][Medline]
Hasebe, M., C. K. Wen, M. Kato, and J. A. Banks. 1998. Characterization of MADS homeotic
genes in the fern Ceratopteris richardii. Proc. Natl. Acad. Sci. USA
95:6222-6227.[Abstract/FreeFullText]
Hashimoto, T., Y. Nakamura, F. Nakamura, T. Shirakura, J. Adachi, N. Goto, K. Okamoto,
and M. Hasegawa. 1994. Protein phylogeny gives a robust estimation for early divergences
of eukaryotes: phylogenetic place of a mitochondria-lacking protozoan, Giardia lamblia.
Mol. Biol. Evol. 11:65-71.[Abstract]
Henschel, K., R. Kofuji, M. Hasebe, H. Saedler, T. Münster, and G. Theissen. 2002. Two
ancient classes of MIKC-type MADS-box genes are present in the moss Physcomitrella
patens. Mol. Biol. Evol. 19:801-814.[Abstract/FreeFullText]
Hohe, A., S. A. Rensing, M. Mildner, and R. Reski. 2002. Day length and temperature
strongly influence sexual reproduction and expression of a novel MADS-box gene in the
moss Physcomitrella patens. Plant Biol. 4:595-602.[CrossRef]
Honma, T., and K. Goto. 2001. Complexes of MADS-box proteins are sufficient to convert
leaves into floral organs. Nature 409:525-529.[CrossRef][Medline]
Huang, H., M. Tudor, C. A. Weiss, Y. Hu, and H. Ma. 1995. The Arabidopsis MADS-box
gene AGL3 is widely expressed and encodes a sequence-specific DNA-binding protein.
Plant Mol. Biol. 28:549-567.[CrossRef][ISI][Medline]
Ji, Q., Z. X. Luo, C. X. Yuan, J. R. Wible, J. P. Zhang, and J. A. Georgi. 2002. The earliest
known eutherian mammal. Nature 416:816-822.
Kappen, C. 2000. Analysis of a complete homeobox gene repertoire: implications for the
evolution of diversity. Proc. Natl. Acad. Sci. USA 97:4481-4486.[Abstract/FreeFullText]
Kramer, E. M., R. L. Dorit, and V. F. Irish. 1998. Molecular evolution of genes controlling
petal and stamen development: duplication and divergence within the APETALA3 and
PISTILLATA MADS-box gene lineages. Genetics 149:765-783.[Abstract/FreeFullText]
Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA2: molecular evolutionary
genetics analysis software. Bioinformatics 17:1244-1245.[Abstract/FreeFullText]
Laroche, J., P. Li, and J. Bousquet. 1995. Mitochondrial DNA and monocot-dicot divergence
time. Mol. Biol. Evol. 12:1151-1156.[ISI]
Lee, H., S. S. Suh, E. Park, E. Cho, J. H. Ahn, S. G. Kim, J. S. Lee, Y. M. Kwon, and I. Lee.
2000. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive
pathways in Arabidopsis. Genes Dev. 14:2366-2376.[Abstract/FreeFullText]
Ma, H., and C. dePamphilis. 2000. The ABCs of floral evolution. Cell
101:5-8.[CrossRef][ISI][Medline]
Maisey, J. G. 1996. Discovering fossil fishes. Henry Holt and Co., New York.
Meyerowitz, E. M. 2002. Plants compared to animals: the broadest comparative study of
development. Science 295:1482-1485.[Abstract/FreeFullText]
Michaels, S. D., and R. M. Amasino. 1999. FLOWERING LOCUS C encodes a novel MADS
domain protein that acts as a repressor of flowering. Plant Cell
11:949-956.[Abstract/FreeFullText]
Michaels, S. D., G. Ditta, C. Gustafson-Brown, S. Pelaz, M. F. Yanofsky, and R. M. Amasino.
2003. AGL24 acts as a promoter of flowering in Arabidopsis and is positively regulated by
vernalization. Plant J. 33:867-874.[CrossRef][ISI][Medline]
Moon, Y., J. S. Jeon, S. K. Sung, and G. An. 1999. Determination of the motif responsible for
interaction between the rice APETALA1/AGAMOUS-LIKE9 family proteins using a yeast
two-hybrid system. Plant Physiol. 120:1193-1204.[Abstract/FreeFullText]
Münster, T., J. Pahnke, A. Di Rosa, J. T. Kim, W. Martin, H. Saedler, and G. Theissen. 1997.
