Download HOMEWORK Ch6 Hasna Aldawsari 442203265 (1)

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
HOMEWORK CH6
Hasnaa Aldawsari
442203265
4. Densities of states in low dimensions: Find the density of k and energy states for an ideal
noninteracting Fermi gas in one and two dimensions.
density of k and energy states in one dimension
π·π‘˜βƒ— = 2 (
1 𝑑 1
) =
2πœ‹
πœ‹
𝐷(ℇ) = ∫[π‘‘π‘˜βƒ— ] 𝛿(ℇ βˆ’ β„°βƒ—π‘˜0 )
∫[π‘‘π‘˜βƒ— ] β‰…
2
1
βˆ‘ = ∫ π‘‘π‘˜βƒ— π·π‘˜βƒ— = ∫ π‘‘π‘˜βƒ—
𝑣
πœ‹
βƒ—
π‘˜
π‘‘π‘˜βƒ— = 2 π‘‘π‘˜
𝐷(ℇ) = ∫[π‘‘π‘˜βƒ— ] 𝛿(ℇ βˆ’ β„°π‘˜βƒ—0 ) =
Where ℰ𝐹 =
π‘˜πΉ =
ℏ2 π‘˜πΉ 2
2π‘š
β†’ π‘˜πΉ 2 =
1 ∞
1 ∞
π‘š
1 2π‘š
√
∫ 2 π‘‘π‘˜ 𝛿(ℇ βˆ’ β„°π‘˜βƒ—0 ) = ∫ 2 √ 2 𝑑ℰ𝐹 𝛿(ℇ βˆ’ β„°π‘˜βƒ—0 ) =
πœ‹ 0
πœ‹ 0
2ℏ ℰ𝐹
πœ‹β„ ℰ𝐹
2π‘šβ„°πΉ
ℏ2
1 2π‘š
π‘š
π‘š
√2π‘šβ„°πΉ π‘‘π‘˜πΉ
β†’
=
=
=√ 2
ℏ
𝑑ℰ𝐹
2 β„βˆš2π‘šβ„°πΉ
2ℏ ℰ𝐹
β„βˆš2π‘šβ„°πΉ
density of k and energy states in two dimension
π·π‘˜βƒ— = 2 (
1 𝑑
1 2
) = 2( )
2πœ‹
2πœ‹
𝐷(ℇ) = ∫[π‘‘π‘˜βƒ— ] 𝛿(ℇ βˆ’ β„°βƒ—π‘˜0 )
∫[π‘‘π‘˜βƒ— ] β‰…
2
1 2
βˆ‘ = ∫ π‘‘π‘˜βƒ— π·π‘˜βƒ— = 2 ( ) ∫ π‘‘π‘˜βƒ—
𝑣
2πœ‹
βƒ—
π‘˜
π‘‘π‘˜βƒ— = 2πœ‹π‘˜π‘‘π‘˜
𝐷(ℇ) = ∫[π‘‘π‘˜βƒ— ] 𝛿(ℇ βˆ’ β„°π‘˜βƒ—0 ) = 2 (
1 2 ∞
) ∫ 2πœ‹π‘˜π‘‘π‘˜ 𝛿(ℇ βˆ’ β„°π‘˜βƒ—0 )
2πœ‹
0
= 2(
1 2 ∞
π‘š
1 2
π‘š
√2π‘šβ„°πΉ
√2π‘šβ„°πΉ
0
) ∫ 2πœ‹
√ 2 𝑑ℰ𝐹 𝛿(ℇ βˆ’ β„°π‘˜βƒ— ) = 2 ( ) 2 πœ‹
√ 2
2πœ‹
ℏ
2ℏ ℰ𝐹
2πœ‹
ℏ
2ℏ ℰ𝐹
0
= 2(
1 2
π‘š
π‘šπœ‹
) 2πœ‹ 2 = 2
2πœ‹
ℏ
ℏ
ℏ2 π‘˜πΉ 2
2π‘šβ„°πΉ
π‘€β„Žπ‘’π‘Ÿπ‘’ ℰ𝐹 =
β†’ π‘˜πΉ 2 =
2π‘š
ℏ2
π‘˜πΉ =
1 2π‘š
π‘š
π‘š
√2π‘šβ„°πΉ π‘‘π‘˜πΉ
β†’
=
=
=√ 2
ℏ
𝑑ℰ𝐹
2 β„βˆš2π‘šβ„°πΉ
2ℏ ℰ𝐹
β„βˆš2π‘šβ„°πΉ
5. Fermi pancakes: Consider a thin layer of silver, 106 Â wide and 106 Â long along x and y.
(a) Take the layer to be 4.1 Â thick along z- Treat the layer as a free Fermi gas, demanding that the
wave function vanish at the boundaries along the z, direction. Find the difference between the
energies of the lowest- and highestoccupied single-particle states, and compare this difference to
the bulk Fermi energy.
