Download PPT

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Variable Specific Impulse Magnetoplasma Rocket wikipedia , lookup

Polywell wikipedia , lookup

Astronomical spectroscopy wikipedia , lookup

Plasma (physics) wikipedia , lookup

Spheromak wikipedia , lookup

Magnetohydrodynamics wikipedia , lookup

Bremsstrahlung wikipedia , lookup

Microplasma wikipedia , lookup

Transcript
Black Hole Astrophysics
Chapters 9.2.2&9.4
All figures extracted from online sources of from the textbook.
Laws of Conservation of
Charge and Current (Ch9.2.2)
Conservation of Charge
Very much mass density, the charge density is the sum of all species.
πœŒπ‘ž ≑ 𝛴 𝑛𝑖 π‘žπ‘–
𝑖
However, in this case, it can be zero everywhere in the plasma.
From the continuity equation in classical physics
easily translate that to 𝛻𝛼 𝐽𝛼 = 0.
πœ•πœŒπ‘ž
πœ•π‘‘
+ 𝛻 · 𝐽 = 0, we can very
This equation enables us to determine only πœŒπ‘ž , therefore we will later introduce
the Generalized Ohm’s law to find the 𝐽 part.
*Note:
I sort of find it confusing to have all these 3-vectors and 4-vectos together in 1
slide, so to avoid having to label which is a 3-vector and which is a 4-vector, I
chose to put vector/tensor symbols only for 3-vectors and all 4-vectors will be
written in component form.
Conservation of Charge
Without loss of generality, we can separate the 4-current into
𝐽𝛼 = πœŒπ‘ž π‘ˆ 𝛼 + 𝔍𝛼
Containing a component parallel to U and another perpendicular to it.
Therefore, 𝔍𝛼 ≑ 𝑃αβ 𝐽𝛽
And it automatically satisfies π‘ˆ 𝛼 𝔍𝛼 = 0 as we derived last week for the
projection tensor.
Recap for Plasma Astrophysics
Recall that we had defined the velocity of a fluid element as 𝑣 =
π‘šπ‘’ 𝑛𝑒 𝑣 𝑒 +π‘šπ‘– 𝑛𝑖 𝑣 𝑖
πœŒπ‘š
β‰ˆ 𝑣 𝑖,
this is due to the fact that momentum is dominated by protons and therefore the
center of momentum velocity can be approximated by the proton velocity.
Next, the current is defined as 𝐽 = π‘žπ‘’ 𝑛𝑒 𝑣 𝑒 + π‘žπ‘– 𝑛𝑖 𝑣 𝑖 β‰ˆ π‘žπ‘’ 𝑛𝑒 𝑣 𝑒 βˆ’ 𝑣 𝑖 . The
interesting thing to observe here is that given not too much of a density difference
between the protons and electrons, the current becomes proportional to the
difference of velocities 𝑣 𝑒 βˆ’ 𝑣 𝑖 .
A useful (at least I find it useful…) way of thinking of this is that current, 𝐽 is caused
motion of electrons with respect to the c.m. velocity (which is 𝑣 𝑖 ) of the fluid
elements.
Thus,
fluid element motion is driven by protons
current is mainly caused by electrons.
Using these two simple concepts we can understand the Generalized Ohm’s law quite
simply.
The generalized Ohm’s law – Review
The generalized Ohm’s law reads as :
πœ• 𝐽
π‘žπ‘’
𝑛𝑒 π‘žπ‘’ 2
π‘žπ‘’
𝑛𝑒 π‘žπ‘’ 2
=βˆ’
𝛻· 𝑃𝑒+
𝐸+𝑣×𝐡 +
𝐽 ×𝐡 βˆ’
πœ‚· 𝐽
πœ•π‘‘
π‘šπ‘’
π‘šπ‘’
π‘šπ‘’
π‘šπ‘’
In simple language, it simply says:
What are the different ways we can cause the current to change?
πœ•π½
πœ•π‘‘
=β‹―
π‘ž
1. The Pressure gradient term βˆ’ π‘šπ‘’ 𝛻 · 𝑃 𝑒
𝑒
As we just explained, current is caused by velocity difference between 𝑒 βˆ’ &𝑝+ ,
however, if the pressure on 𝑒 βˆ’ &𝑝+ are similar, 𝑝+ , being heavier, is harder to push.
Thus, mostly it’s only the electrons being accelerated.
𝑣 𝑒 (t)
𝑣 𝑒 (t+dt)
𝐽 (t)
𝑣 𝑖 (t)~ 𝑣 𝑖 (t+dt)
𝐽 (t+dt)
𝑣 𝑖 (t)~ 𝑣 𝑖 (t+dt)
π‘žπ‘’ 𝑛𝑒 omitted
for all figures
The generalized Ohm’s law – Review
The generalized Ohm’s law reads as :
πœ• 𝐽
π‘žπ‘’
𝑛𝑒 π‘žπ‘’ 2
π‘žπ‘’
𝑛𝑒 π‘žπ‘’ 2
=βˆ’
𝛻· 𝑃𝑒+
𝐸+𝑣×𝐡 +
𝐽 ×𝐡 βˆ’
πœ‚· 𝐽
πœ•π‘‘
π‘šπ‘’
π‘šπ‘’
π‘šπ‘’
π‘šπ‘’
In simple language, it simply says:
What are the different ways we can cause the current to change?