Floral homeotic genes were recruited from homologous MADS genes preexisting in the
common ancestor of ferns and seed plants. Proc. Natl. Acad. Sci. USA
94:2415-2420.[Abstract/FreeFullText]
Nei, M. 1987. Molecular evolutionary genetics. Columbia University Press, New York.
Nei, M., X. Gu, and T. Sitnikova. 1997. Evolution by the birth-and-death process in multigene
families of the vertebrate immune system. Proc. Natl. Acad. Sci. USA
94:7799-7806.[Abstract/FreeFullText]
Nei, M., and S. Kumar. 2000. Molecular evolution and phylogenetics. Oxford University
Press, New York.
Nei, M., P. Xu, and G. Glazko. 2001. Estimation of divergence times from multiprotein
sequences for a few mammalian species and several distantly related organisms. Proc.
Natl. Acad. Sci. USA 98:2497-2502.[Abstract/FreeFullText]
Nesi, N., I. Debeaujon, C. Jond, A. J. Stewart, G. I. Jenkins, M. Caboche, and L. Lepiniec.
2002. The TRANSPARENT TESTA16 locus encodes the Arabidopsis Bsister MADS
domain protein and is required for proper development and pigmentation of the seed coat.
Plant Cell 14:2463-2479.[Abstract/FreeFullText]
Purugganan, M. D. 1997. The MADS-box floral homeotic gene lineages predate the origin of
seed plants: phylogenetic and molecular clock estimates. J. Mol. Evol.
45:392-396.[CrossRef][ISI][Medline]
Purugganan, M. D. 1998. The molecular evolution of development. Bioessays
20:700-711.[CrossRef][ISI][Medline]
Rasmussen, B., S. Bengtson, I. R. Fletcher, and N. J. McNaughton. 2002. Discoidal
impressions and trace-like fossils more than 1200 million years old. Science
296:1112-1115.[Abstract/FreeFullText]
Russo, C. A., N. Takezaki, and M. Nei. 1996. Efficiencies of different genes and different
tree-building methods in recovering a known vertebrate phylogeny. Mol. Biol. Evol.
13:525-536.[Abstract]
Sanderson, M. J. 2003. r8s: inferring absolute rates of molecular evolution and divergence
times in the absence of a molecular clock. Bioinformatics
19:301-302.[Abstract/FreeFullText]
Savard, L., P. Li, S. H. Strauss, M. W. Chase, M. Michaud, and J. Bousquet. 1994. Chloroplast
and nuclear gene sequences indicate late Pennsylvanian time for the last common ancestor
of extant seed plants. Proc. Natl. Acad. Sci. USA 91:5163-5167.[Abstract/FreeFullText]
Seilacher, A., P. K. Bose, and F. Pfluger. 1998. Triploblastic animals more than 1 billion years
ago: trace fossil evidence from India. Science 282:80-83.[Abstract/FreeFullText]
Sheldon, C. C., P. P. Perez, J. Metzger, J. A. Edwards, W. J. Peacock, and E. S. Dennis. 1999.
The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by
vernalization and methylation. Plant Cell 11:445-458.[Abstract/FreeFullText]
Shore, P., and A. D. Sharrocks. 1995. The MADS-box family of transcription factors. Eur. J.
Biochem. 229:1-13.[Abstract]
Soltis, P. S., D. E. Soltis, V. Savolainen, P. R. Crane, and T. G. Barraclough. 2002. Rate
heterogeneity among lineages of tracheophytes: integration of molecular and fossil data
and evidence for molecular living fossils. Proc. Natl. Acad. Sci. USA
99:4430-4435.[Abstract/FreeFullText]
Stewart, W. N., and G. W. Rothwell. 1993. Paleobotany and the evolution of plants.
Cambridge University Press, New York.
Svensson, M. E., and P. Engstrom. 2002. Closely related MADS-box genes in club moss
(Lycopodium) show broad expression patterns and are structurally similar to, but
phylogenetically distinct from, typical seed plant MADS-box genes. New Phytol.
154:439-450.[CrossRef]
Swofford, D. L. 1998. PAUP*: phylogenetic analysis using parsimony (*and other methods).