The density of electrons
𝑛 = 0.0586 π΄Μ‡βˆ’3
The bulk Fermi energy
ℰ𝐹 =
2
2
ℏ2 π‘˜πΉ 2
= 36.46(𝑛 βˆ™ 𝐴̇3 )3 𝑒𝑣 = 36.46(0.0586 π΄Μ‡βˆ’3 βˆ™ 𝐴̇3 )3 𝑒𝑣 = 5.50𝑒𝑣
2π‘š
1
π‘€β„Žπ‘’π‘Ÿπ‘’ π‘˜πΉ = (3πœ‹ 2 𝑛)3
The k vector of single particle states
π‘˜πΉ =
2πœ‹
(𝑛 , 𝑛 , 𝑛 )
𝐿 π‘₯ 𝑦 𝑧
The Fermi energy of single particle
ℰ𝐹 =
ℏ2 π‘˜πΉ 2
ℏ2 2πœ‹ 2 2
=
( ) (𝑛π‘₯ + 𝑛𝑦2 + 𝑛𝑧2 )
2π‘š
2π‘š 𝐿
The energy of a single electron in layer
2
ℏ2
2πœ‹
πœ‹ 2
ℰ𝐹 =
[(
) (𝑛π‘₯2 + 𝑛𝑦2 ) + ( ) 𝑛𝑧2 ]
2π‘š 𝐿π‘₯,𝑦
𝐿𝑧
The lowest energy state is (0,0,1) and for large 𝑛π‘₯ , 𝑛𝑦 , we will reach a state (𝑛π‘₯ , 𝑛𝑦 ,1) whose energy
is the same as the state (0, 0, 2).
β„° (𝑛π‘₯ , 𝑛𝑦 , 1) = β„° (0,0,2)
2
ℏ2 2πœ‹
ℏ2 πœ‹ 2
ℏ2 πœ‹ 2
( ) (1)2 = 0 +
( ) (2)2
(
) (𝑛π‘₯2 + 𝑛𝑦2 ) +
2π‘š 𝐿π‘₯,𝑦
2π‘š 𝐿𝑧
2π‘š 𝐿𝑧
2
ℏ2 2πœ‹
ℏ2 πœ‹ 2
ℏ2 πœ‹ 2
2
2
2
( ) (2) βˆ’
( ) (1)2
(
) (𝑛π‘₯ + 𝑛𝑦 ) =
2π‘š 𝐿π‘₯,𝑦
2π‘š 𝐿𝑧
2π‘š 𝐿𝑧
2
ℏ2 2πœ‹
ℏ2 πœ‹ 2
( ) βˆ™3
(
) (𝑛π‘₯2 + 𝑛𝑦2 ) =
2π‘š 𝐿π‘₯,𝑦
2π‘š 𝐿𝑧
ℏ2 πœ‹ 2
1 2
(
)
βˆ™
3
3
(
2π‘š 𝐿𝑧
𝐿𝑧 )
2
2
=
(𝑛π‘₯ + 𝑛𝑦 ) = 2
ℏ
2πœ‹ 2
1 2
(
)
4
(
2π‘š 𝐿π‘₯,𝑦
𝐿π‘₯,𝑦 )
(𝑛π‘₯2 + 𝑛𝑦2 ) =
3𝐿2π‘₯,𝑦
4𝐿2𝑧
The number of electrons
2
𝑁 =2×
πœ‹(π‘˜π‘₯ 2 + π‘˜π‘¦ 2 )
𝑉circle
πœ‹π‘˜ 2
πœ‹
2πœ‹
=2×
=
2
×
=2×
(
) (𝑛π‘₯2 + 𝑛𝑦2 )
2
2
2
π‘‰π‘˜
𝐿
2πœ‹
2πœ‹
2πœ‹
π‘₯,𝑦
(𝐿 )
(𝐿 )
(𝐿 )
π‘₯,𝑦
π‘₯,𝑦
π‘₯,𝑦
= 2πœ‹(𝑛π‘₯2 + 𝑛𝑦2 )
2πœ‹ 2
𝐿
Where π‘˜π‘₯ 2 + π‘˜π‘¦ 2 = ( ) (𝑛π‘₯2 + 𝑛𝑦2 )
The actual number of available electrons in the silver film is 𝑛𝐿2π‘₯,𝑦 𝐿𝑧
