* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Section 4.7 Inverse Trig Functions
Functional decomposition wikipedia , lookup
Big O notation wikipedia , lookup
Continuous function wikipedia , lookup
Dirac delta function wikipedia , lookup
Mathematics of radio engineering wikipedia , lookup
Principia Mathematica wikipedia , lookup
History of trigonometry wikipedia , lookup
Function (mathematics) wikipedia , lookup
Notes 3.1 PreCalculus Section 4.7 Inverse Trig Functions Name:________________________ Review: Evaluate the following trig Functions: 𝜋 𝜋 1. sin(0) 2. cos( 6 ) 3. tan( 4 ) 𝜋 4. sec( 3 ) 5. cos( 𝜋 2 ) What do you remember about Inverse Functions? The Inverse of the sine function is called the ___________ function. It can also be written as: Sine Function: arcsine function: For example: For what 𝜃 does sin(𝜃) = ½ Then, the arcsin( ½) = Keep in mind that inverse functions can only exist if the original function is one-to-one. Are the arcsine or cosine functions one-to-one? Definition of the Inverse Trigonometric Functions Function Domain Range Definition of the Inverse Trigonometric Functions Function Domain Range Let’s practice: √3 2 2.)sin-1 ( ) 3.) sin-1 2 4.)arccos 2 √2 5.) cos-1(-1) 6.) arctan 0 7.) tan-1(-1) 8.) arcsin 0 9.) arctan (√3) 1.) arcsin(- ½ ) Composition of functions: Review: Let f(x)= = x – 1 and g(x) = x2 + 2. How do we find find is f(g(2))? We can do the same thing to evaluate trigonometric functions: 𝜋 2 Arcsin( cos ) cos(arctan (1)) Inverse functions in the calculator: Good news! We can use our calculator to determine the inverse trig functions of unfamiliar numbers. 10.) arctan(-8.45) 11.) sin-1 0.2447 12.) arccos 2 For all x in the domain of the function and its inverse… x f f 1 and f 1 f x = Inverse Properties of Trig Functions IF __________________________and _____________________________, Then sin arcsin x and arcsin sin y IF __________________________and _____________________________, Then cosarccos x and arccoscos y Make sure you realize that these properties are only valid for the values that are acceptable for x and y!!! IF __________________________and _____________________________, Then tan arctan x and arctan tan y If possible, find the exact values. 1. tan arctan 8 2. arctan tan 3. cos cos 1 (1) 4 How could you evaluate these… 2 3 a. tan arccos 3 5 b. cos arcsin HW 3-1 Name:_____________________ Precalculus Section 4.7 Inverse Functions Use your notes to fill out the following chart. YOU MUST KNOW THE RANGE FOR EACH INVERSE FUNCTION FOR THE TEST!!!! Function Domain Range A. Evaluate the following expressions. Find exact values. i.e NO CALCULATORS!!! 5. cos-1 3 2 3. arcsin(-1) 1 2 7. arcsin(-3.14) 2. arccos 1. arcos(.5) 3 2 6. arcsin 4. sin-1 3 2 8. arctan (-1) B. Evaluate the following composite functions. Use the properties of inverse trigonemtric function if necessary. Find EXACT VALUES. ) 6 9. arcsin(sin 3 ) 4 13. cos-1(tan 10. tan(arctan(.8)) 14. csc [sin-1 3 ] 2 11. cos{arccos(-0.1)] 12. arcsin(sin3 ) 1 ] 2 15. tan[cos-1 C. Use triangles and/or formulas to evaluate the following composite functions 3 ] 4 17. sin[arctan 5 ] 13 19. cos[arcsin 18. cos(tan-1 2) 5 ] 12 20. tan[arcsin ] 4 16. cos-1[sin