Version 4. Sinauer Associates, Sunderland, Mass.
Takezaki, N., A. Rzhetsky, and M. Nei. 1995. Phylogenetic test of the molecular clock and
linearized trees. Mol. Biol. Evol. 12:823-833.[Abstract]
The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering
plant Arabidopsis thaliana. Nature 408:796-815.[CrossRef][Medline]
Theissen, G. 2001. Development of floral organ identity, stories from the MADS house. Curr.
Opin. Plant Biol. 4:75-85.[CrossRef][ISI][Medline]
Theissen, G. 2002. Secret life of genes. Nature 415:741.[Medline]
Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The
ClustalX windows interface, flexible strategies for multiple sequence alignment aided by
quality analysis tools. Nucleic Acids Res. 24:4876-4882.
Wang, D. Y., S. Kumar, and S. B. Hedges. 1999. Divergence time estimates for the early
history of animal phyla and the origin of plants, animals, and fungi. Proc. R. Soc. Lond.
Ser. B. 266:163-171.[Medline]
Weigel, D., and E. M. Meyerowitz. 1994. The ABCs of floral homeotic genes. Cell
78:203-209.[CrossRef][ISI][Medline]
Winter, K-U., A. Becker, T. Munster, J. T. Kim, H. Saedler, and G. Theissen. 1999.
MADS-box genes reveal that gnetophytes are more closely related to conifers than to
flowering plants. Proc. Natl. Acad. Sci. USA 96:7342-7347.[Abstract/FreeFullText]
Wolfe, K. H., M. Gouy, Y. W. Yang, P. M. Sharp, and W. H. Li. 1989. Date of the
monocot-dicot divergence estimated from chloroplast DNA sequence data. Proc. Natl.
Acad. Sci. USA 86:6201-6205.[Abstract/FreeFullText]
Xiao, S., Y. Zhang, and A. H. Knoll. 1998. Three-dimensional preservation of algae and
animal embryos in a Neoproterozoic phosphorite. Nature 391:553-558.[CrossRef]
Yang, Z. 2002. Phylogenetic analysis by maximum likelihood (PAML). Version 3.13.
University College London, London.
Yoder, A. D., and Z. Yang. 2000. Estimation of primate speciation dates using local molecular
clocks. Mol. Biol. Evol. 17:1081-1090.[Abstract/FreeFullText]
Yu, J., S. Hu, and J. Wang, et al. (100 co-authors). 2002. A draft sequence of the rice genome
(Oryza sativa L. ssp. indica). Science 296:79-92.[Abstract/FreeFullText]
Zhang, H., and B. G. Forde. 1998. An Arabidopsis MADS box gene that controls
nutrient-induced changes in root architecture. Science
279:407-409.[Abstract/FreeFullText]
Zhang, J., and M. Nei. 1996. Evolution of Antennapedia-class homeobox genes. Genetics
142:295-303.[Abstract]
Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano HY (2004) The
YABBY gene DROOPING LEAF regulates carpel specification and midrib development in
Oryza sativa. Plant Cell 16:500–509
二、
遺傳與育種
Chilcutt, C. F., and B. E. Tabashnik. 2004. Contamination of refuges by Bacillus thuringiensis
toxin genes from transgenic maize. Proceedings of the National Academy of Sciences 101(20):
7526-7529.
Cruden, R.W. 2000. Pollen grains: why so many? Plant Systematics and Evolution 222:143-165.
Gepts, P., and R. Papa. 2003. Possible effects of (trans)gene flow from crops on the genetic
diversity from landraces and wild relatives. EnvironmentalBiosafety Research 2:89-103.
Luna, V. S., M. J. Figueroa, M. B. Baltazar, L. R. Gomez, R. Townsend, and J. B. Schoper. 2001.
Maize pollen longevity and distance isolation requirements for effective pollen control. Crop
Science 41:1551-1557.
Nakayama, Y., and H. Yamaguchi. 2002. Natural hybridization in wild soybean (Glycine max ssp.
soja) by pollen flow from cultivated soybean (Glycine max. ssp. max) in a designed
population. Weed Biology and Management 2:5-30.
