Download Book 3A Chapter 05 (1)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Mathematics in Action (3rd Edition) 3A Full Solutions
5 Quadrilaterals
In △BCD,
BD 2  BC 2  CD 2
Quick Review
y  15  8
2
(Pyth. theorem)
2
 17
Let’s Try (p. 5.3)
1. (a) x  130  180
(int. s, CB // EF)
2.
x  50
37  ACD  75
ACD  38
(b) BCD  50  15
 65
∵ ABC  BCD  65
∴ AB // CD
(alt. s equal)
2.
(a) In △ABC and △CDA,
ABC  CDA
BAC  DCA
AC  CA
∴ △ABC  △CDA
given
alt. s, BA // CD
common side
AAS
(b) ∵ △ABC  △CDA
∴ BCA  DAC
∴ AD // BC
proved
corr. s, △s
alt. s equal
(b) ∵
∴
ca
 70
(corr. s, BA // CD)
b  70  180
b  110
(int. s, BA // CD)
∵ △BCE is an equilateral triangle.
∴ EBC  ECB  60
prop. of equil. △
ABC  BCD
 (20  60)  (40  60)
 80  100
 180
∴ AB // DC
int. s supp.
4.
(a) In △ABC and △ADC,
AB  AD
BAC  DAC
AC  AC
∴ △ABC  △ADC
b  20  a
 20  20
 40
(b) ∵
∴
∴
5.
(base ∠s, isos. △)
(ext. ∠ of △)
∵ CD  BD
c  b  40 (base ∠s, isos. △)
∴
BAC  ACD  38
BA // CD
alt. s equal
3.
Review Exercise 5 (p. 5.5)
1. (a) a  70
(alt. s, AD // BE)
(b) In △ABD,
∵ BD  AB
a  20
∴
BCD  ADE (corr. s, DA // CB)
(a)
given
given
common side
SAS
△ABC  △ADC
(proved in (a))
(corr. sides, △s)
BC  DC
△BCD is an isosceles triangle.
(a) In △ADB,
∵ AB  AD
∴ ABD  ADB (base s, isos. △)
DAB  ADB  ABD  180 ( sum of △)
56  2ADB  180
2ADB  124
ADB  62
In △ACD,
ACD  CAD  ADB (ext.  of △)
28  CAD  62
(c) In △ABC,
∵ BC  AC
∴ ABC  x
60  x  x  180
CAD  34
(base ∠s, isos. △)
(∠ sum of △)
(b)
x  60
BCE  ABC
(alt. ∠s, DE // AB)
yx
 60
EAB  EAD  DAB
 34  56
 90
AED  90
∵ EAB  AED  90  90
 180
∴ AB // ED
(int. s supp.)
(d) In △ABC,
BC 2  AB 2  AC 2
(Pyth. theorem)
x  122  9 2
 15
76
5 Quadrilaterals
6.
(a) In △BCD,
∴
BC 2  BD 2  (10 2  24 2 ) cm 2
 (100  576) cm 2
 676 cm 2
CD  26 cm 2  676 cm 2
2
2
∵ BC 2  BD 2  CD 2
∴ △BCD is a right-angled triangle, where
CBD  90 . (converse of Pyth. theorem)
ADB  CBD (alt. s, AD // BC)
Classwork
 90
Classwork (p. 5.9)
(a) ∵ ABCD is a parallelogram.
∴ AB  DC and BC  AD
∴ x  13 and y  22
(b) ∵ BAD  ABD
∴ AD  BD  24 cm (sides opp. equal s)
In △ABD,
AB 2  AD 2  BD 2
CG CF

(intercept theorem)
GD FB
y cm
7.2 cm

7.2 cm 12 cm
7.2
y
 7.2
12
 4.32
(Pyth. theorem)
AB  24 2 24 2 cm
 1152 cm (or 24 2 cm)
Activity
Activity 5.1 (p. 5.8)
1. (a) Yes (Reason: alt. s, BC // AD)
(opp. sides of // gram)
(b) ∵
∴
∴
ABCD is a parallelogram.
DO  BO and CO  AO (diags. of // gram)
a  9 and b  7
(c) ∵
∴
∴
ABCD is a parallelogram.
B  D and C  A (opp. s of // gram)
c  68 and d  112
Classwork (p. 5.18)
1. Yes (Reason: opp. sides equal)
(b) Yes (Reason: alt. s, BA // CD)
2.
Yes (Reason: opp. s equal)
(c) Yes (Reason: ASA)
2.
3.
No
(d) (i) They are equal.
(ii) They are equal.
4.
Yes (Reason: opp. sides equal and //)
(a) Yes (Reason: AAS (or ASA))
5.
Yes (Reason: diags. bisect each other)
6.
No
(b) OA = OC, OB = OD
(Reason: corr. sides, △s)
Classwork (p. 5.25)
(a) ∵ ABCD is a rhombus.
∴ BC  CD  AD (property of rhombus)
∴ x y7
Warm-Up Activity (p. 5.24)
1. A: Rhombus
B: Square
C: Rectangle
D: Trapezium
2.
rhombus, square, rectangle
(b) ∵
∴
Activity 5.2 (p. 5.47)
1. The length of MN is half of that of BC.
2.
ABCD is a rhombus.
x  90 (property of rhombus)
y  40 (property of rhombus)
Yes. It is because MEFN is a rectangle. (or any other
reasonable answers)
(c) ∵
∴
To Learn More
∴
To Learn More (p. 5.60)
In △ABC,
∵ EF // AC
FC EA

∴
(intercept theorem)
BF BE
x cm
6 cm

12 cm 10 cm
6
x   12
10
 7 .2
ABCD is a rhombus.
OA  OC and OB  OD
6
x   3 and y  4
2
(property of rhombus)
Classwork (p. 5.28)
(a) ∵ ABCD is a rectangle.
∴ ABC  90 (property of rectangle)
x  20  90
x  70
BC  AD
y6
In △BDC,
∵ FG // BD
77
(property of rectangle)
Mathematics in Action (3rd Edition) 3A Full Solutions
(b) ∵
∴
∴
∴
(b) In △ABC,
∵ AN  NB and AM  MC
1
∴ MN   BC and NM // BC
2
1
4 y
2
y 8
ABCD is a rectangle.
OB  OC  OA  5 cm (property of rectangle)
x5
y  25
 10
(c) ∵ ABCD is a rectangle.
∴ OA  OD
(property of rectangle)
∴
(base s, isos. △)
x y
In △AOD,
(ext.  of △)
x  y  46
2 x  46
x  23
∴
MNB  CBN  180
(b) ∵
∴
x  68
Quick Practice
y  23
Quick Practice 5.1 (p. 5.10)
(a) ∵ PQRS is a parallelogram.
∴ PQR  PSR
(opp. s of // gram)
20  3 x  4 x  1
20  1  4 x  3 x
x  19
ADC  90 (property of square)
y  90
(b) TQR  3x
ABCD is a square.
AOD  90 (property of square)
∵
∴
x  90
∵
∴
ABCD is a square.
ACD  45 (property of square)
ABCD is a square.
OA  OD  OB  7 cm (property of square)
x y7
2x  1  3
2x  4
Classwork (p. 5.34)
(a) ∵ ABCD is an isosceles trapezium.
∴ x  65
x  y  180
65  y  180
y  115
(b) ∵
∴
x2
∴
(int. s, AD // BC)
OD  OB
(diags. of // gram)
y34
y 1
Quick Practice 5.3 (p. 5.12)
∵ ABCD is a parallelogram.
∴ ABC  ADC (opp. s of // gram)
 70
∵ BEFG is a parallelogram.
∴ EBG  EFG (opp. s of // gram)
 55
ABG  ABC  EBG
ABCD is an isosceles trapezium.
BD  AC
x 42
6
Classwork (p. 5.48)
(a) In △ABC,
∵ AM  MB and AN  NC
1
∴ MN   BC and MN // BC
2
1
x   10
2
5
 3  19
 57
TQR  STQ  180 (int. s, QR // PS)
STQ  180  57
 123
Quick Practice 5.2 (p. 5.11)
∵ OCED is a parallelogram.
∴ OC  DE  ( 2 x  1) cm
(opp. sides of // gram)
and OD  CE  ( y  3) cm (opp. sides of // gram)
∵ ABCD is a parallelogram.
∴
(diags. of // gram)
OC  OA
y  45
(c) ∵
∴
∴
(int. s, NM // BC)
x  112  180
Classwork (p. 5.31)
(a) ∵ ABCD is a square.
∴ BC  AB
(property of square)
x6
∴
(mid-pt. theorem)
 70  55
 15
In △ABG,
BAG  ABG  AGB  180 ( sum of △)
BAG  15  140  180
BAG  25
∵ ABG  BAG
∴ △ABG is not an isosceles triangle.
(mid-pt. theorem)
y  55 (corr. s, MN // BC)
78
5 Quadrilaterals
Quick Practice 5.4 (p. 5.19)
(a) In EFGH,
(4 x  5)  115  (3x  20)  115  360
7 x  255  360
7 x  105
x  15
(b) FEH  4 15  5  65
FGH  3 15  20  65
∵ EFG  EHG
and FEH  FGH
∴ EFGH is a parallelogram.
Quick Practice 5.5 (p. 5.20)
∵ ABCD is a parallelogram.
∴ OA  OC
and OB  OD
∵ OM  2OA
 2OC
 ON
BCD  BDC  DBC  180 ( sum of △)
b  36  36  180
b  72  180
b  108
( sum of
polygon)
Quick Practice 5.8 (p. 5.28)
∵ PQRS is a rhombus.
∴ PQ  QR  RS  SP and PR  QS
(property of rhombus)
i.e. 4 PQ  68 cm
PQ  17 cm
In △OPQ,
1
OP  PR (property of rhombus)
2
30

cm
2
 15 cm
OP 2  OQ 2  PQ 2
(Pyth. theorem)
opp. s equal
diags. of // gram
diags. of // gram
given
OQ  17 2  152 cm
 8 cm
1
∴ Area of △OPQ   OQ  OP
2
1
  8  15 cm 2
2
 60 cm 2
∴ Area of PQRS = 4  area of △OPQ
 4  60 cm 2
given
∵ OM  ON and OB  OD
∴ BNDM is a parallelogram. diags. bisect each other
Quick Practice 5.6 (p. 5.21)
(a) ∵ ABCD is a parallelogram.
∴ AD  BC
and ADC  ABC
BG  BC  CG
 AD  CG
 (7  2) cm
 9 cm
∴ BG  EF
∵ ABC  ADC
and ADC  AEF
∴ ABC  AEF
∴ BG // EF
∴ BEFG is a parallelogram.
opp. sides of // gram
opp. s of // gram
 240 cm 2
Quick Practice 5.9 (p. 5.29)
∵ ABCD is a rectangle.
∴ KB  KA
(property of rectangle)
∴ KBA  x
(base ∠s, isos. △)
(vert. opp. s)
AKB  76
In △ABK,
BAK  ABK  AKB  180 (∠ sum of △)
x  x  76  180
proved
given
corr. s equal
opp. sides equal and //
(b) ∵ BEFG is a parallelogram.
∴ EBG  EFG (opp. s of // gram)
EBG  BCD
(alt. s, AB // DC)
 118
∴ EFG  118
2 x  104
x  52
∵ KA  KD
∴ KAD  KDA
y
BAD  90
Quick Practice 5.7 (p. 5.27)
(a) ∵ ABCD is a rhombus.
∴ AOD  90 (property of rhombus)
5a  90
(property of rectangle)
(base s, isos. △)
(property of rectangle)
x  y  90
52  y  90
y  38
a  18
Quick Practice 5.10 (p. 5.30)
∵ ABFE is a rhombus.
∴ BF  AE  13 cm
∵ BCDE is a rectangle.
∴ DF  BF  13 cm
i.e. BD  2 13 cm  26 cm
In △BDE,
BED  90
(b) ADB  2a
 2  18
 36
In △BCD,
BDC  DBC  ADB  36 (property of rhombus)
79
(property of rhombus)
(property of rectangle)
(property of rectangle)
Mathematics in Action (3rd Edition) 3A Full Solutions
BE 2  DE 2  BD 2
Construct a line TR such that PQ // TR.
∵ PQ // TR and PT // QR
∴ PQRT is a parallelogram.
∴ TR  PQ
(opp. sides of // gram)
(int. s, PS // QR)
PQR  QPS  180
(Pyth. theorem)
DE  26 2  10 2 cm
 24 cm
∴ Perimeter of BCDE  2  ( BE  DE )
 2  (10  24) cm
120  QPS  180
QPS  60
∵ PQRS is an isosceles trapezium.
∴ PQ  SR  9 cm and RSP  QPS
∴ TR  SR  9 cm and RSP  60
∵ △RST is an isosceles triangle.
i.e. RTS  RST  60
(base s, isos. △)
RST  RTS  TRS  180 ( sum of △)
 68 cm
Quick Practice 5.11 (p. 5.32)
(a) ∵ ABCD is a square.
∴
OA  OB  OC  OD  2 5 cm (property of square)
∴
BD  2  2 5 cm
 4 5 cm
(b) In △OAB,
AOB  90
(property of square)
AB  OA  OB
2
60  60  TRS  180
TRS  60
∴ △RST is an equilateral triangle.
i.e. TS  SR  9 cm
∴ QR  PT
 PS  TS
 (15  9) cm
 6 cm
2
2
(Pyth. theorem)
 [(2 5 )  (2 5 ) 2 ] cm 2
2
∴
 40 cm 2
Area of square ABCD  AB 2
 40 cm 2
Quick Practice 5.14 (p. 5.41)
In △ABE and △CDF,
AB  CD
opp. sides of // gram
given
AEB  CFD  90
alt. ∠s, AB // DC
ABE  CDF
∴ △ABE  △CDF
AAS
∴ BE  DF
corr. sides,  △s
Alternative Solution
∵ ABCD consists of four congruent right-angled
triangles △OAB, △ODA, △OBC and △OCD.
1