2πœ‹(𝑛π‘₯2 + 𝑛𝑦2 ) = 𝑛𝐿2π‘₯,𝑦 𝐿𝑧 π‘Žπ‘›π‘‘ (𝑛π‘₯2 + 𝑛𝑦2 ) =
π‘ π‘œ ,
3𝐿2π‘₯,𝑦
4𝐿2𝑧
𝑛𝐿2π‘₯,𝑦 𝐿𝑧 3𝐿2π‘₯,𝑦
≀
2πœ‹
4𝐿2𝑧
2𝑛𝐿3𝑧
≀1
3πœ‹
0.86 ≀ 1
So ,all electrons stay in the energy levels with 𝑛𝑧 = 1
2
2
ℏ2 2πœ‹
ℏ2 πœ‹ 2
ℏ2 2πœ‹
ℏ2 πœ‹ 2
β„°β„Žπ‘–π‘”β„Ž (𝑛π‘₯ , 𝑛𝑦 , 1) =
( ) (1)2 =
( )
(
) (𝑛π‘₯2 + 𝑛𝑦2 ) +
(
) (𝑛π‘₯2 + 𝑛𝑦2 ) +
2π‘š 𝐿π‘₯,𝑦
2π‘š 𝐿𝑧
2π‘š 𝐿π‘₯,𝑦
2π‘š 𝐿𝑧
2
ℏ2 2πœ‹
ℏ2 πœ‹ 2 ℏ2 πœ‹ 2
ℰ𝐹 = β„°β„Žπ‘–π‘”β„Ž (𝑛π‘₯ , 𝑛𝑦 , 1) βˆ’ β„°π‘™π‘œπ‘€ (0,0,1) =
( ) βˆ’
( )
(
) (𝑛π‘₯2 + 𝑛𝑦2 ) +
2π‘š 𝐿π‘₯,𝑦
2π‘š 𝐿𝑧
2π‘š 𝐿𝑧
2
=
2
ℏ2 2πœ‹
ℏ2 2πœ‹ 𝑛𝐿2π‘₯,𝑦 𝐿𝑧 ℏ2
= πœ‹π‘›πΏπ‘§
(
) (𝑛π‘₯2 + 𝑛𝑦2 ) =
(
)
2π‘š 𝐿π‘₯,𝑦
2π‘š 𝐿π‘₯,𝑦
2πœ‹
π‘š
16
2
(6.5821 × 10 𝑒𝑣 βˆ™ 𝑠)
=
× 3.14 × 0.0586π΄Μ‡βˆ’3 × 4.1𝐴̇ = 5.75
0.511 × 106 𝑒𝑣
Μ‡ 2
(3 × 108 × 1010 𝐴⁄𝑠)
(b) Repeat the previous problem with a layer 8.2 Â thick along z
The lowest energy state is (0,0,1) and for large 𝑛π‘₯ , 𝑛𝑦 , we will reach a state (𝑛π‘₯ , 𝑛𝑦 ,3) whose energy
is the same as the state (0, 0, 4).
β„° (𝑛π‘₯ , 𝑛𝑦 , 3) = β„° (0,0,4)
2
ℏ2 2πœ‹
ℏ2 πœ‹ 2
ℏ2 πœ‹ 2
( ) (3)2 = 0 +
( ) (4)2
(
) (𝑛π‘₯2 + 𝑛𝑦2 ) +
2π‘š 𝐿π‘₯,𝑦
2π‘š 𝐿𝑧
2π‘š 𝐿𝑧
2
ℏ2 2πœ‹
ℏ2 πœ‹ 2
ℏ2 πœ‹ 2
( ) (4)2 βˆ’
( ) (3)2
(
) (𝑛π‘₯2 + 𝑛𝑦2 ) =
2π‘š 𝐿π‘₯,𝑦
2π‘š 𝐿𝑧
2π‘š 𝐿𝑧
2
ℏ2 2πœ‹
ℏ2 πœ‹ 2
2
2
+
𝑛
=
( ) βˆ™7
(
) (𝑛π‘₯
𝑦)
2π‘š 𝐿π‘₯,𝑦
2π‘š 𝐿𝑧
ℏ2 πœ‹ 2
1 2
(
)
βˆ™
7
7
(
2π‘š 𝐿
𝐿𝑧 )
=
(𝑛π‘₯2 + 𝑛𝑦2 ) = 2 𝑧
ℏ
2πœ‹ 2
1 2
(
)
4(
)
2π‘š 𝐿π‘₯,𝑦
𝐿π‘₯,𝑦
(𝑛π‘₯2
+ 𝑛𝑦2 ) =
7𝐿2π‘₯,𝑦
4𝐿2𝑧
2πœ‹(𝑛π‘₯2 + 𝑛𝑦2 ) = 𝑛𝐿2π‘₯,𝑦 𝐿𝑧 π‘Žπ‘›π‘‘ (𝑛π‘₯2 + 𝑛𝑦2 ) =