2. The collision term
𝑛𝑒 π‘žπ‘’ 2
βˆ’ π‘š πœ‚
𝑒
πœ•π½
πœ•π‘‘
=β‹―
· 𝐽
Again, similar to the pressure gradient term, forces mainly affect the velocity of
electrons.
𝑣 𝑒 (t)
𝑣 𝑒 (t+dt)
𝐽 (t)
𝑣 𝑖 (t)~ 𝑣 𝑖 (t+dt)
𝐽 (t+dt)
𝑣 𝑖 (t)~ 𝑣 𝑖 (t+dt)
The generalized Ohm’s law – Review
The generalized Ohm’s law reads as :
πœ• 𝐽
π‘žπ‘’
𝑛𝑒 π‘žπ‘’ 2
π‘žπ‘’
𝑛𝑒 π‘žπ‘’ 2
=βˆ’
𝛻· 𝑃𝑒+
𝐸+𝑣×𝐡 +
𝐽 ×𝐡 βˆ’
πœ‚· 𝐽
πœ•π‘‘
π‘šπ‘’
π‘šπ‘’
π‘šπ‘’
π‘šπ‘’
In simple language, it simply says:
What are the different ways we can cause the current to change?
3. The Electric field term
𝑛𝑒 π‘žπ‘’ 2
π‘šπ‘’
πœ•π½
πœ•π‘‘
=β‹―
𝐸
This again is because that a given electric field will mainly accelerate electrons.
𝑣 𝑒 (t)
𝑣 𝑒 (t+dt)
𝐽 (t)
𝑣 𝑖 (t)~ 𝑣 𝑖 (t+dt)
𝐽 (t+dt)
𝑣 𝑖 (t)~ 𝑣 𝑖 (t+dt)
The generalized Ohm’s law – Review
The generalized Ohm’s law reads as :
πœ• 𝐽
π‘žπ‘’
𝑛𝑒 π‘žπ‘’ 2
π‘žπ‘’
𝑛𝑒 π‘žπ‘’ 2
=βˆ’
𝛻· 𝑃𝑒+
𝐸+𝑣×𝐡 +
𝐽 ×𝐡 βˆ’
πœ‚· 𝐽
πœ•π‘‘
π‘šπ‘’
π‘šπ‘’
π‘šπ‘’
π‘šπ‘’
In simple language, it simply says:
What are the different ways we can cause the current to change?
4. The plasma motion term
𝑛𝑒 π‘žπ‘’ 2
π‘šπ‘’
πœ•π½
πœ•π‘‘
=β‹―
𝑣×𝐡
As we mentioned earlier, the plasma bulk velocity mainly follows that of
protons, thus this term tells us the change in current due to protons deflected
by B field.
𝐡
𝑣 𝑒 (t)
𝐡
𝐽 (t)
𝑣 𝑖 (t)
𝑣 𝑒 (t)
𝑣 𝑖 (t+dt) × π΅
𝑣 𝑖 (t) × π΅
𝑣 𝑖 (t)
𝑣 𝑖 (t+dt)
𝐽 (t)
𝐽 (t+dt)
The generalized Ohm’s law – Review
The generalized Ohm’s law reads as :
πœ• 𝐽
π‘žπ‘’
𝑛𝑒 π‘žπ‘’ 2
π‘žπ‘’
𝑛𝑒 π‘žπ‘’ 2
=βˆ’
𝛻· 𝑃𝑒+
𝐸+𝑣×𝐡 +
𝐽 ×𝐡 βˆ’
πœ‚· 𝐽
πœ•π‘‘
π‘šπ‘’
π‘šπ‘’
π‘šπ‘’
π‘šπ‘’
In simple language, it simply says:
What are the different ways we can cause the current to change?