∴ Area of square ABCD  4    2 5  2 5  cm 2
2

 40 cm 2
Quick Practice 5.12 (p. 5.33)
∵ ABCD is a square.
∴ AB  AD
(property of square)
∵ △ADE is an equilateral triangle.
∴ AD  AE
∴ AE AB
∴ AEB  ABE
(base s, isos. △)
x
BAD  90
(property of square)
DAE  60
(prop. of equil. △)
In △ABE,
ABE  BAE  AEB  180 ( sum of △)
x  (90  60)  x  180
2 x  150  180
2 x  30
x  15
ABD  45
x  y  45
15  y  45
y  30
Quick Practice 5.15 (p. 5.41)
In △ABE and △DCE,
AB  DC
ABE  DCE  90
∵ E is the mid-point of BC.
∴ BE  CE
∴ △ABE  △DCE
∴ AE  DE
∵ FD  AE
and FA  DE
∴ AE  DE  FD  FA
∴ AEDF is a rhombus.
Quick Practice 5.16 (p. 5.42)
∵ ABCD is a rhombus.
∴ BA// CD and AD // BC
In △AEG and △DHG,
AEG  DHG
EG  HG
AGE  DGH
∴ △AEG  △DHG
AE  DH
∴ AG  DG
In △CHF and △DHG,
CFH  DGH
HG  HF
DHG  CHF
∴ △CHF  △DHG
CF  DG
(property of square)
Quick Practice 5.13 (p. 5.35)
T
80
property of rectangle
property of rectangle
SAS
corr. sides, △s
opp. sides of // gram
opp. sides of // gram
alt. ∠s, BA // CD
given
vert. opp. ∠s
ASA
corr. sides, △s 
corr. sides, △s
alt. ∠s, AD // BC
given
vert. opp. ∠s
ASA
corr. sides, △s 
5 Quadrilaterals
∴
∵
∴
∵
∴
∴
CH  DH
AD  DC
AE  DH
1
 DC
2
1
 AD
2
 DG
 CF
AB  BC
BE  AB  AE
 BC  CF
 BF
AEG  CFH
corr. sides, △s
property of rhombus
From 
Quick Practice 5.19 (p. 5.51)
In △ABC,
∵ M is the mid-point of BC and
AF  FC .
1
∴ BA// MF and FM   AB
2
In △DEF,
∵ N is the mid-point of EF and
FC  CD .
1
∴ DE // CN and CN   DE
2
∵ BA// DE , BA// MF and
DE // CN
∴ MF // CN
1
∵ FM   AB and
2
1
CN   DE
2
∴ AB  2FM and DE  2CN
∵ AB  DE
∴ 2 FM  2CN
FM  CN
∴ FMCN is a parallelogram.
From 
property of rhombus
base s, isos. △
Quick Practice 5.17 (p. 5.49)
(a) In △XYZ,
∵ P and Q are the mid-points of XY and XZ
respectively.
1
PQ   YZ
∴
(mid-pt. theorem)
2
1
4 cm   YZ
2
YZ  8 cm
mid-pt. theorem
mid-pt. theorem
opp. sides equal and //
Quick Practice 5.20 (p. 5.56)
∵ AB // CD // EF // GH and BD  DF  FH
∴ AC  CE  EG
(intercept theorem)
1
∴ AC   AG
3
1
  12 cm
3
 4 cm
(b) In △XYZ,
∵ P and Q are the mid-points of XY and XZ
respectively.
∴ PQ // YZ
(mid-pt. theorem)
∴ XPQ  XYZ
(corr. s, PQ // YZ)
 55
In △XPQ,
XPQ  XQP  PXQ  180 ( sum of △)
Quick Practice 5.21 (p. 5.58)
(a) ∵ AD // EF // BC and AE  EB
∴ DF  FC
(intercept theorem)
In △ACD,
∵ AD // GF and DF  FC
∴ AG  GC
(intercept theorem)
∵ DF  FC and AG  GC
1
∴ GF   AD
(mid-pt. theorem)
2
1
  10 cm
2
 5 cm
55  XQP  38  180
XQP  87
Quick Practice 5.18 (p. 5.50)
(a) In △RST,
∵ U and V are the mid-points of ST and RT respectively.
1
UV   SR
∴
(mid-pt. theorem)
2
1
5 cm   SR
2
SR  10 cm
(b) In △RST,
∵ U and V are the mid-points of ST and RT respectively.
∴ SR // UV
(mid-pt. theorem)
∴ TSR  TUV  68
(corr. s, SR // UV)
In △PQR,
∵ S and U are the mid-points of PR and QT
respectively.
∴ PQ // SU
(mid-pt. theorem)
∴ QPR  USR  68
(corr. s, PQ // SU)
PQR  PRQ  QPR  180 ( sum of △)
PQR  25  68  180
PQR  87
(b)
EG  EF  GF
 (14  5) cm
 9 cm
In △ABC,
∵ AE  EB and AG  GC
1
∴
(mid-pt. theorem)
EG   BC
2
1
9 cm   BC
2
BC  18 cm
81
Mathematics in Action (3rd Edition) 3A Full Solutions
Quick Practice 5.22 (p. 5.59)
(a) ∵ AMCN is a parallelogram.
∴ AN // MC
Consider △ABK.
∵ BM  MA and MH // AK
∴ BH  HK
Consider △CDH.
∵ DN  NC and KN // HC
∴ KD  HK
∴ BH  HK  KD
(b) In △CDH,
∵ DN  NC and DK  KH
1
∴ KN   HC
2
HC  2 KN
∵ ABCD is a parallelogram.
∴ AB  CD
In △ABK and △CDH,
AB  CD
ABK  CDH
BK  BH  HK
 KD  HK
 DH
∴ △ABK  △CDH
∴ AK  CH
∴ AK  2KN
4.
∵
∴
x6
OC  OA
intercept theorem
y 1
intercept theorem
5.
(a) ∵
∴
ABCD is a parallelogram.
(opp.∠s of // gram)
ADC  ABC
 134
ADE  180  ADC
(adj.∠s on st. line)
 180  134
 46
mid-pt. theorem
(b) ∵
∴
opp. sides of // gram
proved
alt. s, AB // DC
Consolidation Corner (p. 5.21)
1. ∵ AB  DC  6 cm and
AD  BC  5 cm
∴ ABCD is a parallelogram.
SAS
corr. sides, △s
2.
Consolidation Corner (p. 5.12)
1. m  55  180
(int. s, AD // BC)
∵
4.
(a) ∵
∴
n6
3.
∵
∴
Perimeter of PQRS  28 cm
PQ  QR  RS  SP  28 cm
8 x  4  28
(opp. sides of // gram)
8 x  32
b  28  b
2b  28
b  14
C  A
c  108
given
opp. sides equal and //
(2 x  2)  2 x  ( x  2)  (3 x  4)  28
a  24
AB  DC
given
opp. sides equal
BAG  BEG  30 and
(given)
AGE  ABE  150
∴ AGEB is a parallelogram.
(opp. s equal)
∴ GE  AB
(opp. sides of // gram)
 6 cm
∵
ABCD is a parallelogram.
(opp. sides of // gram)
DC  AB
ABCD is a parallelogram.
AD  BC
(opp. sides of // gram)
BC  EF  5 cm and
BC // EF
BEFC is a parallelogram.
3.
m  125
∵
∴
ADE  AED  46°
(sides opp. equal∠s)
AD  AE
 5 cm
(opp. sides of // gram)
BC  AD
 5 cm
∴
2.
(diags. of // gram)
y 1  2
Consolidation Corner
∵
∴
ABCD is a parallelogram.
OB  OD (diags. of // gram)
x24
x4
(b)
(opp.∠s of // gram)
ABCD is a parallelogram.
(opp.∠s of // gram)
B  D
2h  30  h
h  30
C  D  180
(int.∠s, BC // AD)
k  h  180
k  180  30
5.
 150
82
PQ  [2(4)  2] cm
 6 cm
QR  2(4) cm
 8 cm
SR  (4  2) cm
 6 cm
PS  [3(4)  4] cm
 8 cm
∵ PQ  SR and QR PS
∴ PQRS is a parallelogram.
opp. sides equal
(a) ∵ ABCD is a parallelogram.
∴ BAD  BCD  80 and
(opp. s of // gram)
ABC  ADC
5 Quadrilaterals
In △CDE,
BED  CDE  DCE
 30  80
 110
In △ABF,
BFD  ABF  BAF
 30  80
 110
5.
(ext.  of △)
 FDE
BFD  BED and
FBE  FDE
∴ BEDF is a parallelogram.
 (9  6) cm
 15 cm
i.e. AD  15 cm
6.
proved
opp. s equal
Consolidation Corner (p. 5.36)
2.
∵
∴
∴
ABCD is a rhombus.
ABD  ADB  CBD  35
(property of rhombus)
In △ABD,
BAD  ABD  ADB  180 ( sum of △)
BAD  110
BDE  ADE  ADB
 15  35
 50
∵ EB  ED
∴ DBE  BDE  50 (base s, isos. △)
In △BDE,
BED  DBE  BDE  180 ( sum of △)
BED  50  50  180
BED  100  180
BED  80
(property of rhombus)
In △PQR,
y  180  x  z
 180  54  54
 72
∵
∴
BAD  35  35  180
BAD  70  180
PQRS is a rhombus.
(property of rhombus)
PQ  PS
w 1  4
w3
x  z  54
(Pyth. theorem)
PC  10 2  8 2 cm
 6 cm
BC  BP  PC
(ext.  of △)
∵
∵
∴
ABCD is a rectangle.
DC  AB  8 cm , AD  BC and BCD  90
(property of rectangle)
In △CDP,
PC 2  CD 2  DP 2
(b) FBE  ABE  ABF
 FDC  CDE
1.
∵
∴
( sum of △)
PQRS is a rectangle.
KQ  KR
(property of rectangle)
(base s, isos.△)
a  KQR
 28
In △KQR,
b  a  KQR
 28  28
 56
(ext. of △)
In △PQR,
PQR  90
c  180  PQR  a
 180  90  28
 62
3.
4.
∵
∴
∵
∴
Consolidation Corner (p. 5.43)
1. ∵ AB  BC
∴ CAB  ACB
∵ ADEF is a parallelogram.
∴ DAF  DEF
∴ ACB  DEF
(property of rectangle)
( sum of △)
2.
(property of square)
c  90
(property of square)
PQ  PS
d 8
(property of square)
opp. s of // gram
property of rectangle
given
 DF  OD
 FO
PQRS is a square.
a  45
(property of square)
b  90
In △EBO and △FCO,
∵ OA  OD
and EA  DF
∴ EO  EA  OA
given
base s, isos. △
OB  OC
EOB  FOC
∴ △EBO  △FCO
3.
ABCD is an isosceles trapezium.
a  65
b3
83
In △BEF and △CED,
BFE  CDE
EBF  ECD
BE  CE
∴ △BEF  △CED
∴ FE  DE
∵ BE  CE and FE  DE
∴ BFCD is a parallelogram.
∴ BD  FC
property of rectangle
vert. opp. s
SAS
alt. s, FA // CD
alt. s, FA // CD
given
AAS
corr. sides, △s
diags. bisect each other
opp. sides of // gram
Mathematics in Action (3rd Edition) 3A Full Solutions
In △PST,
∵ PV  VS and VU // ST
∴ PU  UT
(intercept theorem)
∵ PV  VS and PU  UT
1
∴ VU   ST
(mid-pt. theorem)
2
1
q   10
2
5
Consolidation Corner (p. 5.52)
1. (a) In △ACD,
∵ AB  BC and AE  ED
1
∴ BE   CD
(mid-pt. theorem)
2
1
x   8.4
2
 4.2
∵
∴
(mid-pt. theorem)
(corr. s, BE // CD)
BE // CD
y  35
(b) In △ACD,
∵ ABE  ACD  55
∴ BE // CD
(corr. s equal)
∵ AB  BC and BE // CD
(intercept theorem)
∴ AE  ED
pq
∵ AE  ED  AD
p  q  12
∴
p  p  12
p6
(b) In △ABD,
∵ AF  FD and BC  CD
1
∴ FC   AB
(mid-pt. theorem)
2
1
4 x
2
x 8
In △BDE,
∵ BF  FE and BC  CD
1
∴ FC   ED
(mid-pt. theorem)
2
1
4 y
2
y 8
2.
3.
In △ABC,
∵ D, E and F are the mid-points of
AB, BC and CA respectively.
1
1
∴ FE   AB , DF   BC
2
2
1
and DE   AC
mid-pt. theorem
2
∴ AD  EF and AF  ED
common side
DF  FD
∴ △ADF  △EFD
SSS
Consolidation Corner (p. 5.60)
1. ∵ L1 // L2 // L3 and BD  DF
∴
CE  AC
(intercept theorem)
 3 cm
2.
∵
AC  CE and L1 // L2
∴
GE  BG
(intercept theorem)
7
 cm
2
 3.5 cm
q6
∴
In △ACF,
∵ AB  BC and BG // CF
∴ AG  GF
∵ AB  BC and AG  GF
1
∴ BG   CF
2
In △BDG,
∵ BC  CD and BG // CE
∴ GE  ED
∵ BC  CD and GE  ED
1
∴ CE   BG
2
1 1
   CF
2 2
1
 CF
4
∴ CF  4CE
EF  CF  CE
intercept theorem
mid-pt. theorem
intercept theorem
mid-pt. theorem
 4CE  CE
 3CE
Exercise
Exercise 5A (p. 5.12)
Level 1
1. ∵ ABCD is a parallelogram.
∴ AB  DC
(opp. sides of // gram)
x4
(a) In △PQS,
∵ QR  RS and RV // QP
∴ PV  VS
(intercept theorem)
∵ QR  RS and PV  VS
1
∴ RV   QP
(mid-pt. theorem)
2
1
p  8
2
4
AD  BC
(opp. sides of // gram)
y3
2.
84
∵
∴
ABCD is a parallelogram.
(diags. of // gram)
OC  OA
x2
∴
OD  OB  y cm (diags. of // gram)
5 Quadrilaterals
BD  3 cm
∴
AD  BC
5 z  3z  4
2z  4
z2
∵
∴
ABCD is a parallelogram.
(diags. of // gram)
OB  OD
y y 3
y  1 .5
3.
∵
∴
ABCD is a parallelogram.
(opp. s of // gram)
B  D
9.
x  30
∵
∴
4.
5.
ABCD is a parallelogram.
(opp. sides of // gram)
AB  DC
x4
∴
(opp. sides of // gram)
AD  BC
y  2x 1
 2(4)  1
9
∵
∴
∴
2( x  1)  3( x  1)
C  D  180 (int. s, BC // AD)
(3 y  30)  30  180
3 y  120
y  40
∵
∴
2 x  2  3x  3
x5
∴
(opp. s of // gram)
BCD  BAD
y  2 y  108
3 y  108
y  36
10. (a) ∵ ABCD is a parallelogram.
BAD  BCD
∴
(opp. s of // gram)
58  4 x  7 x  10
48  3x
x  16
ABCD is a parallelogram.
(opp. sides of // gram)
OB  OD
4 x  2  x  14
3 x  12
x4
OA  OC
(opp. sides of // gram)
(b) DAE  4x
 4 16
∵
∴
(opp. sides of // gram)
2 y  3y  2
 64
DAE  AEC  180 (int. s, AD // EC)
AEC  180  64
 116
y2
6.
∵
∴
∵
∴
7.
∵
∴
11. ∵
∴
ABCD is a parallelogram.
x  ADC (opp. s of // gram)
 40
∵
∴
ABC  BAD  180 (int. s, AD // BC)
x  [(2 x  30)  y ]  180
y  180  30  3x
 150  3(40)
 30
12. (a) ∵ AB  AC
∴ ABC  ACB (base s, isos. △)
In △ABC,
BAC  ABC  ACB  180 ( sum of △)
ABCD is a parallelogram.
AB  DC (opp. sides of // gram)
6  x  2x  3
70  2ABC  180
3x  3
x 1
∴
2ABC  110
ABC  55
OB  OD (opp. s of // gram)
13  y  10
(b) ∵ ABCD is a parallelogram.
∴ ADC  ABC (opp. s of // gram)
y3
8.
∵
∴
WXYZ is a parallelogram.
ZY  WX  8 cm (opp. sides of // gram)
and WZ  XY
(opp. sides of // gram)
Perimeter of parallelogram WXYZ  54 cm
WX  XY  YZ  ZW  54 cm
8 cm  XY  8 cm  XY  54 cm
2 XY  38 cm
XY  19 cm
 55
ABCD is a parallelogram.
(opp. s of // gram)
A  C
13. ∵
∴
60  x  5 x  6