Ohara, M., and Y. Shimamoto. 2002. Importance of genetic characterization and conservation of
plant genetic resources: the breeding system and genetic diversity of wild soybean (Glycine
soja). Plant Species Biology 17(1):51-58.
Pleasants, J. M., R. L. Hellmich, G. P. Dively, M. K. Sears, D. E. Stanley-Horn, H. R. Mattila, J.
E. Foster, P. Clark, and G. D. Jones. 2001. Corn pollen deposition on milkweeds in and near
cornfields. Proceedings of the National Academy of Sciences 98:11919-11924.
Westgate, M. E., J. Lizaso, and W. Batchelor. 2003. Quantitative relationships between pollen
shed density and grain yield in maize. Crop Science 43:934-942.
DeCosa, B., W. Moar, S. B. Lee, M. Miller, and H. Ding, D., J. Gai, Z. Cui, and J. Qiu. 2002.
Development of a cytoplasmic-nuclear male-sterile line of soybean. Euphytica 124:85-91.
Lee, S.B., M.O. Byun, and H. Daniell. 2003. Accumulation of trehalose within transgenic
chloroplasts confers drought tolerance. Molecular Breeding 11:1-13.
Westgate, M.E., J. Lizaso, and W. Batchelor. 2003. Quantitative relationships between pollen
三、
分子遺傳
Daniell, H. 2002. Molecular strategies for gene containment in transgenic crops. Nature
Biotechnology. 20:581-586.
Daniell, H., and A. Dhingra. 2002. Multiple gene engineering: dawn of an exciting new era in
biotechnology. Current Opinion in Biotechnology 13:136-141.
Daniell, H., M. S. Khan, and L. Allison. 2001. Milestones in chloroplast genetic engineering: an
environmentally friendly era in biotechnology. Trends in Plant Science 7:84-91.
Daniell, H., S. B. Lee, T. Panchal, and P. O. Wiebe. 2001. Expression and assembly of the native
cholera toxin B subunit gene as functional oligomers in transgenic tobacco chloroplasts.
Journal of Molecular Biology 311:1001-1009.
Daniell, H., B. Muthukumar, and S. B. Lee. 2001. Engineering the chloroplast genome without
the use of antibiotic selection. Current Genetics 39:109-116.
DeCosa, B., W. Moar, S. B. Lee, M. Miller, and H. Ding, D., J. Gai, Z. Cui, and J. Qiu. 2002.
Development of a cytoplasmic-nuclear male-sterile line of soybean. Euphytica 124:85-91.
Watson, J., V. Koya, S. H. Leppla, and H. Daniell. 2004. Expression of Bacillus anthracis
protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine
22:4374-4384.
Law RD, Russell DA, Thompson LC, Schroeder SC, Middle CM, Tremaine MT,
Jury TP, Delannay X, Slater SC (2006) Biochemical limitations to high-level
expression of humanized monoclonal antibodies in transgenic maize seed
endosperm. Biochim. Biophys. Acta (General Subjects) 1760:1434-1444.
Law RD, Suttle JC (2005) Chromatin remodeling in plant cell culture: patterns of
DNA methylation and histone H3 and H4 acetylation vary during growth of
asynchronous potato cell suspensions. Plant Physiol. Biochem. 43: 527-534.
Law RD, Suttle JC (2004) Changes in histone H3 and H4 multi-acetylation during
natural and forced dormancy break in potato tubers. Physiol. Plant. 120: 642-649.
Law RD, Suttle JC (2003) Transient decreases in methylation at 5'-CCGG-3'
sequences in potato (Solanum tuberosum L.) meristem DNA during progression
of tubers through dormancy precede the resumption of sprout growth. Plant Mol.
Biol. 51: 437-447.
Law RD, Crafts-Brandner SJ, Salvucci ME (2001) Heat stress induces the
synthesis of a new form of ribulose-1,5-bisphosphate carboxylase/oxygenase
activase in cotton leaves. Planta 214: 117-125.
Law RD, Crafts-Brandner SJ (2001) High temperature stress increases the
expression of wheat leaf ribulose-1,5-bisphosphate carboxylase/oxygenase
activase protein. Arch. Biochem. Biophys. 386: 261-267.
Crafts-Brandner SJ, Law RD (2000) Effect of heat stress on the inhibition and
recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state.
Planta 212: 67-74.
