Download Module 1

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
Transcript
Grade 3: Module 1 – Parent Letter
What’s It All About?
In this first module, students review addition and arrays and then begin to work
with multiplication facts. The focus is on solving problems with the factors 2-5
and 10. The students then extend their work into division and its relationship to
multiplication. This module will last for approximately 25 days.
New or Recently Introduced Terms:











Fact: 3 x 1 = 3, 3 × 2 = 6, 3 x 3 = 9
Factors: numbers that are multiplied together
Repeated addition: adding equal groups together
o 2+2+2+2
Multiplication/multiply: an operation showing how many times a number is added to
itself
o 5 × 3 =15 is the same as 5 + 5 + 5 =15
Size of groups: factor in a multiplication problem that refers to how many in a
group
Number of groups: factor in a multiplication problem that refers to the total equal
groups
Array: a set of numbers or objects that follow a specific pattern
o an array with 3 rows and 4 columns
Commutative Property: the order property; the order in which you multiply
numbers does not change the product of those numbers
o rotate a rectangular array 90 degrees to demonstrate that factors in a
multiplication sentence can switch places
3 x 4 = 12
4 x 3 = 12
Rotate: turn an array 90 degrees
Equation: a number statement showing that 2 expressions are equal
o 3 × 4 = 12
Distributive Property: break apart a larger number into 2 parts to make the
multiplication easier; multiply each of the 2 parts by the other factor
o 12 × 3 = (10 × 3) + (2 × 3)

Divide/division: partitioning, or breaking, a total into equal groups to show how
many equal groups add up to a specific number
o 15 ÷ 5 = 3
Dividend: the total being divided
o In 12 ÷ 3 = 4, the dividend is 12.
Parentheses: ( ) used around a fact or numbers within an equation
o (3 x 4) + (2 x 4) = 12 + 8 = 20
Quotient: the answer when one number is divided by another

Unknown: the “missing” factor or quantity in multiplication or division

Tape Diagram: a method for modeling problems



14

Number Bond: a method for showing a whole number divided into 2 parts
Topic A:
Students will understand equal groups of as multiplication, relate multiplication to
the array model, and interpret the meaning of factors.

Write multiplication sentences from equal groups.

Relate multiplication to the array model.
o

3 (number of groups) x 4 (size of the group) = 12
Interpret the meaning of factors.
Number of groups: _6_
Size of each group: _3_
6 x _3_= _18_
There are _18_ candies altogether.
Topic B:
Students explore division as an unknown factor problem.

Understand the meaning of the unknown as the size of the group in division.

Understand the meaning of the unknown as the number of groups in division.

Interpret the unknown in division using the array model.
o Rick puts 15 tennis balls into cans. Each can holds 3 balls. Use an array to model the
problem.
Topic C:
Students begin to build fluency with facts of 2 and 3 using the array model and
familiar skip-counting strategies.

Practice related facts by skip-counting objects in array models.

Find related multiplication facts by adding and subtracting equal groups in
array models.
o For example, 5 rows of 2 + 2 rows of 2 are easier to multiply than
7 rows of 2.
o Also, 20 rows of 2 are easier to multiply than 18 rows of 2; so the
students multiply 20 x 2 then subtract 2 rows of 2.
 Model the distributive property with arrays to decompose units as a
strategy to multiply.
Mid-Module Assessment:
 Read word problems involving multiplication/division, draw arrays to help solve the
problem, and write number sentences showing the solution.
 Explain the use of Distributive Property.
Topic D:
Students solve two kinds of division situations—partitive (group size unknown) and
measurement (number of groups unknown)—using factors of 2 and 3. The tape diagram is
introduced as a tool to help students recognize and distinguish between types of division.
o
Rosie puts 2 lemon slices in each cup of iced tea. She uses a total of 8 slices.
How many cups of iced tea does Rosie make?
Tape diagram for
measurement situation
o
Ms. Alves puts 21 papers in 7 piles. How many papers are in each pile?
Tape diagram for
partition situation
Topic E:
Students are introduced to
multiplication by 4 through
skip-counting objects in array
models. Students revisit the commutative property, this time using both arrays and
tape diagrams. They also examine the distributive property in greater depth.

Skip-Count objects in models to build fluency with multiplication facts using
units of 4.

Relate arrays to tape diagrams to model the commutative property of
multiplication.

Use the distributive property as a strategy to find related multiplication
facts.

Model the relationship between multiplication and division.
Topic F:
Students
model
relationships
between factors and decompose, or break apart, numbers as they further explore
the relationship between multiplication and division. For example, students
decompose 28 ÷ 4 as (20 ÷ 4) + (8 ÷ 4) = 5 + 2 = 7. Students apply the tools,
representations, and concepts they have learned to problem-solving with multi-step
word problems using all four operations.

Apply the distributive property to decompose units.

Solve two-step word problems involving multiplication and division.
**End-of-Module
Assessment:
 Use multiplication and division within 100 to solve word problems in situations involving equal
groups, arrays, and measurement quantities, e.g., by using drawings and equations with a
symbol for the unknown number to represent the problem.
 Fluently multiply and divide within 100, using strategies such as the relationship between
multiplication and division.
o Knowing that 8 x 5 = 40, one knows 40 ÷ 5 = 8.
 Determine the unknown whole number in a multiplication or division equation relating three
whole numbers.
o 8 × ___ = 48
o
o
5 = ___ ÷ 3
6 × 6 = ___