66  6 x
x  11
∵
∴
85
ABCD is a parallelogram.
EBC  AEB (alt. s, BC // AD)
 41
EB bisects ABC.
ABE  EBC  41
Mathematics in Action (3rd Edition) 3A Full Solutions
ABC  ABE  EBC
 41  41
 82
ADC  ABC
 82
18. ∵
∴
5x  6  2 x  3
3x  9
(opp. s of // gram)
x3
∴
Level 2
14. ∵ ABCD and BEFC are parallelograms.
∴ BCD  BAD
(opp. s of // gram)
 124
and BCF  BEF
(opp. s of // gram)
∵
∴
32  CDE  72
CDE  40
∵ CED  CDE
∴ △CDE is not an isosceles triangle.
 7 cm
16. ∵
∴
(opp. sides of // gram)
BCEF is a parallelogram.
CBF  CEF
 56
∵ BC  BG
∴ BCG  BGC
In △BCG,
CBG  BCG  BGC  180
56  2BCG  180
2BCG  124
BCG  62
∵ ABCD is a parallelogram.
∴ BAD  BCD
 62
(diags. of // gram)
19. CED  ADE
(alt. s, AD // BC)
 32
∵ ABCD is a parallelogram.
∴ ADC  ABC (opp. s of // gram)
 72
ADE  CDE  ADC
BEFG is a parallelogram.
(diags. of // gram)
AB  AF  7 cm
and AE  AG  6 cm (diags. of // gram)
ABCD is a parallelogram.
(opp. sides of // gram)
CD  BA
AD  BC
 9 cm
DE  AD  AE
 (9  6) cm
 3 cm
∴
OA  OC
x  3 y  3 x  18
3 y  2 x  18
2
y  x6
3
2
 (3)  6
3
8
 146
BCD  BCF  DCF  360 (s at a pt.)
124  146  DCF  360
270  DCF  360
DCF  90
∴ DC is perpendicular to CF.
15. ∵
∴
ABCD is a parallelogram.
AB  DC
(opp. sides of // gram)
20. ∵
∴
PXYS is a parallelogram.
(opp. s of // gram)
SPX  SYX
 40
In △PZS,
PSZ  SPZ  PZR
(ext.  of △)
PSZ  40  142
(opp. s of // gram)
∵
∴
(base s, isos. △)
PSZ  102
PQRS is a parallelogram.
(opp. s of // gram)
PQR  PSZ
 102
( sum of △)
21. ∵
∴
ABCD is a parallelogram.
BCD  BAD
 106
DCE  180  BCD
 180  106
 74
(opp. s of // gram)
∵
∴
17. ABF  FED
(alt. s, AB // EC)
 48
∵ BE bisects ABC.
∴ ABC  2ABF
 2  48
CEFG is a parallelogram.
EFG  DCE
 74
DGF  DCE
 74
(opp. s of // gram)
(adj. s on st. line)
(opp. s of // gram)
(corr. s, GF // CE)
FD  FG
(base. s, isos. △)
GDF  DGF
 74
In △DGF,
DFG  GDF  DGF  180 ( sum of △)
∵
∴
 96
∵ ABCD is a parallelogram.
∴ ADC  ABC (opp. s of // gram)
 96
ADE  ADC  180 (adj. s on st. line)
ADE  96  180
ADE  84
DFG  74  74  180
DFG  32
86
5 Quadrilaterals
DFE  DFG  EFG
∴ Perimeter of ACED  2( AC  AD)
 32  74
 2(12  10) cm
 106
 44 cm
22. (a) ∵ ABCD is a parallelogram.
∴ BCD  BAD (opp. s of // gram)
 60
(alt. s, BC // AD)
DEC  ADE
24. In △ABD,
AB 2  BD 2  AD 2
BD  AD  AB 2
 60
In △CDE,
CDE  DEC  ECD  180 ( sum of △)
∵
∴
∵
∴
CDE  60  60  180
CDE  60
∵ CDE  DEC  ECD  60
∴ CD  DE  CE
∴ △CDE is an equilateral triangle.
AE 2  AB 2  BE 2
AE  AB  BE
2
(Pyth. theorem)
(Pyth. theorem)
2
 193 cm
AC  AE  CE
 ( 193  193 ) cm
 2 193 cm
Exercise 5B (p. 5.21)
Level 1
1. ∵ OA  OC  3 cm and
OB  OD  4 cm
∴ ABCD is a parallelogram.
23. (a) ∵ ABCD is a parallelogram.
∴ GD  BG
(diags. of // gram)
 8 cm
and GC  AG
(diags. of // gram)
 6 cm
In △AGD,
(Pyth. theorem)
AD 2  AG 2  GD 2
AB 2  BG 2  AG 2
(diags. of // gram)
 7 2  12 2 cm
 (5  8) cm
 13 cm
Perimeter of the parallelogram  2( AB  BC )
 2(8  13) cm
 42 cm
(opp. sides of // gram)
 252  7 2 cm
 24 cm
ABCD is a parallelogram.
BE  DE and AE  CE
BD  24 cm
BE  DE  24 cm
2 BE  24 cm
BE  12 cm
In △AEB,
(b) ∵ ABCD is a parallelogram.
∴ AD = BC and AB = DC (opp. sides of // gram)
∵ △CDE is an equilateral triangle.
∴ EC  DC  DE  8 cm
BC  BE  EC
AD  6 2  8 2 cm
 10 cm
BC  AD
 10 cm
In △AGB,
(Pyth. theorem)
2
2.
3.
4.
AB  8 2  6 2 cm
 10 cm
DC  AB
(opp. sides of // gram)
 10 cm
∴ Perimeter of ABCD  2( AB  BC )
 2(10  10) cm
 40 cm
(b) ∵ ACED is a parallelogram.
∴ AC  DE
(opp. sides of // gram)
and AD  CE
(opp. sides of // gram)
AC  AG  GC
 (6  6) cm
 12 cm
87
given
diags. bisect each other
AB  DC  2.3 cm and
BA// CD
∴ ABCD is a parallelogram.
given
opp. sides equal and //
AB  DC and
AD  BC  3 cm
∴ ABCD is a parallelogram.
given
opp. sides equal
∵
∵
A  B  C  D  360
A  60  120  60  360
A  240  360
A  120
∵ A  C  120 and
B  D  60
∴ ABCD is a parallelogram.
ADB  CBD
AD// BC
AD  BC and AD// BC
ABCD is a parallelogram.
5.
∵
∴
∵
∴
6.
(a) ∵
∴
AD  BC
5a  2  3a  4
2a  6
a3
 sum of polygon
opp. s equal
given
alt. s equal
given
opp. sides equal and //
Mathematics in Action (3rd Edition) 3A Full Solutions
(b)
7.
AB  (3  1) cm  4 cm
DC  (7  3) cm  4 cm
∵ AD  BC and AB  DC
∴ ABCD is a parallelogram.
Method 2:
∵ △AOD  △COB
∴ OA  OC and OD  OB
∴ ABCD is a parallelogram.
opp. sides equal
Level 2
12. (a) In ABCD,
A  B  C  D  360
(a) In ABCD,
143  (3x  11)  143  (2 x  5)  360 ( sum of
280  5 x  360 polygon)
(5a  5)  (2a  10)  120 
5 x  80
x  16
(b) ABC  3(16)  11  37
ADC  2(16)  5  37
∵ BAD  BCD and
ABC  ADC
∴ ABCD is a parallelogram.
8.
(a) In △AGD,
GAD  ADG  BGD
CF  EF
ECF  CEF
 50
(3a  15)  360
10a  250
a  25
(b) A  5( 25)  5  120
B  2( 25)  10  60
D  3( 25)  15  60
∴ A  C and B  D
∴ ABCD is a parallelogram.
opp. s equal
(ext.  of △)
(base s, isos. △)
13. (a) ∵ ABCD is a parallelogram.
∴ BC  AD
opp. sides of // gram
∵ PADQ is a parallelogram.
∴ AD  PQ
opp. sides of // gram
∴ BC  PQ
BAD  ABC  50  120
 170
 180
∴ AD is not parallel to BC.
∴ ABCD is not a parallelogram.
P  S  180
S  180  P
Q  R  180
(b) ∵ ABCD is a parallelogram.
∴ BC // AD
∵ PADQ is a parallelogram.
∴ AD // PQ
∴ BC // PQ
Also, BC  PQ
proved in (a)
∴ PBCQ is a parallelogram. opp. sides equal and //
int. s, QP // RS
int. s, QP // RS
Q  180  R
∵
∴
∴
10. ∵
∴
∵
∴
∵
∴
∴
P  R
given
S  Q
PQRS is a parallelogram.
opp. s equal
14. ∵
ABCD is a parallelogram.
(opp. sides of // gram)
BC  AD
(given)
FC  AE
BF  BC  FC
 AD  AE
 ED
BC // AD
BF // ED
BFDE is a parallelogram.
11. Method 1:
∵ △AOD  △COB
∴ AD  CB
and OAD  OCB
∴ AD // BC
∴ ABCD is a parallelogram.
opp. s equal
(c) ∵ ABCD is a parallelogram.
∴
(opp. sides of // gram)
AD  BC
18  3b  b  2
4b  20
b5
(b) ∵
9.
( sum of
polygon)
10a  110  360
GAD  15  65
GAD  50
i.e. BAD  50
∵
∴
given
corr. sides, △s
diags. bisect each other
∴
∵
∴
∴
15. ∵
∴
(opp. sides equal and //)
∵
given
corr. sides, △s
corr. s, △s
alt. s equal
opp. sides equal and //
∴
∵
∴
88
AB  FC
EF  FC
AB  EF
AE  FD
BF  FD
AE  BF
ABFE is a parallelogram.
PQRS is a parallelogram.
PO  OR
and QO  OS
X is the mid-point of PO.
1
XO  PO
2
Y is the mid-point of OR.
1
OY  OR
2
1
 PO
2
 XO
given
diags. of // gram
given
diags. of // gram
opp. sides equal
diags. of // gram
diags. of // gram
5 Quadrilaterals
∵
∴
XO  OY and QO  OS
XQYS is a parallelogram.
PQR  MNO
 66
diags. bisect each other
16. (a) ∵ △ABC  △CDE
∴ BC  DE
and ACB  CED
∵ BC is the angle bisector
of ACE.
∴ ACB  BCE
∴ BCE  CED
∴ CB // DE
∴ BCDE is a parallelogram.
given
corr. sides, △s
corr. s, △s
19. (a) ∵ ABCD is a parallelogram.
∴ AD  BC
∵ △ABE and △CDF are
equilateral triangles.
∴ AB  AE  BE and
DC  DF  FC
∵ AB  DC
∴ DF  BE
∵ ADC  CBA
FDC  ABE  60
∴ ADF  ADC  60
alt. s equal
opp. sides equal
and //
(b) ∵ △ABC  △CDE
∴ ABC  CDE (corr. s, △s)
 54
∵ BCDE is a parallelogram.
∴ CBE  CDE (opp. s of // gram)
 54
ABE  ABC  CBE
 54  54
 108
17. (a) In △ABO and △CDO,
AOB  COD
OAB  OCD  90
BO  DO
∴ △ABO △CDO
 CBA  60
 CBE
∴ △AFD  △CEB
(b) ∵ △AFD  △CEB
∴ AF  CE
AE  FC
∴ AECF is a parallelogram.
Exercise 5C (p. 5.37)
Level 1
1. ∵ ABCD is a rhombus.
∴ AB  BC  CD  DA
∴ x4
vert. opp. s
given
given
AAS
(b) ∵ △ABO △CDO
∴ AO  CO
BO  DO
∴ ABCD is a parallelogram.
(proved in (a))
opp. sides of // gram
opp. sides of // gram
opp. s of // gram
prop. of equil.△
SAS
proved in (a)
corr. sides, △s
from (a)
opp. sides equal
(property of rhombus)
2y  2  4
2y  2
proved in (a)
corr. sides, △s
given
diags. bisect each other
y 1
3z  5  4
3z  9
z3
18. (a)
2.
ABCD is a rhombus.
DAB  2  BAC
(property of rhombus)
 2  30
 60
S
With the notation in the figure,
∵ △MNO  △PQR
∴ MN  PQ
and MNO  PQR
PSO  PQR
∴ MNO  PSO
∴ MN // PQ
∴ MNQP is a parallelogram.
∵
∴
p  DAB
(alt. s, AD // EC)
 60
given
corr. sides, △s
corr. s, △s
corr. s, NO // QR
(int. s, AB // DC)
DAB  q  180
60  q  180
q  120
3.
corr. s equal
opp. sides equal
and //
∵
∴
ABCD is a rhombus.
a  55
(property of rhombus)
b  90
(property of rhombus)
In △DOC,
OCD  CDO  AOD
(b) ∵ MNQP is a parallelogram.
∴ MNQ  MPQ (opp. s of // gram)
 112
MNO  MNQ  ONQ
∵
∴
 112  46
 66
89
(ext.  of △)
CDO  90  55
 35
ADO  CDO (property of rhombus)
ADC  ADO  CDO
c  35  35
 70
Mathematics in Action (3rd Edition) 3A Full Solutions
4.
∵
∴
ABCD is a rectangle.
(property of rectangle)
OD  OB
2x  2
x 1
∵
∴
AC  BD
(property of rectangle)
y  2  2x
 2  2(1)
4
UQR  PQR  PQT
 90  35
 55
In △UQR,
x  UQR  PRQ
 55  45
 100
y  TQR  180
(ext.  of △)
(int. s, PS // QR)
y  55  180
5.
∵
∴
y  125
ABCD is a rectangle.
AD  BC (property of rectangle)
2x  1  7
2x  6
10. BAD  ABC  180 (int. s, AD // BC)
2 x  62  180
x3
2 x  118
x  59
∴ BAD  90 (property of rectangle)
In △ABD,
ABD  ADB  BAD  180 ( sum of △)
∵
∴
64  y  90  180
3 y  10  62
3 y  72
y  24
154  y  180
y  26
6.
∵
∴
∵
∴
ABCD is a rectangle.
(property of rectangle)
ABC  90
x  70  90
x  20
OA  OB
OAB  OBA
11. ∵
∴
∵
∴
∴
(property of rectangle)
(base s, isos.△)
ADB  DBC
y  30
12. ∵
∴
EFGH is a rhombus of side 10 cm.
EH  10 cm and EOH  90
(property of rhombus)
∵ EO  OG
(property of rhombus)
1
∴ EO  EG
2
1
  12 cm
2
 6 cm
In △EOH,
(property of square)
2b  7  13
2b  6
b3
8.
∵
∴
EO 2  OH 2  EH 2
PQRS is a square.
(property of square)
POS  90
2 y  30  90
2 y  120
∵
∴
y  60
OR  OQ
(property of square)
z  1  11
(Pyth. theorem)
OH  10 2  6 2 cm
 8 cm
FO  OH
(property of rhombus)
FH  2  OH
 2  8 cm
 16 cm
13. (a) ∵ PQRS is a rhombus.
∴ PQS  RQS (property of rhombus)
3 x  4  4 x  9
x  13
z  12
9.
(alt. s, AD // BC)
(ext.  of △)
PQRS is a square.
a  45
(property of square)
SR  PS
ABCD is an isosceles trapezium.
BD  AC
2  (2 x  1)  7
2x  3  7
2x  4
x2
y  70
In △OAB,
z  y  70
 70  70
 140
7.
ABCD is an isosceles trapezium.
DCB  ABC
∵ PQRS is a square.
∴ QRP  45
(property of square)
and PQR  90
(property of square)
(b) ∵ PQRS is a rhombus.
∴ PRQ  PRS and PR  QS
(property of rhombus)
90
5 Quadrilaterals
RQT  4  13  9  43
In △QRT,
RQT  QRT  QTR  180 ( sum of △)
43  QRT  90  180
In △ABC,
AC 2  AB 2  BC 2
URS  2  QRT
 2  47
 94
 90
∴ △SUR is an obtuse-angled triangle.
∴ Peter’s claim is incorrect.
∵
ABCD is a rectangle.
OB  OA and ABC  90
(property of rectangle)
(base s, isos. △)
OBA  OAB
 34
In △OAB,
BOC  OAB  OBA
m  34  34
 68
In △ABC,
ACE  BAC  ABC
n  34  90
 124