Alvarez JP, Pekker I, Goldshmidt A, Blum E, Amsellem Z, Eshed Y. Endogenous and
synthetic microRNAs stimulate simultaneous, efficient, and localized regulation of multiple
targets in diverse species. Plant Cell (2006) 18:1134–1151.[Abstract/FreeFullText]
Bowman JL, Eshed Y, Baum SF. Establishment of polarity in angiosperm lateral organs.
Trends Genet (2002) 18:134–141.[CrossRef][ISI][Medline]
Byrne ME, Barley R, Curtis M, Arroyo JM, Dunham M, Hudson A, Martienssen RA.
Asymmetric leaves1 mediates leaf patterning and stem cell function in Arabidopsis. Nature
(2000) 408:967–971.[CrossRef][Medline]
Byrne M, Timmermans M, Kidner C, Martienssen R. Development of leaf shape. Curr. Opin.
Plant Biol (2001) 4:38–43.[CrossRef][ISI][Medline]
Chen C, Wang S, Huang H. LEUNIG has multiple functions in gynoecium development in
Arabidopsis. Genesis (2000) 26:42–54.[CrossRef][ISI][Medline]
Chen Q, Atkinson A, Otsuga D, Christensen T, Reynolds L, Drews GN. The Arabidopsis
FILAMENTOUS FLOWER gene is required for flower formation. Development (1999)
126:2715–2726.[Abstract]
Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL.
Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr. Biol
(2003) 13:1768–1774.[CrossRef][ISI][Medline]
Eshed Y, Baum SF, Perea JV, Bowman JL. Establishment of polarity in lateral organs of
plants. Curr. Biol (2001) 11:1251–1260.[CrossRef][ISI][Medline]
Eshed Y, Izhaki A, Baum SF, Floyd SK, Bowman JL. Asymmetric leaf development and blade
expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development
(2004) 131:2997–3006.[Abstract/FreeFullText]
Fahlgren N, Montgomery TA, Howell MD, Allen E, Dvorak SK, Alexander AL, Carrington
JC. Regulation of AUXIN RESPONSE FACTOR3 by TAS3 ta-siRNA affects developmental
timing and patterning in Arabidopsis. Curr. Biol (2006)
16:939–944.[CrossRef][ISI][Medline]
Garcia D, Collier SA, Byrne ME, Martienssen RA. Specification of leaf polarity in
Arabidopsis via the trans-acting siRNA pathway. Curr. Biol (2006)
16:933–938.[CrossRef][ISI][Medline]
Huang H, Tudor M, Weiss CA, Hu Y, Ma H. The Arabidopsis MADS-box gene AGL3 is
widely expressed and encodes a sequence-specific DNA-binding protein. Plant Mol. Biol
(1995) 28:549–567.[CrossRef][ISI][Medline]
Huang W, Pi L, Liang W, Xu B, Wang H, Cai R, Huang H. The proteolytic function of the
Arabidopsis 26S proteasome is required for specifying leaf adaxial identity. Plant Cell (2006)
18:2479–2492.[Abstract/FreeFullText]
Hudson A. Development of symmetry in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol
(2000) 51:349–370.[CrossRef]
Iwakawa H, Ueno Y, Semiart E, Onouchi H, Kojima S, Tsukaya H, Hasebe M, Soma T,
Ikezaki M, Machida C, Machida Y. The ASYMMETRIC LEAVES2 gene of Arabidopsis
thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel
family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol
(2002) 43:467–478.[Abstract/FreeFullText]
Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS. KANADI regulates organ
polarity in Arabidopsis. Nature (2001) 411:706–709.[CrossRef][Medline]
Kidner CA, Martienssen RA. Spatially restricted microRNA directs leaf polarity through
ARGONAUTE1. Nature (2004) 428:81–84.[CrossRef][Medline]
Kumaran MK, Bowman JL, Sundaresan V. YABBY polarity genes mediate the repression of
KNOX homeobox genes in Arabidopsis. Plant Cell (2002)
14:2761–2770.[Abstract/FreeFullText]
Li H, Xu L, Wang H, Yuan Z, Cao X, Yang Z, Zhang D, Xu Y, Huang H. The putative
RNA-dependent RNA polymerase RDR6 acts synergistically with ASYMMETRIC LEAVES1
and 2 to repress BREVIPEDICELLUS and microRNA165/166 in Arabidopsis leaf
development. Plant Cell (2005) 17:2157–2171.[Abstract/FreeFullText]
Lin WC, Shuai B, Springer PS. The Arabidopsis LATERAL ORGAN BOUNDARIES-domain
gene ASYMMETRIC LEAVES2 functions in the repression of KNOX gene expression and in
adaxial–abaxial patterning. Plant Cell (2003) 15:2241–2252.[Abstract/FreeFullText]
Long JA, Barton MK. The development of apical embryonic pattern in Arabidopsis.