5. The Hall effect term
π‘žπ‘’
π‘šπ‘’
πœ•π½
πœ•π‘‘
=β‹―
𝐽 ×𝐡
This term is slightly more complicated, it contains 𝐽 , which
means that both rotation of electron velocity and ion velocity
contribute. (It is that Hall effect which is commonly used to
determine semiconductor type)
𝐡
𝑣 𝑒 (t)
βˆ’ 𝑣 𝑒 (t) × π΅
𝐽 (t+dt)
𝐽 (t)
𝑣 𝑖 (t)
𝑣 𝑖 (t) × π΅
𝐡
𝑣 𝑒 (t)
𝑣 𝑒 (t+dt)
𝐽 (t)
𝑣 𝑖 (t)
𝑣 𝑖 (t+dt)
The generalized Ohm’s law
Slightly modified, the generalized Ohm’s law reads as :
πœ• 𝐽
π‘žπ‘’
𝑛𝑒 π‘žπ‘’ 2
π‘žπ‘’
𝑛𝑒 π‘žπ‘’ 2
+
𝛻· 𝑃𝑒=
𝐸+𝑣 ×𝐡 +
𝐽 ×𝐡 βˆ’
πœ‚· 𝐽
πœ•π‘‘
π‘šπ‘’
π‘šπ‘’
π‘šπ‘’
π‘šπ‘’
Now, the fully General Relativistic version:
πœ”π‘2 1
𝛻𝛼 𝐢 =
π‘ˆπ›Ό + β„Žπ‘ž 𝔍𝛼 𝐹 Ξ±Ξ² βˆ’ πœ‚π‘ž πœŒπ‘ž π‘ˆπ›½ + 𝔍𝛽
4πœ‹ 𝑐
πœ€π‘ž + π‘π‘ž 𝛼 𝛽
𝐢 Ξ±Ξ² ≑ πœŒπ‘ž +
π‘ˆ π‘ˆ + π‘ˆ 𝛼 𝔍′ 𝛽 + 𝔍′ 𝛼 π‘ˆπ›½ + π‘π‘ž 𝑔αβ
2
𝑐
Ξ±Ξ²
In the rest frame of the fluid, it reads as
πœ€π‘ž
πœŒπ‘ž + 2
𝑐
𝔍′ π‘₯
𝐢 αβ =
𝔍′ 𝑦
𝔍′ 𝑧
𝔍′
π‘π‘ž
0
0
π‘₯
𝔍′
0
π‘π‘ž
0
𝑦
𝔍′
𝑧
0
0
π‘π‘ž
OK… I have to admit, my first response to this was …
WTH
The generalized Ohm’s law
𝛻𝛼 𝐢
𝐢
Ξ±Ξ²
Ξ±Ξ²
πœ”π‘2 1
=
π‘ˆπ›Ό + β„Žπ‘ž 𝔍𝛼 𝐹 Ξ±Ξ² βˆ’ πœ‚π‘ž πœŒπ‘ž π‘ˆπ›½ + 𝔍𝛽
4πœ‹ 𝑐
πœ€π‘ž + π‘π‘ž 𝛼 𝛽
𝛼
≑ πœŒπ‘ž +
π‘ˆ
π‘ˆ
+
π‘ˆ
𝔍′
𝑐2
𝔍𝑦
1
𝔍π‘₯
𝔍𝑧
π‘ˆπ›Ό + β„Žπ‘ž 𝔍𝛼 𝐹 Ξ±Ξ² = 1, βˆ’β„Žπ‘ž
, βˆ’β„Žπ‘ž
, βˆ’β„Žπ‘ž
𝑐
𝑐
𝑐
𝑐
β„Žπ‘ž
𝔍·πΈ
𝑐
β„Žπ‘ž
𝐸+
𝔍×𝐡
𝑐
=
β„Žπ‘ž
𝐸+
𝔍×𝐡
𝑐
β„Žπ‘ž
𝐸+
𝔍×𝐡
𝑐
0
βˆ’πΈπ‘₯
βˆ’πΈπ‘¦
βˆ’πΈπ‘§
𝐸π‘₯
0
βˆ’π΅π‘§
𝐡𝑦
𝛽
+ 𝔍′ 𝛼 π‘ˆπ›½ + π‘π‘ž 𝑔αβ
𝐸𝑦
𝐡𝑧
0
βˆ’π΅π‘₯
𝐸𝑧
βˆ’π΅π‘¦
𝐡π‘₯
0
=
π‘₯
𝑦
πœ‚π‘ž πœŒπ‘ž π‘ˆπ›½ + 𝔍𝛽 = πœ‚π‘ž
𝑧
πœŒπ‘ž 𝑐
𝔍π‘₯
𝔍𝑦
𝔍𝑧
β„Žπ‘ž
𝔍·πΈ
𝑐
β„Žπ‘ž
𝐸π‘₯ +
𝔍𝑦 𝐡𝑧 βˆ’ 𝔍𝑧 𝐡𝑦
𝑐
β„Žπ‘ž
𝐸𝑦 +
𝔍𝑧 𝐡π‘₯ βˆ’ 𝔍π‘₯ 𝐡𝑧
𝑐
β„Žπ‘ž
𝐸𝑧 +
𝔍π‘₯ 𝐡𝑦 βˆ’ 𝔍𝑦 𝐡π‘₯
𝑐
The generalized Ohm’s law