(ext.  of △)
1
72

cm
2
2

72
cm
4

 3 2

18
cm  or
cm 


2
2


17. ∵ PQRS is a square.
∴ TPK  45
(property of square)
∵ TP  KP
∴ PTK  PKT (base s, isos. △)
In △PTK,
PTK  PKT  TPK  180
( sum of △)
2PKT  45  180
2PKT  135
PKT  67.5
∵ PKQ  90
(property of square)
∴ TKQ  PKQ  PKT
 90  67.5
 22.5
(ext.  of △)
15. (a) ∵ ABCD is a rectangle.
∴ OA  OB  OC  OD and BCD  90
(property of rectangle)
∴ OBC  OCB
(base s, isos. △)
In △OBC,
BOC  OBC  OCB  180 ( sum of △)
60  2OBC  180
2OBC  120
OBC  60
∵ OBC  OCB  BOC  60
∴ △OBC is an equilateral triangle.
i.e. OB  BC  5 cm
BD  OB  OD
 (5  5) cm
 10 cm
18.
Construct ST such that ST  QR , where T is a point on
QR.
QT  PS  3 cm
TR  QR  QT
 (8  3) cm
 5 cm
ST  PQ  12 cm
In △RST,
(b) In △BCD,
BC 2  CD 2  BD 2
72
cm
2
OE  EC
1
OE  OC
2

∴
∴
2
 72 cm
1
OC  AC
2
1
  72 cm
2
133  QRT  180
QRT  47
14. ∵
∴
(Pyth. theorem)
AC  6  6 cm
2
(Pyth. theorem)
CD  10  5 2 cm
2
 75 cm (or 5 3 cm)
16. ∵
∴
ABCD is a square.
OA  OB  OC  OD and ABC  90
(property of square)
AB  BC
24