Development (1998) 125:3027–3035.[Abstract]
Lynn K, Fernandez A, Aida M, Sedbrook J, Tasaka M, Masson P, Barton MK. The
PINHEAD/ZWILLE gene acts pleiotropically in Arabidopsis development and has
overlapping functions with the ARGONAUTE1 gene. Development (1999)
126:469–481.[Abstract]
Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP.
MicroRNA control of PHABULOSA in leaf development: importance of pairing to the
microRNA 5' region. EMBO J (2004) 23:3356–3364.[CrossRef][ISI][Medline]
McConnell JR, Barton MK. Leaf polarity and meristem formation in Arabidopsis.
Development (1998) 125:2935–2942.[Abstract]
McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK. Role of PHABULOSA and
PHAVOLUTA in determining radial patterning in shoots. Nature (2001)
411:709–713.[CrossRef][Medline]
Nakazawa M, Ichikawa T, Ishikawa A, Kobayashi H, Tsuhara Y, Kawashima M, Suzuki K,
Muto S, Matsui M. Activation tagging, a novel tool to dissect the functions of a gene family.
Plant J (2003) 34:741–750.[CrossRef][ISI][Medline]
Ori N, Eshed Y, Chuck G, Bowman JL, Hake S. Mechanisms that control knox gene
expression in the Arabidopsis shoot. Development (2000) 127:5523–5532.[Abstract]
Pekker I, Alvarez JP, Eshed Y. Auxin response factors mediate Arabidopsis organ asymmetry
via modulation of KANADI activity. Plant Cell (2005)
17:2899–2910.[Abstract/FreeFullText]
Phelps-Durr TL, Thomas J, Vahab P, Timmermans MC. Maize rough sheath2 and its
Arabidopsis orthologue ASYMMETRIC LEAVES1 interact with HIRA, a predicted histone
chaperone, to maintain knox gene silencing and determinacy during organogenesis. Plant Cell
(2005) 17:2886–98.[Abstract/FreeFullText]
Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE. Class III
homeodomain-leucine zipper gene family members have overlapping, antagonistic, and
distinct roles in Arabidopsis development. Plant Cell (2005)
17:61–76.[Abstract/FreeFullText]
Qi Y, Sun Y, Xu L, Xu Y, Huang H. ERECTA is required for protection against heat-stress in
the AS1/AS2 pathway to regulate adaxial–abaxial leaf polarity in Arabidopsis. Planta (2004)
219:270–276.[CrossRef][ISI][Medline]
Sawa S, Watanabe K, Goto K, Liu YG, Shibata D, Kanaya E, Morita EH, Okada K.
FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a
protein with a zinc finger and HMG-related domains. Genes Dev (1999)
13:1079–1088.[Abstract/FreeFullText]
Semiarti E, Ueno Y, Tsukaya H, Iwakawa H, Machida C, Machida Y. The ASYMMETRIC
LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina,
establishment of venation and repression of meristem-related homeobox genes in leaves.
Development (2001) 128:1771–1783.[Abstract]
Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL. Members of the
YABBY gene family specify abaxial cell fate in Arabidopsis. Development (1999)
126:4117–4128.[Abstract]
Sun Y, Zhou Q, Zhang W, Fu Y, Huang H. ASYMMETRIC LEAVES1, an Arabidopsis gene
that is involved in the control of cell differentiation in leaves. Planta (2002)
214:694–702.[CrossRef][ISI][Medline]
Sun Y, Zhang W, Li FL, Guo YL, Liu TL, Huang H. Identification and genetic mapping of
four novel genes that regulate leaf development in Arabidopsis. Cell Res (2000)
10:325–335.[CrossRef][ISI][Medline]
Waites R, Hudson A. phantastica: a gene required for dorsoventrality of leaves in Antirrhinum
majus. Development (1995) 121:2143–2154.[Abstract]
Waites R, Selvadurai HR, Oliver IR, Hudson A. The PHANTASTICA gene encodes a MYB
transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum.