𝛻𝛼 𝐢
𝐢
Ξ±Ξ²
Ξ±Ξ²
πœ”π‘2 1
=
π‘ˆπ›Ό + β„Žπ‘ž 𝔍𝛼 𝐹 Ξ±Ξ² βˆ’ πœ‚π‘ž πœŒπ‘ž π‘ˆπ›½ + 𝔍𝛽
4πœ‹ 𝑐
πœ€π‘ž + π‘π‘ž 𝛼 𝛽
𝛼
≑ πœŒπ‘ž +
π‘ˆ
π‘ˆ
+
π‘ˆ
𝔍′
𝑐2
πœŒπ‘ž +
𝛻𝛼 𝐢 Ξ±Ξ² =
=
πœ• πœ• πœ• πœ•
, , ,
πœ•π‘‘ πœ•π‘₯ πœ•π‘¦ πœ•π‘§
πœ€π‘ž
πœ•
πœŒπ‘ž + 2 + 𝛻 · 𝔍 β€²
πœ•π‘‘
𝑐
πœ• 𝔍′ π‘₯ πœ•π‘π‘ž
+
πœ•π‘‘
πœ•π‘₯
𝑦
πœ•π‘π‘ž
πœ• 𝔍′
+
πœ•π‘‘
πœ•π‘¦
𝑧
πœ•π‘π‘ž
πœ• 𝔍′
+
πœ•π‘‘
πœ•π‘§
𝔍′
𝔍′
𝔍′
𝛽
πœ€π‘ž
𝑐2
𝔍′
𝑦
π‘π‘ž
0
0
π‘₯
𝑧
+ 𝔍′ 𝛼 π‘ˆπ›½ + π‘π‘ž 𝑔αβ
π‘₯
𝔍′
𝑦
𝔍′
0
π‘π‘ž
0
0
0
π‘π‘ž
πœ€π‘ž
πœ•
πœŒπ‘ž + 2 + 𝛻 · 𝔍 β€²
πœ•π‘‘
𝑐
π‘₯
πœ•π”β€²
+ 𝛻𝑝𝑔
πœ•π‘‘
=
πœ•π”β€²
+ 𝛻𝑝𝑔
πœ•π‘‘
πœ•π”β€²
+ 𝛻𝑝𝑔
πœ•π‘‘
𝑦
𝑧
𝑧
The generalized Ohm’s lawβ€”
putting it together
πœ”π‘2 1
𝛻𝛼 𝐢 =
π‘ˆπ›Ό + β„Žπ‘ž 𝔍𝛼 𝐹 Ξ±Ξ² βˆ’ πœ‚π‘ž πœŒπ‘ž π‘ˆπ›½ + 𝔍𝛽
4πœ‹ 𝑐
πœ€π‘ž + π‘π‘ž 𝛼 𝛽
𝐢 Ξ±Ξ² ≑ πœŒπ‘ž +
π‘ˆ π‘ˆ + π‘ˆ 𝛼 𝔍′ 𝛽 + 𝔍′ 𝛼 π‘ˆπ›½ + π‘π‘ž 𝑔αβ
2
𝑐
β„Žπ‘ž
I have no idea what
πœ€π‘ž
πœ•
𝔍 · 𝐸 βˆ’ πœ‚π‘ž πœŒπ‘ž 𝑐
πœŒπ‘ž + 2 + 𝛻 · 𝔍 β€²
these two terms mean…
𝑐
πœ•π‘‘
𝑐
Ξ±Ξ²
The GR version of the
generalized Ohm’s
law in the β€œLocal
frame of the fluid”
πœ•π”β€²
+ 𝛻𝑝𝑔
πœ•π‘‘
πœ•π”β€²
+ 𝛻𝑝𝑔
πœ•π‘‘
πœ•π”β€²
+ 𝛻𝑝𝑔
πœ•π‘‘
The generalized
Ohm’s law in
classical theory.
π‘₯
𝑦
𝑧
πœ”π‘2
=
4πœ‹
β„Žπ‘ž
𝐸+
𝔍×𝐡
𝑐
β„Žπ‘ž
𝐸+
𝔍×𝐡
𝑐
β„Žπ‘ž
𝐸+
𝔍×𝐡
𝑐
π‘₯
βˆ’ πœ‚π‘ž 𝔍 π‘₯
𝑦
βˆ’ πœ‚π‘ž 𝔍 𝑦
𝑧
βˆ’ πœ‚π‘ž 𝔍 𝑧
In the local
frame, 𝑣 = 0
πœ• 𝐽
π‘žπ‘’
𝑛𝑒 π‘žπ‘’ 2
π‘žπ‘’
𝑛𝑒 π‘žπ‘’ 2
+
𝛻· 𝑃𝑒=
𝐸+𝑣 ×𝐡 +
𝐽 ×𝐡 βˆ’
πœ‚· 𝐽
πœ•π‘‘
π‘šπ‘’
π‘šπ‘’
π‘šπ‘’
π‘šπ‘’
Pressure
Gradient
Plasma motion
Hall
Resistive
Comparison with the 3D version
πœ• 𝐽
π‘žπ‘’
𝑛𝑒 π‘žπ‘’ 2
π‘žπ‘’
𝑛𝑒 π‘žπ‘’ 2
+
𝛻· 𝑃𝑒=
𝐸+𝑣 ×𝐡 +
𝐽 ×𝐡 βˆ’
πœ‚· 𝐽
πœ•π‘‘
π‘šπ‘’
π‘šπ‘’
π‘šπ‘’
π‘šπ‘’
Convective terms that were ignored in Plasma class.