cm
4
 6 cm
RS 2  ST 2  RT 2 (Pyth. theorem)
RS  12 2  52 cm
 13 cm
Perimeter of trapezium PQRS  PQ  QR  RS  PS
 (12  8  13  3) cm
 36 cm
91
Mathematics in Action (3rd Edition) 3A Full Solutions
Level 2
19. ∵ PQRS is a rhombus.
∴ PRS  PRQ
(property of rhombus)
SRQ  PQR  180 (int. s, PQ // SR)
22. ∵
∴
∵
∴
∴
SRQ  76  180
SRQ  104
1
PRS  SRQ
2
1
 104
2
 52
∵ TR is the angle bisector of PRS.
1
∴ PRT  PRS
2
1
  52
2
 26
SPR  PRS  52 (property of rhombus)
In △TPR,
PTR  TPR  PRT  180 ( sum of △)
ABCD is a square.
BCD  ADC  90
BCE  ADE
(property of square)
 90  60
 30
Similarly, ADE  30
∵ △CDE is an equilateral triangle.
∴ CE  DE  CD
AB  BC  CD  DA (property of square)
∴ CE  BC and DE  DA
∴ CEB  CBE (base s, isos.△)
and DEA  DAE (base s, isos.△)
In △BCE,
CEB  CBE  BCE  180
( sum of △)
2CEB  30  180
2CEB  150
CEB  75
PTR  52  26  180
Similarly, DEA  75
AEB  360  CEB  DEA  CED (s at a pt.)
 360  75  75  60
 150
PTR  78  180
PTR  102
20. ABC  ADC
(opp. s of // gram)
 132
ABK  ABC  KBC
23. (a) ∵ DBCE is a parallelogram.
∴ BD  CE
(opp. sides of // gram)
 8 cm
∵ ABCD is a rectangle.
∴ AC  BD
(property of rectangle)
 8 cm
 132  54
 78
∵ ABCD is a rhombus.
∴ DAC  BAC (property of rhombus)
(int. s, AB // DC)
ADC  (DAC  BAC )  180
132  2BAC  180
2BAC  48
BAC  24
AC  CE
CAE  CED (base s, isos. △)
 60
In △ECA,
ECA  CAE  CED  180 ( sum of △)
ECA  60  60  180
(b) ∵
∴
In △ABK,
BAK  ABK  AKB  180 ( sum of △)
24  78  AKB  180
102  AKB  180
AKB  78
∵ ABK  AKB
∴ AB  AK
(sides opp. equal s)
i.e. △ABK is an isosceles triangle.
21. ∵
∴
∵
∴
∴
△CDE is an equilateral triangle.
CED  ECD  EDC  60 (prop. of equil.△)
ECA  60
∴ △ECA is an equilateral triangle.
i.e. AE  CE  8 cm
∵ ABCD is a rectangle.
∴ ADC  90
(property of rectangle)
∵ AC  CE and CD  AE
∴ AD  DE
(prop. of isos. △)
1
  AE
2
1
  8 cm
2
 4 cm
PQRS is a square.
PRQ  45
(property of square)
UVRP is a rhombus.
UVP  PVR (property of rhombus)
(UVP  PVR)  PRQ  180 (int.s, UV // PR)
2PVR  45  180
2PVR  135
PVR  67.5
24.
Construct a line FG such that DC // FG.
92
5 Quadrilaterals
∵ BA // CD // GF and AF // BG
∴ ABGF is a parallelogram.
(int. s, AF // BE)
ABC  120  180
ABC  60
FGE  ABC  60 (corr. s, AB // FG)
∵ CEFD is an isosceles trapezium.
∴ FEG  60
and FE  DC
Exercise 5D (p. 5.43)
Level 1
1. ∵ ABCD is a parallelogram.
∴ ABC  ADC
∵ DEFG is a parallelogram.
∴ EFG  EDG
∴ ABC  EFG
2.
(property of rhombus)
 AB
 15 cm
In △EFG,
EFG  FGE  FEG  180 ( sum of △)
EFG  60  60  180
EFG  120  180
EFG  60
∴ △EFG is an equilateral triangle.
i.e. GE  FE  15 cm
∵ DF // CG and DC // FG
∴ CGFD is a parallelogram.
∴ DF  CG
(opp. sides of // gram)
 CE  GE
 (23  15) cm
 8 cm
ABCD is a parallelogram.
BC  AD
AFCE is a square.
AF  FC  CE  AE
 BC  FC
opp. s of // gram
opp. sides of // gram
property of square
 AD  AE
 ED
3.
BC  BE  EF  CF
AD  BC and AB  DC
∵ CDF  CFD
∴ CD  CF
∴ AB  BC  CD  DA
∴ ABCD is a rhombus.
4.
In △EAF and △EDG,
∵ ABCD is a rectangle.
∴ AB  DC
1
∵ AF  AB and
2
1
DG  DC
2
∴ AF  DG
EAF  EDG  90
EA  ED
∴ △EAF  △EDG
∴ EF  EG
i.e. △EFG is an isosceles triangle.
25. (a) ∵ ABCD is a square.
∴ AB  BC , ABC  90 and BAC  45
(property of square)
∵ BCE is an equilateral triangle.
∴ BC  CE  BE and EBC  60
(prop. equil. △)
∵ BA  BE
∴ BAE  BEA (base s, isos. △)
ABE  ABC  EBC
 90  60
 30
In △ABE,
ABE  BEA  BAE  180
30  2BAE  180
2BAE  150
BAE  75
CAE  BAE  BAC
∵
∴
∵
∴
BF
opp. s of // gram
5.
( sum of △)
 75  45
 30
∵ ACFE is a parallelogram.
∴ CFE  CAE (opp. s of // gram)
 30
6.
(b) CAE  AEF  180 (int. s, AC // EF)
30  AEF  180
AEF  150
BEF  AEF  BEA
7.
 150  75
 75
∵ BEA  BEF  75
∴ BE bisects AEF.
93
In △AED and △CFD,
DAE  DCF
DEC  DFA
AED  180  DEC
CFD  180  DFA
∴ AED  CFD
AD  CD
∴ △AED  △CFD
∴ AE  FC
∵ AB  BC
∴ BAC  BCA
DFA  BCA
∴ DAF  DFA
∴ AD  DF
(a)
property of square
opp. sides of // gram
given
sides opp. equal s
property of rectangle
given
given
property of rectangle
given
SAS
corr. sides, △s
property of rhombus
given
adj. s on st. line
adj. s on st. line
property of rhombus
AAS
corr. sides, △s
given
base s, isos. △
corr. s, DF // BC
sides opp. equal s
ADC  90
DCE  ADC
ACD  CDE
ACE  ACD  DCE
 CDE  ADC
 ADE
property of rectangle
alt. s, AD // BE
alt. s, AC // DE
Mathematics in Action (3rd Edition) 3A Full Solutions
(b)
8.
property of rectangle
BC  AD
∵ AC // DE and AD // BE
∴ ACED is a parallelogram.
∴ AD  CE
opp. sides of // gram
∴ BC  CE
i.e. C is the mid-point of BE.
∵ ABCD is a parallelogram.
∴ BCD  BAD
∵ BQCP is a rhombus.
∴ CBP  BCP
In △BCP,
BPD  CBP  BCP
In △CFE,
CFE  CEF  ECF  180
45  CEF  45  180
90  CEF  180
CEF  90
∴ FE  EC
Level 2
11. (a) ∵
∴
opp. s of // gram
property of rhombus
∵
∴
ext.  of △
 2BCP
 2BAD
9.
∵ ABCD is a square.
∴ AB  BC  CD  AD
Also, BP  BQ
In △APD and △CQD,
AP  AB  BP
∴
∴
property of square
given
 CQ
DAP  DCQ  90
AD  CD
∴ △APD  △CQD
∴ DP  DQ
∴ △PDQ is an isosceles triangle.
property of square
proved
SAS
corr. sides, △s
10. ∵
∴
∵
∴
DP  DQ
△PDQ is an isosceles triangle.
given
base s, isos.△
property of rectangle
 EDA  ADC
 EDC
In △ABE and △DCE,
AB  DC
EAB  EDC
EA  ED
∴ △ABE  △DCE
∴ BE  CE
∴ △EBC is an isosceles triangle.
13. (a)
∴
∴
opp. sides of // gram
opp. sides of // gram
opp. sides of // gram
SSS
12. ∵ EA  ED
∴ EAD  EDA
BAD  ADC  90
∴ EAB  EAD  BAD
Alternative Solution
Join BD.
In △BPD and △BQD,
BP  BQ
∵ ABCD is a square.
∴ PBD  QBD  45
BD  BD
∴ △ BPD  △ BQD
ABCD is a parallelogram.
(opp. sides of // gram)
AD  BC
and AD // BC
AEFD is a parallelogram.
(opp. sides of // gram)
AD  EF
and AD // EF
BC  EF and BC // EF
BCFE is a parallelogram.
(opp. sides equal and //)
(b) In △ABE and △DCF,
AB  DC
AE  DF
BE  CF
∴ △ABE  △DCF
 BC  BQ
 sum of △
given
property of square
common side
SAS
corr. sides, △s
ABCD is a rectangle.
BCD  90
property of
rectangle
(b)
CE and CF are the angle bisectors of
ACB and ACD respectively.
ACE  BCE and
ACF  DCF
BCD  90
BAC  ACD
∵ AX and CY bisect
BAE and DCE
respectively.
∴ BAX  EAX
and DCY  ECY
∴ EAX  ECY
In △AXE and △CYE,
EAX  ECY
AE  CE
AEX  CEY
∴ △AXE  △CYE
alt. s, BA // CD
BE  DE
∵ △AXE  △CYE
∴ XE  YE
BX  BE  XE
diags. of // gram
proved in (a)
corr. sides, △s
 DE  YE
 DY
ACE  BCE  ACF  DCF  90
2(ACE  ACF )  90
ACE  ACF  45
ECF  45
94
property of rectangle
proved
given
SAS
corr. sides, △s
proved
diags. of // gram
vert. opp. s
ASA
5 Quadrilaterals
14. (a) ∵ ABCD is a square.
∴ AB  CB
and ABC  90
ABF  ABC  180
ABF  90  180
ABF  90
In △ABF and △CBE,
AB  CB
ABF  CBE  90
BF  BE
∴ △ABF  △CBE
(b) ∵ △ABF  △CBE
∴ BAF  BCE
In △AGE,
AGE  GAE  AEC
In △BCE,
CBE  BCE  AEC
△BAX  △DCY (proved in (a)(i))
(corr. sides, △s)
BX  DY
and
BX
// YD
BX  DY
BYDX is a parallelogram.
(opp. sides equal and //)
In △BAX and △DAX,
(common side)
AX  AX
DAX  DAC  180 (adj. s on st. line)
(b) ∵
∴
∵
∴
property of square
adj. s on st. line
proved
proved
given
SAS
DAX  45  180
DAX  135
(proved)
BAX  DAX
(property of square)
AB  AD
∴ △BAX  △DAX (SAS)
∴ BX  DX
(corr. sides, △s)
Also, BX  DY
(opp. sides of // gram)
and BY  DX
(opp. sides of // gram)
∴ BX  DY  BY  DX
∴ BYDX is a parallelogram with four equal sides.
∴ BYDX is a rhombus.
(proved in (a))
(corr. s, △s)
(ext.  of △)
(ext.  of △)
90  BCE  AGE  GAE
AGE  90
∴ CG  AF
15. (a) ∵ ABCD is a square.
∴ BAD  90
∵ AEFG is a square.
∴ EAG  90
∵ EAB  EAG  GAB
 90  GAB
GAD  GAB  BAD
 GAB  90
∴ EAB  GAD
(b) In △AEB and △AGD,
AB  AD
AE  AG
EAB  GAD
∴ △AEB  △AGD
∴ BE  DG
16. (a) (i)
17. (a) In △BPC and △DQA,
BPC  DQA
PBC  QDA
BC  DA
∴ △BPC  △DQA
property of square
property of square
(b) ∵ △BPC  △DQA
∴ BP  DQ
and PC  QA
BA  DC
AP  BP  BA
 DQ  DC
 CQ
∴ AQCP is a parallelogram.
property of square
property of square
proved in (a)
SAS
corr. sides, △s
(ii) ∵ △BAX  △DCY
∴ AXB  CYD
∴ BX // YD
proved in (a)
corr. sides, △s
corr. sides, △s
opp. sides of // gram
opp. sides equal
18. (a) ∵ ABCD is a square.
∴ BAD  90 (property of square)
BAO  BAE  OAE
 90  OAE
∵ ABCD is a square.
∴ AB  BC  CD  DA
BAC  BCA 
and
property of square
DAC  DCA  45
In △BAX,
adj. s on st. line
BAX  BAC  180
BAX  45  180
BAX  135
In △DCY,
DCY  DCA  180
DCY  45  180
DCY  135
In △BAX and △DCY,
AX  CY
BAX  DCY
AB  CD
∴ △BAX  △DCY
given
opp. s of // gram
opp. sides of // gram
AAS
In △ABO,
ABO  BAO  AOE
(ext.  of △)
ABO  (90  OAE)  90
OAE  ABO
(b) In △ADF and △BAE,
∵ OAE  OBA
i.e. DAF  ABE
DA  AB
ADF  BAE  90
∴ △ADF  △BAE
∴ AF  BE
adj. s on st. line
given
proved
property of square
SAS
19. ∵ AB  AC
∴ ABC  ACB
DGB  ACB
∴ DBG  DGB
∴ DB  DG
∵ DG  DB  CE and
DG // CE
proved in (a)(i)
corr. s, △s
alt. s equal
95
property of square
property of square
ASA
corr. sides, △s
given
base s, isos. △
corr. s, DG // AE
sides opp. equal s
given
Mathematics in Action (3rd Edition) 3A Full Solutions
∴
∴
∴
CDGE is a parallelogram.
GF  FC
F is the mid-point of CG.
(b) In △FBG,
∵ BD  DF and BE  EG
1
∴ DE   FG
(mid-pt. theorem)
2
1
  6 cm
2
 3 cm
opp. sides equal and //
diags. bisect each other
Exercise 5E (p. 5.52)
Level 1
1. In △ABC,
∵ AD  DB and AE  EC
1
∴ DE   BC
(mid-pt. theorem)
2
1
3 x
2
x6
2.
6.
In △ABC,
∵ AD  DB and AE  EC
∴ DE // BC
(mid-pt. theorem)
∴ ACB  AED (corr. s, DE // BC)
(opp. s of // gram)
ABC  108
In △ACE,
∵ AB  BE and F is the mid-point of CE.
∴ BF // AC
(mid-pt. theorem)
∴ ACB  CBF (alt. s, BF // AC)
 32
In △ACB,
BAC  ACB  ABC  180 ( sum of △)
BAC  32  108  180
BAC  40
x  77
7.
3.
In △ABC,
∵ AD  DB and AE  EC
∴ DE // BC
(mid-pt. theorem)
∴ AED  ACB (corr. s, DE // BC)
x  50
∴
4.
∴
∴
(mid-pt. theorem)
∴
∴
In △ABC,
∵ AD  DB and AE  EC
∴ DE // BC
(mid-pt. theorem)
∴ AED  ACB (corr. s, DE // BC)
 45
In △ADE,
ADE  AED  DAE  180 ( sum of △)
a  45  60  180
a  75
∴
5.
1
DE   BC
2
1
14   y
2
y  28
1
DE   DB
2
1
b   11
2
 5.5
∵
∴
∵
(mid-pt. theorem)
(a) In △ABC,
∵ BF  (3  3) cm  6 cm  FA
and BG  ( 4  4) cm  8 cm  GC
1
∴ FG   AC
(mid-pt. theorem)
2
1
  12 cm
2
 6 cm
96
△ABC is an equilateral triangle.
AB  BC  AC
P, Q and R are the mid-points
of AB, BC and CA respectively.
AP  PB  BQ  QC  AR  RC
1
1
PQ   AC , QR   AB
2
2
1
and PR   BC
mid-pt. theorem
2
PQ  QR  PR
△PQR is an equilateral triangle.
8.
In △ABC,
∵ E and F are the mid-points of AC
and BC respectively.
∴ AB // EF
mid-pt. theorem
∵ E and F are the mid-points of BD
and BC respectively.
∴ EF // DC
mid-pt. theorem
∵ AB // EF and EF // DC
∴ AB // DC
9.
In △ABC,
∵ M and N are the mid-points of AC and BC
respectively.
1
∴ AB // MN and MN   AB (mid-pt. theorem)
2
1
MN   12 cm
2
 6 cm
∵ AB // CD and AB // MN
∴ MN // CD
∵ MN  CD  6 cm and MN // CD
∴ MNDC is a parallelogram. (opp. sides equal and //)
∴ Cathy’s claim is correct.
5 Quadrilaterals
(b) In △AFG,
∵ E and C are the mid-points of AF and AG
respectively.
∴ EC // FG
(mid-pt. theorem)
(alt. s, EC // FG)
EFG  BEF
Level 2
10. In △DEF,
∵ FG  GD and FC  CE
1
∴ GC   DE
(mid-pt. theorem)
2
1
a  8
2
4
 62
FAG  AFG  AGF  180 ( sum of △)
52  62  AGF  180
AGF  66
In △ABC,
∵ CF  FA and CG  4 cm  GB
1
∴ FG   AB
(mid-pt. theorem)
2
1
5  b
2
b  10
14. In △ABD,
∵ E and F are the mid-points
of AB and BD respectively.
∴ EF // AD
∴ BFE  BDA
In △BCD,
∵ F and G are the mid-points
of BD and BC respectively.
∴ FG // DC
∴ BFG  BDC
EFG  BFE  BFG
 BDA  BDC
 ADC
11. In △BCD,
∵ DG  GB and DF  FC
1
∴ GF   BC
(mid-pt. theorem)
2
1
  8 cm
2
 4 cm
EG  EF  GF
 (6  4) cm
 2 cm
In △ABD,
∵ BE  EA and BG  GD
1
∴ EG   AD
(mid-pt. theorem)
2
1
2 x
2
x4
mid-pt. theorem
corr. s, FG // DC
15. (a) In △ABC,
∵ D and F are the mid-points of AB and CA
respectively.
1
∴ DF // BC and DF   BC
2
(mid-pt. theorem)
∵ E and F are the mid-points of BC and CA
respectively.
1
∴ FE // AB and FE   AB
2
(mid-pt. theorem)
∴ BEFD is a parallelogram.
∴ DFE  DBE
(opp. s of // gram)
 90
∴ △DEF is a right-angled triangle.
12. In △ACD,
∵ AF  FC and AG  GD
∴ FG // CD
(mid-pt. theorem)
∴ ADC  AGF (corr. s, CD // FG)
 35
Reflex BCD  360  x
(s at a pt.)
∵ ABCD is a quadrilateral.
∴ BAD  ABC  reflex BCD  ADC  360
( sum of polygon)
50  60  (360  x)  35  360
(b)
x  145
13. (a) In △ABC,
∵ D and E are the mid-points
of AB and BC respectively.
1
∴
DE   AC
2
1
4 cm   AC
2
AC  8 cm
∵ AC  CG  8 cm
∴ C is the mid-point of AG.
mid-pt. theorem
corr. s, EF // AD
1
 BC
2
1
  8 cm
2
 4 cm
1
FE   AB
2
1
  6 cm
2
 3 cm
DF 
1
 FE  DF
2
1
  3  4 cm 2
2
 6 cm 2
Area of △DEF 
mid-pt. theorem
97
Mathematics in Action (3rd Edition) 3A Full Solutions
18. In △ADC,
∵ AB  BD and N is the
mid-point of CD.
1
∴ BN // AC and BN   AC
2
∵ AB  AC
1
∴ BN   AB
2
∵ M is the mid-point of AB.
1
∴ BM   AB  BN
2
∵ AB  AC
∴ ABC  ACB
∵ NBC  ACB
∴ ABC  NBC
In △CMB and △CNB,
BM  BN
MBC  NBC
BC  BC
∴ △CMB  △CNB
CM  CN
∵ N is the mid-point of CD.
1
∴ CM  CD
2
i.e. CD  2CM
16. (a) In △BFC,
∵ BD  DF and CH  HF
1
∴ DH   BC
(mid-pt. theorem)
2
In △ADE,
∵ AB  BD and AC  CE
1
∴ BC   DE
(mid-pt. theorem)
2
DE  2 BC
HE  DE  DH
 2 BC 