Cell (1998) 93:779–789.[CrossRef][ISI][Medline]
Williams L, Grigg SP, Xie M, Christensen S, Fletcher JC. Regulation of Arabidopsis shoot
apical meristerm and lateral organ formation by microRNA miR166g and its AtHD-ZIP target
genes. Development (2005) 132:3657–3668.[Abstract/FreeFullText]
Xu L, Xu Y, Dong A, Sun Y, Pi L, Huang H. Novel as1 and as2 defects in leaf
adaxial–abaxial polarity reveal the requirement for ASYMMETRIC LEAVES1 and 2 and
ERECTA functions in specifying leaf adaxial identity. Development (2003)
130:4097–4107.[Abstract/FreeFullText]
Xu L, Yang L, Pi L, Liu Q, Ling Q, Wang H, Poethig RS, Huang H. Genetic interaction
between the AS1–AS2 and RDR6–SGS3–AGO7 pathways for leaf morphogenesis. Plant
Cell Physiol (2006) 47:853–863.[Abstract/FreeFullText]
Xu Y, Sun Y, Liang W, Huang H. The Arabidopsis AS2 gene encoding a predicted
leucine-zipper protein is required for the leaf polarity formation. Acta Bot. Sin (2002)
44:1194–1202.
Yang L, Huang W, Wang H, Cai R, Xu Y, Huang H. Characterizations of a hypomorphic
argonaute1 mutant reveal novel AGO1 functions in Arabidopsis lateral organ development.
Plant Mol. Biol (2006) 61:63–78.[CrossRef][ISI][Medline]
Zhong R, Ye ZH. Amphivasal vascular bundle 1, a gain-of-function mutation of the IFL1/REV
gene, is associated with alterations in the polarity of leaves, stems and carpels. Plant Cell
Physiol (2004) 45:369–385.[Abstract/FreeFullText]
Genetic engineering and GMO
Daniell, H. 2002. Molecular strategies for gene containment in transgenic crops. Nature
Biotechnology. 20:581-586.
Chilcutt, C. F. and B. E. Tabashnik. 2004. Contamination of refuges by Bacillus thuringiensis
toxin genes from transgenic maize. Proceedings of the NationalAcademy of Sciences 101(20):
7526-7529.
Cruden, R.W. 2000. Pollen grains: why so many? Plant Systematics and Evolution 222:143-165.
Gepts, P., and R. Papa. 2003. Possible effects of (trans)gene flow from crops on the genetic
diversity from landraces and wild relatives. EnvironmentalBiosafety Research 2:89-103.
Luna, V.S., M.J. Figueroa, M.B. Baltazar, L.R. Gomez, R. Townsend, and J.B. Schoper. 2001.
Maize pollen longevity and distance isolation requirements for effective pollen control. Crop
Science 41:1551-1557.
Nakayama, Y., and H. Yamaguchi. 2002. Natural hybridization in wild soybean (Glycine max ssp.
soja) by pollen flow from cultivated soybean (Glycine max. ssp. max) in a designed
population. Weed Biology and Management 2:5-30.
Ohara, M., and Y. Shimamoto. 2002. Importance of genetic characterization and conservation of
plant genetic resources: the breeding system and genetic diversity of wild soybean (Glycine
soja). Plant Species Biology 17(1):51-58.
Pleasants, J.M., R.L. Hellmich, G.P. Dively, M.K. Sears, D.E. Stanley-Horn, H.R. Mattila, J.E.
Foster, P. Clark, and G.D. Jones. 2001. Corn pollen deposition on milkweeds in and near
cornfields. Proceedings of the National Academy of Sciences 98:11919-11924.
Westgate, M.E., J. Lizaso, and W. Batchelor. 2003. Quantitative relationships between pollen
shed density and grain yield in maize. Crop Science 43:934-942.
Daniell, H. 2002. Molecular strategies for gene containment in transgenic crops. Nature
Biotechnology 20:581-586.