In a general frame, the 𝑣 × π΅ term comes back.
The terms in the Generalized Ohm’s Law
The GR version of the
generalized Ohm’s
law in the β€œLocal
frame of the fluid”
πœ€π‘ž
πœ•
πœŒπ‘ž + 2 + 𝛻 · 𝔍 β€²
πœ•π‘‘
𝑐
π‘₯
πœ•π”β€²
+ 𝛻𝑝𝑔
πœ•π‘‘
πœ•π”β€²
+ 𝛻𝑝𝑔
πœ•π‘‘
𝑦
πœ•π”β€²
+ 𝛻𝑝𝑔
πœ•π‘‘
𝑧
Spatial current
Lorentz enhanced version of the spatial current
πœ”π‘2
=
4πœ‹
β„Žπ‘ž
𝔍 · 𝐸 βˆ’ πœ‚π‘ž πœŒπ‘ž 𝑐
𝑐
π‘₯
β„Žπ‘ž
𝐸+
𝔍×𝐡
βˆ’ πœ‚π‘ž 𝔍π‘₯
𝑐
β„Žπ‘ž
𝐸+
𝔍×𝐡
𝑐
β„Žπ‘ž
𝐸+
𝔍×𝐡
𝑐
𝔍 ≑ 𝛴 π‘žπ‘–
β€²
𝑖
𝑦
βˆ’ πœ‚π‘ž 𝔍𝑦
𝑧
βˆ’ πœ‚π‘ž 𝔍𝑧
𝑣 𝑓 𝑣 𝑑3 𝑣
𝔍 ≑ 𝛴 π‘žπ‘– 𝛾 𝑣 𝑓 𝑣 𝑑 3 𝑣
𝑖
The terms in the Generalized Ohm’s Law
The GR version of the
generalized Ohm’s
law in the β€œLocal
frame of the fluid”
πœ€π‘ž
πœ•
πœŒπ‘ž + 2 + 𝛻 · 𝔍 β€²
πœ•π‘‘
𝑐
π‘₯
πœ•π”β€²
+ 𝛻𝑝𝑔
πœ•π‘‘
πœ•π”β€²
+ 𝛻𝑝𝑔
πœ•π‘‘
𝑦
πœ•π”β€²
+ 𝛻𝑝𝑔
πœ•π‘‘
𝑧
πœ”π‘2
=
4πœ‹
β„Žπ‘ž
𝔍 · 𝐸 βˆ’ πœ‚π‘ž πœŒπ‘ž 𝑐
𝑐
π‘₯
β„Žπ‘ž
𝐸+
𝔍×𝐡
βˆ’ πœ‚π‘ž 𝔍π‘₯
𝑐
β„Žπ‘ž
𝐸+
𝔍×𝐡
𝑐
β„Žπ‘ž
𝐸+
𝔍×𝐡
𝑐
𝑦
βˆ’ πœ‚π‘ž 𝔍𝑦
𝑧
βˆ’ πœ‚π‘ž 𝔍𝑧
π‘žπ‘– 2 𝑛𝑖
𝑛𝑒 𝑒 2
≑ 4πœ‹π›΄
β‰ˆ 4πœ‹
π‘šπ‘’
𝑖 π‘šπ‘–
4πœ‹
π‘ž
1
β„Žπ‘ž ≑ 2 𝛴 π‘šπ‘– | 𝔍 𝑖 | β‰ˆ 𝑛 𝑒
πœ”π‘ | 𝔍| 𝑖 𝑖
𝑒
𝜈coll
πœ‚π‘ž ≑ 4πœ‹ πœ”2
𝑝
πœ”π‘2
Plasma frequency
Hall coefficient
Resistivity
These terms can be determined through the equation of states:
πœ€π‘ž = πœ€π‘ž 𝜌, 𝑇
πœ”π‘ = πœ”π‘ 𝜌, 𝑇
πœ‚π‘ž = πœ‚π‘ž 𝜌, 𝑇
π‘π‘ž = π‘π‘ž 𝜌, 𝑇
β„Žπ‘ž = β„Žπ‘ž 𝜌, 𝑇
Full stress-energy tensor for gas
𝑇 Ξ±Ξ² gas = 𝑇 Ξ±Ξ² fluid + 𝑇 Ξ±Ξ² Conduction + 𝑇 Ξ±Ξ² Viscosity