∴
∴
In
∵
∴
3
BC
2
1
BC
DH 2

HE 3 BC
2
1

3
DH : HE  1 : 3
∴
(b) ∵
1
BC
2
DH : HE  1: 3
5 cm 1

HE 3
HE  15 cm
△CFG,
CH  HF and CE  EG
1
HE   FG (mid-pt. theorem)
2
1
15 cm   FG
2
FG  30 cm
In △BCD,
∵ F and G are the mid-points
of BC and DC respectively.
1
∴ FG // BD and FG   BD
2
∴ EH // FG and EH  FG
∴ EFGH is a parallelogram.
given
given
base s, isos. △
alt. s, BN // AC
proved
proved
common side
SAS
corr. sides, △s
Exercise 5F (p. 5.61)
Level 1
17. Join BD.
In △ABD,
∵ E and H are the mid-points
of AB and AD respectively.
1
∴ EH // BD and EH   BD
2
mid-pt. theorem
AB // CD // EF and BD  DF
CE  AC
(intercept theorem)
x3
1.
∵
∴
2.
In △ACD,
∵ AB  BC and BE // CD
∴ AE  ED
(intercept theorem)
y4
3.
∵
∴
∵
∴
∴
mid-pt. theorem
∵
∴
mid-pt. theorem
QXY  QPR  50
(corr. s equal)
XY // PR
QX  XP and XY // PR
QY  YR
(intercept theorem)
1
QY   QR
2
1
a   18
2
9
YR  QY
ba
9
opp. sides equal and //
98
4.
∵ AB // CD // EF // GH and AC  CE  EG
∴ BD  DF  FH  5 cm
(intercept theorem)
DH  DF  FH
x 55
 10
5 Quadrilaterals
5.
In △BFG,
∵ BE  EG and DE // FG
∴ DF  BD
(intercept theorem)
p2
∵
∴
6.
(b) In △ABE,
∵ AG  GE and DG // BE
∴ AD  BD
(intercept theorem)
18 cm
BD 
2
 9 cm
DE // FG // CA and EG  GA
(intercept theorem)
FC  DF
q p
2
∵
∴
In △ACF,
∵ AB  BC and BG // CF
∴ AG  GF
(intercept theorem)
AG  GE and AD  DB
1
DG   BE
(mid-pt. theorem)
2
1
  8 cm
2
 4 cm
y3
10. (a) In △PQR,
∵ QC  CP and RN  NP
∴ CN // QR
In △ACB,
∵ AQ  QC and MQ // BC
∴ AM  BM
EF  AE  AG  GF
z  12  y  3
 12  3  3
6
In △ADE,
∵ AF  (3  3) cm  6 cm  FE and CF // DE
∴ CD  AC
(intercept theorem)
x  22
4
7.
8.
intercept theorem
(b) In △ACB,
∵ AQ  QC and AM  MB
1
∴ MQ  BC
mid-pt. theorem
2
In △ABC,
∵ AM  MB and MN // BC
∴ AN  NC
(intercept theorem)
∵ AC  6 cm
6
∴ AN  cm
2
 3 cm
In △AND,
∵ DP  PN and AD // QP
∴ AQ  QN
(intercept theorem)
∵ AN  3 cm
3
∴ QN  cm
2
 1.5 cm
11. In △ABF,
∵ BD  DF and BA// DC
∴ AC  CF
∵ BD  DF and AC  CF
1
∴ CD   AB
2
AB  2CD
In △BFE,
∵ BD  DF and DC // FE
∴ BC  CE
∵ BD  DF and BC  CE
1
∴ CD   EF
2
EF  2CD
∴ AB  EF
In △ACE,
∵ AF  FE and BF // CE
∴ AB  BC
(intercept theorem)
In △ADE,
∵ AF  FE and CF // DE
∴ AC  CD
(intercept theorem)
∵ AB  BC
∴ CD  2 AB
∵
BD  12 cm
∴
BC  CD  12 cm
intercept theorem
mid-pt. theorem

intercept theorem
mid-pt. theorem

from  and 
Level 2
12. In △ACE,
∵ AB  BC and BD // CE
∴ DE  AD
(intercept theorem)
a3
In △AGJ,
∵ AH  HJ and FH // GJ
∴ AF  FG
(intercept theorem)
b4
AB  2 AB  12 cm
In △AEG,
∵ AD  DE and AF  FG
1
∴ DF   EG
(mid-pt. theorem)
2
1
2  c
2
c4
3 AB  12 cm
AB  4 cm
9.
mid-pt. theorem
(a) In △AEC,
∵ F and G are the mid-points of AC and AE
respectively.
∴ GF // EC
(mid-pt. theorem)
i.e. DF // BC
99
Mathematics in Action (3rd Edition) 3A Full Solutions
13. ∵
∴
BA // CF // DE and BC  CD
AF  FE
(intercept theorem)
x5
∴
In △ABE,
∵ EF  FA and GF // BA
∴ EG  GB
(intercept theorem)
∵ EF  FA and EG  GB
1
∴ FG   AB
(mid-pt. theorem)
2
1
y   14
2
7
16. (a) In △AMN and △BMN,
AMN  ABC
 90
BMN  180  AMN
 90
∴ AMN  BMN
AM  BM
MN  MN
∴ △AMN  △BMN
In △BDE,
∵ BC  CD and BG  GE
1
∴ CG   DE
(mid-pt. theorem)
2
1
z  8
2
4
∴
AG  GE and AB  BC
1
BG   CE
(mid-pt. theorem)
2
1
2  c
2
c4
∴
corr. s, MN //BC
adj. s on st. line
given
common side
SAS
17. (a) ∵ ABD  BDE
∴ AB // DF
In △ABC,
∵ BE  EC and AB // DF
∴ AD  CD
In △BDF,
∵ DE  EF and EC // FB
∴ DC  CB
(intercept theorem)
ba
3
∵
(mid-pt. theorem)
(b) In △ABC,
∵ AM  MB and MN // BC
∴ AN  NC
(intercept theorem)
∵ △AMN  △BMN (proved in (a))
∴ NA  NB
(corr. sides,  △s)
∴ NB  NC
i.e. △BNC is an isosceles triangle.
14. In △ACE,
∵ AG  GE and GB // EC
∴ BC  AB
(intercept theorem)
a3
∵
1
 PA
2
1
QD  4 cm   12 cm
2
QD  4 cm  6 cm
QD  2 cm
QE 
given
alt. s equal
intercept theorem
(b) In △ABC,
∵ BE  EC and
AD  DC
1
∴ DE   AB
mid-pt. theorem
2
AB  2 DE
∵ DE  EF
given
∴ AB  DF
∴ ABFD is a parallelogram. opp. sides equal and //
DE  EF and DC  CB
1
CE   BF
(mid-pt. theorem)
2
1
4   (2  d )
2
82d
d 6
18. (a) (i)
15. In △ABC,
∵ D and E are the mid-points of AB and AC
respectively.
1
∴ DE // BC and DE   BC
(mid-pt. theorem)
2
1
DE   8 cm
2
 4 cm
In △APC,
∵ AE  EC and PA // QE
∴ PQ  QC
(intercept theorem)
∵ AE  EC and PQ  QC
∵ ABCD is a parallelogram.
∴ AD // BC and
(diags. of // gram)
AE  EC
∵ BCEF is a parallelogram.
∴ FE // BC
In △ABC,
∵ AE  EC and GE // BC
∴ AG  GB
(intercept theorem)
∴ AG : GB  1 : 1
(ii) In △ABC,
∵ AE  EC and AG  GB
1
∴ GE   BC (mid-pt. theorem)
2
∵ FE  BC
(opp. sides of // gram)
∴ FG  GE

100
1
 BC
2
5 Quadrilaterals
∴
∴
3.
FG 1

BC 2
FG : BC  1 : 2
AG  GB and
FG  GE
∴ AFBE is a
parallelogram.
x  12  50 (property of rhombus)
x  38
y  50
(b) ∵
4.
proved in (a)
diags. bisect each other
19. Join BC.
Produce EF such that it meets BC at a point G.
(property of rectangle)
OA  OB
OAB  OBA (base s, isos. △)
 65
In △ABO,
OAB  OBA  AOB  180 ( sum of △)
65  65  x  180
x  50
∵
∴
AD  BC
y  11
5.
(property of rhombus)
(property of rectangle)
y  90
(property of square)
OC  OB
(property of square)
z 5
In △ACB,
∵ CF  FA and FG // AB
∴ CG  GB
∵ CF  FA and CG  GB
1
∴ FG   AB
2
In △BDC,
∵ BG  GC and EG // DC
∴ BE  ED
∵ BG  GC and BE  ED
1
∴ EG   DC
2
EF  EG  FG
1
1
  DC   AB
2
2
1
  ( DC  AB)
2
6.
ABC  DCB
 79
BAD  ABC  180 (int. s, AD // BC)
x  79  180
x  101
7.
(a) ∵ ABCD is a parallelogram.
∴ OB  OD and OA  OC
(opp. sides of // gram)
x  4 and 9  y  y  3
2 y  12
y6
intercept theorem
mid-pt. theorem
intercept theorem
mid-pt. theorem
(b) ∵ ABCD is a rhombus.
∴ AOB  90 and AB  BC  CD  DA
(property of rhombus)
In △ABO,
AB 2  OA2  OB 2 (Pyth. theorem)
Enrichment Topic (p. 5.64)
1. By the property of kite,
x  130
AB  (9  6) 2  4 2 cm
AB  AD
y  3 .5
2.
 32  4 2 cm
 5 cm
Perimeter of ABCD  4  AB
 4  5 cm
 20 cm
By the property of kite,
x  20
y  90
8.
Check Yourself (p. 5.69)
1. (a) 
2.
(b) 
(c) 
(d) 
(e) 
(f) 
(g) 
(h) 
∵ AD  BE and BE  BC given
∴ AD  BC
∵ BC  BE
given
∴ BCE  BEC  65
In △BCE,
BCE  BEC  EBC  180  sum of △
65  65  EBC  180
EBC  50
∵ ADB  DBC  50
∴ AD // BC
alt. s equal
∴ ABCD is a parallelogram.
opp. sides equal and //
4 x  x  90 (opp. s of // gram)
3 x  90
x  30
101
Mathematics in Action (3rd Edition) 3A Full Solutions
9.
∵ ABCD is a square.
∴ CAD  45
(property of square)
∵ AFDE is a rhombus.
∴ ADF  67
(property of rhombus)
In △AGD,
AGD  ADG  GAD  180 ( sum of △)
AGD  67  45  180
AGD  68
10. ∵
∴
∵
∴
4.
EPN  PDC  90
(corr. s equal)
NP // CD
EP  PD and NP // CD
AN  NC
(intercept theorem)
 7 cm
5.
In △ABC,
∵ AN  NC and AM  MB
1
∴ MN   BC
(mid-pt. theorem)
2
1
 12 cm
2
 6 cm
∵ ABCD is a rhombus.
∴ AED  90
(property of rhombus)
In △AED,
( sum of △)
2 x  3 x  90  180
5 x  90
x  18
y  2x
 2  18
 36
(property of rhombus)
z  3x
 3  18
 54
(property of rhombus)
∵
∴
∴
ABCD is a rectangle.
(property of rectangle)
ED  EC
(base s, isos.△)
EDC  ECD
b
In △CDE,
ECD  EDC  CED  180 ( sum of △)
b  b  80  180
2b  100
b  50
Revision Exercise 5 (p. 5.71)
Level 1
1. ∵ ABCD is a parallelogram.
∴ BCD  BAD (opp. s of // gram)
x  140
In △ACD,
(property of rectangle)
ADC  90
CAD  ACD  ADC  180 ( sum of △)
a  b  ADC  180
a  50  90  180
a  40
BAD  ADC  180 (int. s, BA // CD)
140  y  180
y  40
∴
AD  BC
6.
(opp. sides of // gram)
a 3  5
a 8
2.
∵
∴
ABCD is a parallelogram.
OB  OD (opp. sides of // gram)
BCE  ECD  90 (property of rectangle)
60  x  90
y  1  11  y
2 y  10
y5
∴
OC  OA
BCE  y
(alt. s, BC // AD)
In △BCF,
BCF  BFC  CBF  180 ( sum of △)
y  80  40  180
y  60
x  30
7.
(opp. sides of // gram)
∵
∴
ABCD is a square.
(property of square)
CED  90
6 x  90
x  15
∴
AD  CD
5y  6  3y  2
2y  4
y2
3x  1  y  3
3x  1  5  3
3x  1  8
3x  9
x3
3.
∵
∴
ABCD is a rhombus.
AD  CD (property of rhombus)
a37
a4
∴
AED  90 (property of rhombus)
8.
b  30  90
b  60
102
(property of square)
∵ ABCD is a square.
∴ ACD  45
(property of square)
ACD  DCE  180 (adj. s on st. line)
45  x  180
x  135
5 Quadrilaterals
∴
OA  OB
14. ∵ ABCD is a square.
∴ ABD  45
(property of square)
∵ △AEB is an equilateral triangle.
∴ ABE  60
(prop. of equil. △)
DBE  ABD  ABE
 45  60
 105
(property of square)
y4 2
y6
9.
In △ACF,
∵ AB  BC and AE  EF
1
∴ BE   CF
(mid-pt. theorem)
2
1
x  9
2
 4.5
(prop. of equil.△)
EAB  60
(property of square)
BAD  90
EAD  EAB  BAD
 60  90
 150
∵ △AEB is an equilateral triangle.
∴ EA  AB
Also, AB  AD
(property of square)
∴ EA  AD
∴ ADE  AED (base s, isos.△)
In △AED,
EAD  ADE  AED  180 ( sum of △)
In △ADG,
∵ AC  ( 4  4) cm  8 cm  CD and
AF  (3  3) cm  6 cm  FG
1
∴ CF   DG
(mid-pt. theorem)
2
1
9 y
2
y  18
10. ∵
∴
150  2ADE  180
ADE  15
(property of square)
ADB  45
BDE  ADB  ADE
 45  15
 30
AE // BF // CG and AB  BC
(intercept theorem)
EF  FG
2x  3  4x  5
2x  8
x4
FG  (4 x  5) cm
 (4  4  5) cm
 11 cm
∵ BF // CG // DH and FG  11 cm  GH
∴ CD  BC
(intercept theorem)
15. ∵ AEDF is a rhombus.
∴ AF  DF
(property of rhombus)
∴ FAD  FDA (base s, isos. △)
In △ADF,
AFD  FAD  FDA  180 ( sum of △)
122  2FAD  180
2FAD  58
FAD  29
EAD  FAD
(property of rhombus)
 29
(property of rectangle)
ADC  90
In △ACD,
CAD  ACD  ADC  180 ( sum of △)
29  ACD  90  180
ACD  61
y5
11. In △BCD,
∵ DF  FC and EF // BC
∴ DE  EB
(intercept theorem)
x3
In △ACD,
∵ DF  FC and AD// EF
∴ AE  EC
(intercept theorem)
y2
12. ∵ AB  AE
∴ ABE  AEB (base s, isos. △)
In △ABE,
BAE  ABE  AEB  180 ( sum of △)
30  2ABE  180
2ABE  150
ABE  75
∵ ABCD is a parallelogram.
∴ ADC  ABC (opp. s of // gram)
 75
16.
13. By the property of kite,
CED  90
With the notations in the figure,
OA  OC and OB  OD (property of rhombus)
x  90
BAE  DAE
y  35
103
Mathematics in Action (3rd Edition) 3A Full Solutions
19. (a) ∵ ABCD is a parallelogram.
∴ BAD  DCB ,
ABC  ADC ,
AB  CD and AD  BC
∵ BE and FD are the angle
bisectors of ABC and
ADC respectively.
∴ ABE  CBE  ADF
 CDF
In △AEB and △CFD,
ABE  CDF
AB  CD
BAE  DCF
∴ △AEB  △CFD
24
cm
2
 12 cm
In △AOD,
OA 
OA2  OD 2  AD 2
(Pyth. theorem)
OD  20  122 cm
 16 cm
BD  2  OD
2
 2  16 cm
 32 cm
∴ The length of another diagonal of the rhombus is
32 cm.
17. (a) ∵ AQDR is a rectangle.
∴ ARD  90
(property of rectangle)
In △ADR,
(Pyth. theorem)
AD 2  AR 2  DR 2
AD 
AR  DR
2
(b) ∵ ABCD is a parallelogram.
∴ AD  BC and AD  BC
∵ △AEB  △CFD
∴ AE  CF
ED  AD  AE
2
 3 2  4 2 cm
 5 cm
∵ ABCD is a rhombus.
∴ AB  BC = CD  AD  5 cm
∴ Perimeter of ABCD  AB  BC  CD  AD
 (5  5  5  5) cm
 20 cm