π‘ π‘œ,
7𝐿2π‘₯,𝑦
4𝐿2𝑧
𝑛𝐿2π‘₯,𝑦 𝐿𝑧 7𝐿2π‘₯,𝑦
≀
2πœ‹
4𝐿2𝑧
2𝑛𝐿3𝑧
≀3
7πœ‹
2.9 ≀ 3
So ,all electrons stay in the energy levels with 𝑛𝑧 = 3
The total number of electrons is
𝑁 = 2πœ‹(𝑛π‘₯2 + 𝑛𝑦2 )
𝑛𝐿2π‘₯,𝑦 𝐿𝑧 = 𝑁1 + 𝑁2 + 𝑁3
𝑁1 π‘“π‘œπ‘Ÿ 𝑛𝑧 = 1, 𝑁2 π‘“π‘œπ‘Ÿ 𝑛𝑧 = 2, 𝑁3 π‘“π‘œπ‘Ÿ 𝑛𝑧 = 3
2
2
ℏ2 2πœ‹ 𝑁1 ℏ2 πœ‹ 2
ℏ2 2πœ‹ 𝑁2 ℏ2 πœ‹ 2
+
( ) (1)2 =
+
( ) (2)2
(
)
(
)
2π‘š 𝐿π‘₯,𝑦 2πœ‹ 2π‘š 𝐿𝑧
2π‘š 𝐿π‘₯,𝑦 2πœ‹ 2π‘š 𝐿𝑧
2
ℏ2 2πœ‹ 𝑁3 ℏ2 πœ‹ 2
=
+
( ) (3)2
(
)
2π‘š 𝐿π‘₯,𝑦 2πœ‹ 2π‘š 𝐿𝑧
𝑁1 + (1)2 = 𝑁2 + (2)2 = 𝑁3 + (3)2
2
ℏ2 2πœ‹ 𝑁1 ℏ2 πœ‹ 2
+
( ) (1)2 = 5.57
(
)
2π‘š 𝐿π‘₯,𝑦 2πœ‹ 2π‘š 𝐿𝑧
(6.5821 × 10βˆ’16 𝑒𝑣 βˆ™ 𝑠)2
πœ‹ 2
(8.2)
6
0.511 × 10 𝑒𝑣
2×
Μ‡ 2
(3 × 108 × 1010 𝐴⁄𝑠)
(6.5821 × 1016 𝑒𝑣 βˆ™ 𝑠)2 πœ‹
(106 )2
0.511 × 106 𝑒𝑣
2
Μ‡
(3 × 108 × 1010 𝐴⁄𝑠)
5.57 βˆ’
𝑁1 =
ℏ2 πœ‹ 2
5.57 βˆ’ 2π‘š (𝐿 ) (1)2
𝑧
ℏ2
2πœ‹
(
)
4πœ‹π‘š 𝐿π‘₯,𝑦
=
2
=
ℏ2 πœ‹ 2
5.57 βˆ’ 2π‘š (𝐿 )
𝑧
ℏ2 πœ‹
π‘š 𝐿2π‘₯,𝑦
=
5.57 βˆ’ 0.56
= 2.09 × 1011
2.40 × 10βˆ’11
𝑁2 = 𝑁1 + (1)2 βˆ’ (2)2 = 𝑁1 βˆ’ 3 = 2.09 × 1011 βˆ’ 3 = 2.09 × 1011
𝑁3 = 𝑁1 βˆ’ 8 = 2.09 × 1011
2
ℰ𝐹 = β„°β„Žπ‘–π‘”β„Ž (𝑛π‘₯ , 𝑛𝑦 , 3) βˆ’ β„°π‘™π‘œπ‘€ (0,0,1) =
2
ℏ2 2πœ‹ 𝑁3 ℏ2 πœ‹ 2
ℏ2 πœ‹ 2
2
(3)
+
( )
βˆ’
( ) (1)2
(
)
2π‘š 𝐿π‘₯,𝑦 2πœ‹ 2π‘š 𝐿𝑧
2π‘š 𝐿𝑧
2
ℏ2 2πœ‹ 𝑁3 ℏ2 πœ‹ 2
ℏ2
2πœ‹ 𝑁3
πœ‹ 2
=
+
( ) 8=
+ ( ) 8]
(
)
[(
)
2π‘š 𝐿π‘₯,𝑦 2πœ‹ 2π‘š 𝐿𝑧
2π‘š 𝐿π‘₯,𝑦 2πœ‹
𝐿𝑧
=
(6.5821 × 10βˆ’16 𝑒𝑣 βˆ™ 𝑠)2
1 2
πœ‹ 2
[(
) 2πœ‹ × 2.09 × 1011 + (
) 8] = 5.64 𝑒𝑣
6
6
Μ‡
0.511 × 10 𝑒𝑣
10
8.2𝐴
2×
Μ‡ 2
(3 × 108 × 1010 𝐴⁄𝑠)