πœ€
1
𝛽
= 𝜌 + p + 2 π‘ˆ 𝛼 π‘ˆπ›½ + 𝑔αβ 𝑝 + 2 𝑄𝑔𝛼 π‘ˆπ›½ + π‘ˆ 𝛼 𝑄𝑔
𝑐
𝑐
𝑇 Ξ±Ξ²
𝑇 Ξ±Ξ²
fluid
𝜌+πœ€
0
0
0
=
Viscosity
=
ρc 2 + πœ€π‘”
𝑇
Ξ±Ξ²
gas
=
𝑄𝑔π‘₯
𝑦
𝑄𝑔
𝑄𝑔𝑧
0
0
0
0
0
𝑝
0
0
0
0
𝑝
0
0
0
0
𝑝
0
xx
βˆ’2πœ‚π‘£,𝑔 𝛴 βˆ’ πœπ‘£,𝑔 𝛩
βˆ’2πœ‚π‘£,𝑔 𝛴 yx
βˆ’2πœ‚π‘£,𝑔 𝛴 zx
𝑇 Ξ±Ξ²
Conduction
+ βˆ’2πœ‚π‘£,𝑔 𝛴 Ξ±Ξ² βˆ’ πœπ‘£,𝑔 𝛩𝑃αβ
=
0
0
𝑄𝑔π‘₯
𝑦
𝑄𝑔
𝑄𝑔𝑧
𝑦
𝑄𝑔π‘₯
0
𝑄𝑔
0
𝑄𝑔𝑧
0
0
0
0
0
0
0
0
xy
βˆ’2πœ‚π‘£,𝑔 𝛴
βˆ’2πœ‚π‘£,𝑔 𝛴 yy βˆ’ πœπ‘£,𝑔 𝛩
βˆ’2πœ‚π‘£,𝑔 𝛴 zy
𝑦
βˆ’2πœ‚π‘£,𝑔 𝛴 xz
βˆ’2πœ‚π‘£,𝑔 𝛴 yz
βˆ’2πœ‚π‘£,𝑔 𝛴 zz βˆ’ πœπ‘£,𝑔 𝛩
𝑄𝑔π‘₯
βˆ’2πœ‚π‘£,𝑔 𝛴 xx βˆ’ πœπ‘£,𝑔 𝛩 + 𝑝𝑔
𝑄𝑔
βˆ’2πœ‚π‘£,𝑔 𝛴 xy
𝑄𝑔𝑧
βˆ’2πœ‚π‘£,𝑔 𝛴 xz
βˆ’2πœ‚π‘£,𝑔 𝛴 yx
βˆ’2πœ‚π‘£,𝑔 𝛴 zx
βˆ’2πœ‚π‘£,𝑔 𝛴 yy βˆ’ πœπ‘£,𝑔 𝛩 + 𝑝𝑔
βˆ’2πœ‚π‘£,𝑔 𝛴 zy
βˆ’2πœ‚π‘£,𝑔 𝛴 yz
βˆ’2πœ‚π‘£,𝑔 𝛴 zz βˆ’ πœπ‘£,𝑔 𝛩 + 𝑝𝑔
Structure similarity with the energymomentum tensor
2
πœ”
1
𝑝
Ξ±Ξ²
𝛻𝛼 𝐢 =
π‘ˆπ›Ό + β„Žπ‘ž 𝔍𝛼 𝐹 Ξ±Ξ² βˆ’ πœ‚π‘ž πœŒπ‘ž π‘ˆπ›½ + 𝔍𝛽
4πœ‹ 𝑐
πœ€π‘ž + π‘π‘ž 𝛼 𝛽
Ξ±Ξ²
𝛼
𝛽
𝛼 𝛽
Ξ±Ξ²
𝐢 ≑ πœŒπ‘ž +
π‘ˆ
π‘ˆ
+
π‘ˆ
𝔍′
+
𝔍′
π‘ˆ
+
𝑝
𝑔
π‘ž
𝑐2
πœ€π‘ž
πœŒπ‘ž + 𝑐 2 𝔍′ π‘₯ 𝔍′ 𝑦 𝔍′ 𝑧
In the rest frame of the fluid, 𝐢
ρc 2 + πœ€π‘”
𝑇
Ξ±Ξ²
gas
=
𝑄𝑔π‘₯
𝑦
𝑄𝑔
𝑄𝑔𝑧
Ξ±Ξ²
=
𝔍′
𝔍′
𝔍′
π‘₯
𝑦
𝑧
π‘π‘ž
0
0
0
π‘π‘ž
0
𝑦
0
0
π‘π‘ž
𝑄𝑔π‘₯
βˆ’2πœ‚π‘£,𝑔 𝛴 xx βˆ’ πœπ‘£,𝑔 𝛩 + 𝑝𝑔
𝑄𝑔
βˆ’2πœ‚π‘£,𝑔 𝛴 xy
𝑄𝑔𝑧
βˆ’2πœ‚π‘£,𝑔 𝛴 xz
βˆ’2πœ‚π‘£,𝑔 𝛴 yx
βˆ’2πœ‚π‘£,𝑔 𝛴 zx
βˆ’2πœ‚π‘£,𝑔 𝛴 yy βˆ’ πœπ‘£,𝑔 𝛩 + 𝑝𝑔
βˆ’2πœ‚π‘£,𝑔 𝛴 zy
βˆ’2πœ‚π‘£,𝑔 𝛴 yz
βˆ’2πœ‚π‘£,𝑔 𝛴 zz βˆ’ πœπ‘£,𝑔 𝛩 + 𝑝𝑔
How do we solve them?