 BC  CF
 BF
∴ BFDE is a parallelogram.
20. (a) In △ABP and △CDQ,
ABP  CDQ
∵ APQ  CQP
∴ APB  180  APQ
(b) ∵ AQDR is a rectangle.
∴ DQ  AR  3 cm and
AQ  DR  4 cm (property of rectangle)
∵ ABCD is a rhombus.
∴ CQ  AQ  4 cm and
BQ  DQ  3 cm (property of rhombus)
∵ BPCQ is a rectangle.
∴ CP  BQ  3 cm and
BP  CQ  4 cm (property of rectangle)


Area of ABPCDR = 6  area of △ADR
1
 6   AR  DR
2
1
 6   3  4 cm 2
2
 36 cm 2
proved
proved
proved
ASA
proved in (a)
corr. sides, △s
opp. sides equal
and //
alt. s, AB // DC
given
adj. s on st. line
 180  CQP
adj. s on st. line
 CQD
AB  CD
∴ △ABP  △CDQ
opp. sides of // gram
AAS
(b) ∵ APQ  CQP
∴ AP // QC
∵ △ABP  △CDQ
∴ AP  CQ
∴ APCQ is a parallelogram.
21. (a) In △AED and CFB,
AD  CB
BAD  BCD  90
∵ △ABE  △CDF
∴ BAE  DCF
EAD  BAE  BAD
18. (a) ∵ △ABE is an equilateral triangle.
∴ BAE  ABE  AEB  60
(prop. of equil. △)
In quadrilateral ABCD,
BAD  ABC  BCD  ADC  360
( sum of polygon)
(60  40)  (60  20)  100  ADC  360
100  80  100  ADC  360
ADC  80
(b) BAD  60  40  100
ABC  60  20  80
∵ BAD  BCD and
ABC  ADC
∴ ABCD is a parallelogram.
opp. s of // gram
opp. sides of // gram
 DCF  BCD
 FCB
AE  CF
∴ △AED  △CFB
∴ BF  ED
property of square
property of square
given
corr. s, △s
corr. sides, △s
SAS
corr. sides, △s
(b) ∵ △ABE  △CDF
∴ BE  FD
∴ BFDE is a parallelogram.
∴ Daniel’s claim is incorrect.
opp. s equal
104
given
alt. s equal
proved in (a)
corr. sides, △s
opp. sides equal and //
(given)
(corr. sides, △s)
(opp. sides equal)
5 Quadrilaterals
BDF  FDE
1
∴ BDF   BDE
2
1
  144
2
 72
DOA  90
In △DOF,
AFD  DOA  BDF
 90  72
 18
22. (a) ∵ BCHG is a parallelogram.
∴ GB  HC  7 cm (opp. sides of // gram)
In △AFB,
∵ AE  EF and EG // FB
∴ AG  GB
(intercept theorem)
AB  AG  GB
 (7  7) cm
 14 cm
∵
(b) In △AFB,
∵ AE  EF and AG  GB
1
EG   FB
∴
(mid-pt. theorem)
2
1
2 cm   FB
2
FB  4 cm
∵ ABCD is a parallelogram.
∴ BC  AD  6 cm (opp. sides of // gram)
FC  FB  BC
 ( 4  6) cm
 10 cm
(property of rhombus)
(ext.  of △)
25. ∵
∴
∵
∴
ABCD is a square.
(property of square)
DBC  45
BF // CE
(property of rhombus)
BCE  180  DBC (int.∠s, BF // CE)
 180  45
 135
∵ AB  BC  CD  DA (property of square)
DC  CE  EF  FD (property of rhombus)
∴ BC  CE
∴ EBC  BEC
(base s, isos. △)
In △BCE,
BCE  EBC  BEC  180 ( sum of △)
23. (a) ∵ ABCD is a parallelogram.
∴ AB  DC  10 cm and AD  BC  12 cm
(opp. sides of // gram)
MB  AB  AM
135  2EBC  180
EBC  22.5
DBG  DBC  EBC
 45  22.5
 22.5
 (10  5) cm
 5 cm
AN  AD  ND
 (12  6) cm
 6 cm
∵ AM  MB and AN  ND
1
∴ MN // BD and MN   BD
2
(mid-pt. theorem)
∴ BDNM is a trapezium.
(b)
(given)
26. ∵ △BCG is an equilateral triangle.
∴ CG  GB  BC
Also, BC  CD
(property of square)
∴ CD  CG
∴ CDG  CGD (base s, isos.△)
∵ BCG  60 (prop. of equil.△)
DCB  90 (property of square)
∴ DCG  DCB  BCG
 90  60
 30
In △CDG,
DCG  CDG  CGD  180 ( sum of △)
1
 BD
2
BD  2MN
∵
Perimeter of BDNM = 38 cm
∴
MN  MB  BD  ND  38 cm
MN  5 cm  2MN  6 cm  38 cm
3MN  11 cm  38 cm
3MN  27 cm
MN  9 cm
MN 
30  2CDG  180
CDG  75
(property of square)
CDB  45
GDB  CDG  CDB
 75  45
 30
Level 2
24. ∵ ABCD is a rhombus.
∴ ADB  CBD  ABD (property of rhombus)
∴ ADB  ABD
1
  ABC
2
1
  72
2
 36
(adj. s on st. line)
BDE  180  ADB
 180  36
 144
(property of rectangle)
KB  KC
KBC  KCB (base s, isos.△)
 24
In △BCK,
BKC  180  KBC  KCB ( sum of△)
 180  24  24
 132
AKD  BKC  132 (vert. opp. s)
(prop. of equil.△)
AKE  60
27. (a) ∵
∴
105
Mathematics in Action (3rd Edition) 3A Full Solutions
EKD  AKD  AKE
 132  60
 72
Perimeter of parallelogram ABCD
 AB  BC  CD  AD
 (7.5  15  7.5  15) cm
 45 cm
(b) ∵ △AKE is an equilateral triangle.
∴ EAK  60
(prop. of equil. △)
(alt. s, AD // BC)
DAK  ACB
 24
EAD  EAK  DAK
29. In △ADQ and △CBP,
ADB  CBD
ADQ  180  ADB
 180  CBD
 CBP
AD  CB
DQ  BP
∴ △ADQ  △CBP
∴ AQ  CP
AQD  CPB
∴ AQ // PC
∴ APCQ is a parallelogram.
 60  24
 36
∵ △AKE is an equilateral triangle.
∴ KA  KE
Also, KA  KD
(property of rectangle)
∴ KE  KD
∴ KED  KDE (base s, isos.△)
In △DEK,
EKD  KDE  KED  180 ( sum of △)
72  2KDE  180
KDE  54
KDA  KBC
(alt. s, AD // BC)
 24
EDA  KDE  KDA
 54  24
 30
∵ EAD  EDA
∴ △AED is not an isosceles triangle.
∴ Philip’s claim is incorrect.
28. (a) Let CBE  a and BCE  b.
ABE  CBE  a
DCE  BCE  b
ABC  BCD  180
2a  2b  180
a  b  90
In △BCE,
BEC  BCE  CBE  180
BEC  a  b  180
BEC  90  180
BEC  90
∴ △BEC is a right-angled
triangle.
BC  BE  CE
2
opp. sides of // gram
given
SAS
corr. sides,  △s
corr. s,  △s
alt. s equal
opp. sides equal and //
ABCDE is a regular pentagon.
ABC  BCD
(5  2)  180

5
 108
∵ AB  CB
∴ BAC  BCA
base s, isos. △
In △ABC,
 sum of △
ABC  BCA  BAC  180
108  2BCA  180
2BCA  72
BCA  36
∵ BCDF is a rhombus.
∴ BCF  DCF
property of rhombus
108

2
 54
FCG  BCF  BCA
given
given
int. s, AB // DC
 sum of △
 54  36
 18
GCD  GCF  DCF
 18  54
 72
BGC  GCD
 72
FCG  BGC  18  72
 90
(Pyth. theorem)
2
 12 2  9 2 cm
 15 cm
AD  BC  15 cm
∵ DEC  BCE
and DCE  BCE
∴ DCE  DEC
∴ DC  DE
 7.5 cm
AB  DC  7.5 cm
adj. s on st. line
30. ∵
∴
(b) In △BCE,
BC 2  BE 2  CE 2
alt. s, AD // BC
adj. s on st. line
31. (a) In △BCE and △BGA,
GBE  CBA  90
CBE  CBG  GBE
(opp. sides of // gram)
(alt. s, DE // CB)
 CBG  CBA
 GBA
∵ ABCD and BEFG are
two identical rectangles.
∴ BA  BE and BG  BC
∴ △BCE  △BGA
(sides opp. equal s)
(opp. sides of // gram)
106
alt. s, BF // CD
property of rectangle
SAS
5 Quadrilaterals
(b) ∵ △BCE  △BGA (proved in (a))
∴ BCE  BGA (corr. s,  △s)
BPG  180  PBQ  BGA ( sum of △ )
in △PED and △QEB,
∵ PD // BQ
∴ DPE  BQE
PED  QEB
ED  EB
∴ △PED  △QEB
∴ PE  QE
and ED  EB
∴ BQDP is a parallelogram.
In △PED and △PEB,
PED  PEB  90
ED  EB
PE  PE
∴ △PED  △PEB
∴ PD  PB
Also, PD  BQ and PB  QD
∴ PD  QD  BQ  PB
∴ BQDP is a parallelogram
with four equal sides.
∴ BQDP is a rhombus.
 180  PBQ  BCE
∴
32. (a) (i)
 BQC
BQC  107
In △ABC and △AFE,
BAC  FAE
ABC  90
 AFE
AC  AE
∴ △ABC  △AFE
(ii) In △ABG and △AFG,
ABG  AFG  90
∵ △ABC  △AFE
∴ AB  AF
AG  AG
∴ △ABG  △AFG
( sum of △ )
common angle
property of square
given
given
AAS
proved in (i)
proved in (i)
corr. sides,  △s
common side
RHS
35. (a) In △OCD and △OQP,
COD  QOP
∵ CO  DO
and CQ  DP
∴ QO  CO  CQ
(b) BAC  45
(property of square)
∵ △ABG  △AFG
(proved in (a)(ii))
∴ BAG  FAG
(corr. s, △s)
1
  BAC
2
1
  45
2
 22.5
In △ABG,
AGB  BAG  ABG  180 ( sum of △)
AGB  22.5  90  180
AGB  67.5
33. (a) In △ACE and △DBF,
AE  DF
∵ OA  OD
∴ CAE  BDF
AC  DB
∴ △ACE  △DBF
∴ ACE  DBF
(b) In △ACE,
NEF  CAE  ACE
In △DBF,
NFE  BDF  DBF
∴ NEF  NFE
∴ NE  NF
i.e. △NEF is an isosceles
triangle.
∴
given
given
common side
SAS
corr. sides, △s
opp. sides of // gram
common angle
property of rectangle
given
 DO  DP
 PO
CO DO