Daniell, H., and A. Dhingra. 2002. Multiple gene engineering: dawn of an exciting new era in
biotechnology. Current Opinion in Biotechnology 13:136-141.
Daniell, H., M.S. Khan, and L. Allison. 2001. Milestones in chloroplast genetic engineering: an
environmentally friendly era in biotechnology. Trends in Plant Science 7:84-91.
Daniell, H., S.B. Lee, T. Panchal, and P.O. Wiebe. 2001. Expression and assembly of the native
cholera toxin B subunit gene as functional oligomers in transgenic tobacco chloroplasts.
Journal of Molecular Biology 311:1001-1009.
Daniell, H., B. Muthukumar, and S.B. Lee. 2001. Engineering the chloroplast genome without the
use of antibiotic selection. Current Genetics 39:109-116.
DeCosa, B., W. Moar, S.B. Lee, M. Miller, and H. Ding, D., J. Gai, Z. Cui, and J. Qiu. 2002.
Development of a cytoplasmic-nuclear male-sterile line of soybean. Euphytica 124:85-91.
Koivu, K., A. Kanerva, and E. Pehu. 2001. Molecular control of transgene escape from
genetically modified plants. Plant Science 160:517-522.
Lee, S.B., M.O. Byun, and H. Daniell. 2003. Accumulation of trehalose within transgenic
chloroplasts confers drought tolerance. Molecular Breeding 11:1-13.
Ruf, S., M. Hermann, I. Berger, H. Carrer, and R. Bock. 2001. Stable genetic transformation of
tomato plastids and expression of a foreign protein in fruit. Nature Biotechnology
19:870-875.
Schernthaner, J.P., S.F. Fabijanski, P.G. Arnison, M. Racicot, and L.S. Robert. 2003. Control of
seed germination in transgenic plants based on the segregation of a two-component genetic
system. Proceedings of the National Academy of Sciences of the United States of America
100(11):6855-6859.
Westgate, M.E., J. Lizaso, and W. Batchelor. 2003. Quantitative relationships between pollen
shed density and grain yield in maize. Crop Science 43:934-942.
Watson, J., V. Koya, S.H. Leppla, and H. Daniell. 2004. Expression of Bacillus anthracis
protective antigen in transgenic chloroplasts of tobacco, a non-food/feed crop. Vaccine
22:4374-4384.
四、
生物統計與試驗設計
1. Chen, C. L. and W. H. Swallow. 1990. Using group testing to estimate a
proportion and to test the binomial model. Biometrics 46: 1035-1046.
2. Dobermann, A. and J. L. Ping. 2004. Geostatistical integration of yield
monitor data and remote sensing improves yield maps. Agron. J. 96:
285-297.
3. Gauch, H.G. Jr., J. T. Gene Hwang, and Gary W. Fick. 2003. Model Evaluation by
Comparison of Model-Based Predictions and Measured Values. Agron. J. 2003; 95:
1442-1446.
4. Gilles Bélanger, John R. Walsh, John E. Richards, Paul H. Milburn, and Noura Ziadi.
2000. Comparison of Three Statistical Models Describing Potato Yield Response to
Nitrogen Fertilizer. Agron. J. 2000; 92: 902-908.
5. Hughes, G. and L.V. Madden. 1992. Aggregation and incidence of
disease. Plant Pathology. 42:657-660.
6. Johnson, D. A., J. R. Alldredge, and D. L. Vakoch. 1996. Potato late
blight forecasting models for the semiarid environment of South-Central
Washington. Phytopathology. 86:480-484.
7. Kobayashi, K. and M. U. Salam. 2000. Comparing simulated and
measured values using mean squared deviation and its components.
Agron. J. 92:345-352.
8. Madden, L. V. and G. Hughes. 1999. Sampling for plant disease
incidence. Phytopathology. 89:1088-1103.
9. Pethybridge, S. J., C. R. Wilson, F. J. Ferrandino and G. W. Leggett.
2000. Spatial analyses of viral epidemics in Australian hop gardens
implications for mechanisms of spread. Plant Dis.,84(5):513-515.
10. Yang, Rong-Cai, Terrance Z. Ye, Stanford F. Blade, and Manjula Bandara. 2004.
Efficiency of Spatial Analyses of Field Pea Variety Trials. Crop Sci. 2004; 44:
49-55.