For simplicity, let’s look at the local frame of the fluid. The generalized Ohm’s law
then looks like:
β„Ž
πœ€π‘ž
πœ•
πœŒπ‘ž + 2 + 𝛻 · 𝔍 β€²
πœ•π‘‘
𝑐
π‘₯
πœ•π”β€²
+ 𝛻𝑝𝑔
πœ•π‘‘
πœ•π”β€²
+ 𝛻𝑝𝑔
πœ•π‘‘
πœ•π”β€²
+ 𝛻𝑝𝑔
πœ•π‘‘
𝑦
𝑧
π‘ž
πœ”π‘2
=
4πœ‹
𝔍 · 𝐸 βˆ’ πœ‚π‘ž πœŒπ‘ž 𝑐
𝑐
π‘₯
β„Žπ‘ž
𝐸+
𝔍×𝐡
βˆ’ πœ‚π‘ž 𝔍 π‘₯
𝑐
β„Žπ‘ž
𝐸+
𝔍×𝐡
𝑐
β„Žπ‘ž
𝐸+
𝔍×𝐡
𝑐
𝑦
βˆ’ πœ‚π‘ž 𝔍 𝑦
𝑧
βˆ’ πœ‚π‘ž 𝔍 𝑧
These three equations allow us to take a time step for 𝔍′.
This equation allows us to determine π›Ύπ‘ž . (How?)
𝔍 β€² = π›Ύπ‘ž 𝔍 helps us to find 𝔍 and π‘ˆ 𝛼 𝔍𝛼 = 0 helps to find 𝔍𝛼
Then from charge continuity, 𝛻𝛼 𝐽𝛼 = 0 and 𝐽𝛼 = πœŒπ‘ž π‘ˆ 𝛼 + 𝔍𝛼 we can update πœŒπ‘ž .
With the new 4-current, we can update the fields using Maxwell’s equations.
Relativistic Hall MHD
The generalized Ohm’s law reads as:
2
πœ”
1
𝑝
𝛻𝛼 𝐢 Ξ±Ξ² =
π‘ˆπ›Ό + β„Žπ‘ž 𝔍𝛼 𝐹 Ξ±Ξ² βˆ’ πœ‚π‘ž πœŒπ‘ž π‘ˆπ›½ + 𝔍𝛽
4πœ‹ 𝑐
2
πœ”π‘
However, in most cases, 4πœ‹ is very large that we can forget about the 𝛻𝛼 𝐢 Ξ±Ξ² term.
This reduces the equation to
1
π‘ˆπ›Ό + β„Žπ‘ž 𝔍𝛼 𝐹 Ξ±Ξ² = πœ‚π‘ž πœŒπ‘ž π‘ˆπ›½ + 𝔍𝛽
𝑐
In which we find that the beamed current (𝔍′)𝛽 is gone (it is in the 𝐢 Ξ±Ξ² term)
Therefore, we no longer need π›Ύπ‘ž . This in turn means that the β€˜t’ component of the
Ohm’s law which was used to determine π›Ύπ‘ž now is useless.
To simplify, we can project out the spatial current 𝔍𝛽 :
π‘ˆπ›Ό Ξ±Ξ²
𝔍𝛾 Ξ±Ξ²
𝐹 + β„Žπ‘ž
𝐹 𝑃γα = πœ‚π‘ž 𝔍𝛽
𝑐
𝑐
In non-relativistic case, it’s simply 𝐸 + β„Žπ‘ž
𝐽
𝑐
× π΅ = πœ‚π‘ž 𝐽
Relativistic Resistive MHD
Another simplification that is often used it to drop the Hall term in the following
equation we got just now:
π‘ˆπ›Ό Ξ±Ξ²
𝔍𝛾 Ξ±Ξ²
𝐹 + β„Žπ‘ž
𝐹 𝑃γα = πœ‚π‘ž 𝔍𝛽
𝑐
𝑐
Hall term
By comparing the Hall and resistive(collision) terms,
β„Žπ‘ž |𝔍𝛼 || 𝐡 |/𝑐
eB 1
𝜈𝐿
β‰ˆ
=
<< 1
πœ‚π‘ž |𝔍𝛼 |
π‘šπ‘’ 𝑐 𝜈coll 𝜈coll
we can argue that since many collisions can occur within a Larmor orbit, the
term will not contribute much…????????
𝐽
𝑐
×𝐡
Plugging in the numbers gives…
Ξ½L = 1.76 × 107 B for B~1mG, this is of order 10000….
3.41
Ξ½coll = 3 2 n for T~108 , n~1015 this is of order 1000…
T
What the hell happened with the ratio!?
Relativistic Ideal MHD
The last simplification to make is to consider dropping off the resistive term.