QO PO
∴ △OCD ~ △OQP
∴ OCD  OQP
∴ DC // PQ
Also, AB // DC
∴ AB // PQ
given
property of rectangle
base s, isos. △
property of rectangle
SAS
corr. s, △s
property of rectangle
alt. s, PD // BQ
vert. opp. s
given
AAS
corr. sides, △s
given
diags. bisect each other
ratio of 2 sides, inc. 
corr. s, ~△s
corr. s equal
property of rectangle
(b) In △AOP and △BOQ,
PO  QO
(proved in (a))
AOP  BOQ
(vert. opp. s)
AO  BO
(property of rectangle)
∴ △AOP  △BOQ (SAS)
∴ AP  BQ
(corr. sides, △s)
∵ ABQP is a quadrilateral with AB // PQ and
AP  BQ.
∴ ABQP is an isosceles trapezium.
ext.  of △
ext.  of △
36. In △ABC,
∵ M and N are the mid-points
of AB and AC respectively.
∴ MN // BC and
1
MN   BC
2
In △BCD,
∵ P and Q are the mid-points
of CD and BD respectively.
∴ QP // BC and
1
QP   BC
2
∵ QP  MN and QP // MN
∴ MNPQ is a parallelogram.
∴ MQ  NP
sides opp. equal s
34. With the notation in the figure,
107
mid-pt. theorem
mid-pt. theorem
opp. sides equal and //
opp. sides of // gram
Mathematics in Action (3rd Edition) 3A Full Solutions
37. (a) (i)
In △APR and△CQR,
AR  CR
ARP  CRQ
PAR  QCR
∴ △APR  △CQR
(ii) ∵ △APR  △CQR
∴ PA  QC
and BQ  QC
∴ PA  BQ
Also, AP // BQ
∴ ABQP is a
parallelogram.
1
 AQ  h
Area of △ APQ 2

Area of △ QCD 1  RQ  h
2
AQ

RQ
AR  RQ

RQ
2 RQ  RQ

RQ
3RQ

RQ
3
∴ Area of △APQ : area of △QCD  3 : 1
given
vert. opp. s
alt. s, AP // QC
ASA
proved in (i)
corr. sides, △s
given
given
opp. sides equal and //
(b) In △ADE,
∵ B and C are the mid-points of AD and AE
respectively.
1
∴ BC   DE
(mid-pt. theorem)
2
DE  2 BC
∵ BQ  QC
∴ BC  2 BQ
 2 AP
∴ DE  2 BC
 4 AP
AP 1

DE 4
∴ AP : DE  1 : 4
39. (a) In △ABD,
∵ AE  EB and
∴ DG  GB
∵ AE  EB and
1
∴ EG   AD
2
In △BCD,
∵ DG  GB and
∴ DF  FC
∵ DG  GB and
1
∴ GF   BC
2
∴ EF  EG  GF
38. (a) In △PQR and △DQC,
QPR  QDC
alt. s, PR // CD
PQ  DQ
given
PQR  DQC
vert. opp. s
∴ △PQR  △DQC
ASA
(b) (i) ∵ AP  PB and PR // BC
∴ AR  RC
(intercept theorem)
∵ △PQR  △DQC (proved in (a))
∴ RQ  CQ
(corr. sides, △s)
1
  RC
2
AR
RC

RQ 1  RC
2
2
∴ AR : RQ  2 : 1
AD// EG
intercept theorem
DG  GB
mid-pt. theorem
GF // BC
intercept theorem
DF  FC
mid-pt. theorem
1
1
 AD   BC
2
2
1
 ( AD  BC )
2

(b) In △ABC,
∵ AE  EB and EH // BC
∴ AH  HC
∵ AE  EB and AH  HC
1
∴
EH   BC
2
1
EG  GH   BC
2
1
GH   BC  EG
2
In △ABD,
∵ AE  EB and EG // AD
∴ DG  GB
∵ AE  EB and DG  GB
1
∴ EG   AD
2
1
1
∴ GH   BC   AD
2
2
1
  ( BC  AD)
2
(ii)
Let h be the height of △APQ and △PQR.
Area of △QCD = area of △PQR
108
intercept theorem
mid-pt. theorem
intercept theorem
mid-pt. theorem
5 Quadrilaterals
∴
Multiple Choice Questions (p. 5.77)
1. Answer: C
(opp. sides of // gram)
BC  AD
∵ AD  BE
∴ BC  BE
∴ BCE  BEC
(base s, isos. △)
 35
In △BCF,
FBC  BCF  AFC
 180  100
 80
BCD  BCE  ECD
 80  60
 140
∵ △CDE is an equilateral triangle.
∴ EC  CD  DE
Also, AB  BC  CE  EA (property of rhombus)
∴ DE  EA and CD  CB
∴ EDA  EAD and
(base s, isos.△)
CDB  CBD
In △AED,
AED  EDA  EAD  180 ( sum of △)
(ext.  of △)
FBC  35  100
FBC  65
i.e. ABC  65
2.
Answer: D
BCD  x (opp. s of // gram)
(opp. s of // gram)
CBF  z
BGC  y (vert. opp. s)
In △BCG,
BCG  BGC  CBG  180
160  2EDA  180
EDA  10
In △BCD,
BCD  CBD  CDB  180 ( sum of △)
140  2CDB  180
CDB  20
ADB  EDC  EDA  CDB
 60  10  20
 30
( sum of △)
x  y  z  180
y  180  x  z
3.
Answer: B
ADC  90
In △ACD,
(property of rectangle)
AC  AD  CD
2
BCE  180  ABC (int. s, EC // AB)
2
2
Alternative Solution
Construct BF such that BF // AD.
(Pyth. theorem)
AC  2  7 cm
2
2
 53 cm
ACF  90 and
AC  CF  53 cm
In △ACF,
AF 2  AC 2  CF 2
(property of square)
(Pyth. theorem)
Let EAD  a and CBD  b.
∵ AE // BC
(property of rhombus)
∴ a  DAB  100  180
(int. s, AE // BC)
DAB  80  a
DAB  ABF  180 (int. s, AD // BF)
AF  ( 53 )  ( 53 ) 2 cm
2
 10.3 cm (cor. to 3 sig. fig.)
4.
Answer: C
AEC  ECD  180 (int. s, EA // CD)
(80  a)  (100  CBF )  180
CBF  a
(alt. s, AD // BF)
ADB  CBD  CBF
ba
∵ △CDE is an equilateral triangle.
∴ EC  CD  DE
Also, AB  BC  CE  EA
(property of rhombus)
∴ DE  EA and CD  CB
∴ EDA  EAD  a and
(base s, isos. △)
CDB  CBD  b
∵ CDE  60
(prop. of equil.△)
∴ EDA  ADB  CDB  60
a  (b  a )  b  60
2b  2a  60
b  a  30
∴ ADB  b  a
 30
125  ECD  180
ECD  55
(property of square)
BDC  45
In △CDF,
CFD  FCD  FDC  180 ( sum of △)
CFD  55  45  180
CFD  80
5.
Answer: C
∵ △CDE is an equilateral triangle.
∴ CED  ECD  EDC  60 (prop. of equil.△)
∵ ABCE is a rhombus.
∴ AEC  ABC
(property of rhombus)
 100
AED  AEC  CED
 100  60
 160
∵ EC // AB
(property of rhombus)
109
Mathematics in Action (3rd Edition) 3A Full Solutions
6.
(common side)
DE  DE
∴ △ADE  △CDE (SSS)
∴ III must be true.
∴ The answer is D.
Answer: A
OA  OC , OB  OD
and AOB  90 (property of rhombus)
1
OA   AC
2
1
  16 cm
2
 8 cm
In △AOB,
OA2  OB 2  AB 2
10. Answer: A
For I:
AEB  BED  180 (adj. s on st. line)
AEB  120  180
AEB  60
AB  BE
BAE  AEB (base s, isos. △)
 60
In △ABE,
ABE  AEB  BAE  180 ( sum of △)
ABE  60  60  180
ABE  60
∵ ABE  AEB  BAE  60
∴ AB  BE  AE
∴ △ABE is an equilateral triangle.
∴ I must be true.
For II:
It is not necessary that BCDE is a parallelogram because
BE may not be parallel to CD.
∴ II may be false.
For III:
It is not necessary that ABCE is a rhombus because BC
and EC may not equal to AB.
∴ III may be false.
∴ The answer is A.
(Pyth. theorem)
∵
∴
OB  17 2  82 cm
 15 cm
Area of ABCD = 4  area of △AOB
1
 4   OA  OB
2
1
 4   8  15 cm2
2
 240 cm2
7.
Answer: B
∵ The interior angles of a rhombus may not be all
equal.
∴ It is incorrect that any rhombus must be a regular
polygon.
8.
Answer: D
11. Answer: B
In △ADE,
∵ AB  BD and AC  CE
1
BC   DE (mid-pt. theorem)
∴ BC // DE and
2
1
2.5 cm   DE
2
DE  5 cm
In △AHI,
∵ AD  DH and AE  EI
1
∴ DE // HI and DE   HI
(mid-pt. theorem)
2
1
5 cm   HI
2
HI  10 cm
With the notation in the figure,
∵ AD  AB
∴ ADB  ABD
(base s, isos. △)
 23
By the property of kite,
AED  90
In △AED,
a  AED  ADE  180 ( sum of △)
a  90  23  180
a  67
9.
12. Answer: A
∵ P and R are the mid-points of AB and CA
respectively.
∴ PR// BC
(mid-pt. theorem)
APR  x and ARP  y (corr. s, PR // BC)
∵ P and Q are the mid-points of AB and BC
respectively.
∴ PQ // AC
(mid-pt. theorem)
RPQ  ARP  y
(alt. s, AR // PQ)
APQ  APR  RPQ
 x y
Answer: D
For I,
by the property of kite,
AC  BD
∴ I must be true.
For II,
by the property of kite,
BAE  BCE
∴ II must be true.
For III,
in △ADE and △CDE,
(given)
AE  CE
(property of rhombus)
AD  CD
110
5 Quadrilaterals
BAD  ABC  180 (int. s, AD // BC)
(85  CAD)  (25  CAD)  180
2CAD  70
13. Answer: A
In △ABC,
∵ AQ  QC and PQ // BC
∴ AP  PB
(intercept theorem)
∴ I must be true.
∵ AQ  QC and AP  PB
1
∴ PQ   BC (intercept theorem)
2
BC  2 PQ
∴ II must be true.
For III,
in △ACD,
∵ AR  RD and AQ  QC
∴ QR // CD
(mid-pt. theorem)
AQR  ACD (corr. s, QR // CD)
∵ It is not necessary that AC  AD .
∴ ACD  ADC may not be true.
∴ AQR  ADC may not be true.
∴ The answer is A.
CAD  35
2.
64  2DAE  180
DAE  58
(alt. s, AD // BC)
ACB  DAC
 58
In △BCE,
(ext.  of △)
CBE  ECB  AEB
CBE  58  89
CBE  31
3.
14. Answer: D
∵ BG : GC  3 :1
BG
3
∴
GC
BG  3GC
In △BGE,
∵ EA  AB and AF // BG
∴ EF  FG
(intercept theorem)
∵ EA  AB and EF  FG
1
∴ AF   BG
(mid-pt. theorem)
2
1
  3GC
2
3GC

2
(opp. sides of // gram)
BC  AD
BG  GC  AF  FD
3GC
3GC  GC 
 FD
2
5GC
FD 
2
FD 5

GC 2
∴ FD : GC  5 : 2
4.
Exam Corner
Exam-type Questions (p. 5.80)
1.
∵ AD  DE
∴ DAE  DEA
(base s, isos. △)
In △AED,
ADE  DAE  DEA  180 ( sum of △)
In △BCG and △DCH,
∵ CE and CF divide BCD
into three equal parts.
∴ BCG  DCH
∵ ABCD is a rhombus.
∴ BC  DC
∴ CBG  CDH
∴ △BCG  △DCH
∴ CG  CH
CHG  CGH
x
CHG  FHG  180
x  y  180
111
adj. s on st. line
∵ EB : BC  3 : 2
∴ Let EB  3x and BC  2 x .
In △BEF and △CED,
(corr. s, AB // DC)
EBF  ECD
(corr. s, AB // DC)
EFB  EDC
(common angle)
BEF  CED
∴ △BEF ~ △CED (AAA)
FB BE

∴
(corr. sides, ~△s)
DC CE
FB
3x

DC 3 x  2 x
FB 3

DC 5
3
FB  DC
5
(opp. sides of // gram)
AB  DC
AF  FB  DC
3
AF  DC  DC
5
2
AF  DC
5
AF 2

DC 5
∴ AF : DC  2 : 5
ACB  CAD (alt. s, AD // BC)
DCB  25  ACB
 25  CAD
∵ ABCD is a trapezium with AD // BC .
∴ ABC  DCB
 25  CAD
property of rhombus
property of rhombus
ASA
corr. sides, △s
base s, isos. △
Mathematics in Action (3rd Edition) 3A Full Solutions
5.
Do and Investigate (p. 5.82)
(a) In △BCF and △DCF,
(property of square)
BC  DC
BCF  DCF  45 (property of square)
(common side)
CF  CF
∴ △BCF  △DCF (SAS)
1.
(b) CDF  CBF (corr. s, △s)
 77
(property of square)
DCF  45
In △CDF,
AFD  CDF  DCF (ext.  of △)
 77  45
 122
6.
7.
∵ AD is a median of △ABC.
∴ BD  DC
∵ ADG  CED
∴ GD// FC
alt. s equal
In △AGD,
∵ AE  ED and FE // GD
∴ AF  FG
intercept theorem
In △BCF,
∵ CD  DB and FC // GD
∴ FG  GB
intercept theorem
∴ AF  FG  GB
2.
Join BD.
∵ AE  EB and AH  HD
1
∴ EH  BD and EH // BD
2
∵ CF  FB and CG  GD
1
∴ FG  BD and FG // BD
2
∴ EH  FG and EH // FG
∴ EFGH is a parallelogram.
(a) In △ACD,
∵ DN  NC and AD // ON
∴ AO  OC
intercept theorem
In △ABC,
∵ AO  OC and BM  MC
∴ BA// MO
mid-pt. theorem
∵ AD // BO and BA// OD
∴ ABOD is a parallelogram.
3.
(a) yes, rectangle
(b) yes, rhombus
(b) In △ACD,
∵ DN  NC and AO  OC
1
∴ ON   AD
(mid-pt. theorem)
2
∵ BO  AD
(opp. sides of // gram)
1
∴ ON   BO
2
BO
2
ON
∴ BO : ON  2 : 1
(c) yes, square
(d) yes, rhombus
112
mid-pt. theorem

mid-pt. theorem

from  and 
opp. sides equal and //