π‘ˆπ›Ό Ξ±Ξ²
𝐹 = πœ‚π‘ž 𝔍𝛽
𝑐
We estimate the conductivity as follows 𝑉th β‰ˆ
πœŽπ‘ž ≑
πœ”π‘2
2
1
𝑛𝑒 𝑒
=
β‰ˆ
πœ‚π‘ž 4πνcoll
π‘šπ‘’
kT
;π‘Ÿ
π‘šπ‘’ 𝑒
=
𝑒2
kT
:
3
2
1
2kT
β‰ˆ
~2.1 × 108 𝑠 βˆ’1 𝑇 1.5
2
2
𝑛𝑒 Ο€r𝑒 𝑉th Ο€e π‘šπ‘’
For 𝑇 = 106 ~1010 𝐾, this gives πœŽπ‘ž = 1017 ~1023 𝑠 βˆ’1 >>5 × 1016 for copper!
Given the extreme lack of electrical resistance in astrophysical plasmas, one
can safely ignore the resistivity term, leading to the simple β€œideal” Ohm’s law
expression
π‘ˆπ›Ό Ξ±Ξ²
𝐹 =0
𝑐
Relativistic Ideal MHD
In the non-relativistic limit and evaluating in the lab frame,
UΞ± Ξ±Ξ²
F
c
= 0 becomes
𝑣
𝑐
𝐸 = βˆ’ × π΅ which is the familiar ideal Ohm’s law expression.
I personally think that it should not only be Ideal MHD that deserves this comment,
πœ•π½
starting from the step when we dropped off the πœ•π‘‘ term to get the Hall-MHD, it
becomes basically impossible to directly update the current…
Flux freezing in actual simulations
Optically thin Radiative Emission (Ch9.4)
Optically thin radiation heat
transfer –an Introduction
Scattering
matter
matter
嗝
Ahhhh…
Absroption
Ow!
Previously, we discuss the heat transfer by
radiation by considering the opacity, which
means that we’re considering radiation
transferring heat within the system – being
eaten or scattered within the system.
Now we consider photons that are allowed to escape the
system and thereby carrying energy with them. And the
spectrum remains approximately that of the emission
process. .
1
𝑐
π›»πœ€π‘Ÿ
π‘žπ‘Ÿ = 𝛻 · 𝑄 π‘Ÿ = βˆ’
𝛻· βˆ’
𝜌
3𝜌
πœ…π‘…,bf
We discuss the following processes:
Inverse Compton
Bremsstrahlung
Synchrotron Emission
The BIG assumption
We consider the different types of emission
radiated from a thermal distribution of particles!
(For example, Maxwellian for a classical gas)
𝑝2
βˆ’
𝑝2 e 2π‘š0kT
Bremsstrahlung (Free-Free Emission)
𝑒 βˆ’ βˆ’π‘–π‘œπ‘›; 𝑒 + βˆ’ ion
π‘’βˆ’π‘’βˆ’; 𝑒+𝑒+
π‘’βˆ’π‘’+
How do we understand
these trends in a simpler
manner?
Bremsstrahlung (Free-Free Emission)
𝑣𝑖
𝜏~
b
Assuming that the v magnitude doesn’t change much,
𝑏
then the time that the charge takes to fly past is 𝜏~ 𝑣.
The emitted frequency (being the Fourier transform
𝑣
of time) therefore would have a cut off at πœ”cut ~ 𝑏.
𝑏
𝑣
+
𝑣𝑖
𝑣𝑓
Ξ”v
Constructive!
For the low frequency waves, the interaction
time is much shorter than the inverse of its
frequency. Thus, these waves will be coherent
with those emitted a small time ago of the
same frequency.
This leads to
dE
dω
∝ Ξ”v 2
πœ”cut ~
𝑣
𝑏
Bremsstrahlung (Free-Free Emission)
dE
∝ Ξ”v 2
dω
𝑣𝑖
b
Now, we can estimate the change in velocity Ξ”v by
integrating over the acceleration history of the
particle
∞
+
Ξ”v =
𝑣𝑖
𝑣𝑓
Ze2
𝑏dt
π‘š
βˆ’βˆž
Ξ”v
This gives
dE
dω
𝑏2 + vt 2
3
=
2𝑍𝑒 2
π‘šπ‘π‘£
1
∝ π‘šπ‘π‘£
1
∝ π‘š2 𝑏2 𝑣 2
Since in astrophysics, there are usually a large number of particles, we now
consider a flux of particles shooting at stationary targets.
𝑛𝑖
𝑛𝑑
The emitted power per unit volume per unit
frequency is then
𝑏max
dE
1
∝
𝑛 𝑛 𝑣 2πœ‹π‘db
2 𝑏2 𝑣 2 𝑑 𝑖
dωdVdt
π‘š
𝑏min
Number of incident particles per unit
time at a particular impact parameter
Thermal Bremsstrahlung
dE
∝
dωdVdt
𝑏max
𝑏min
1
[𝑛 𝑛 𝑣 2πœ‹π‘db
π‘š2 𝑏2 𝑣 2 𝑑 𝑖
∝
𝑛𝑑 𝑛𝑖
𝑏max
β„“n
π‘š2 𝑣
𝑏min
βˆ’
Gaunt factor (𝑔), in general some
complicated function of order unity.
For a thermal population of particles, for a quick
estimate, we can characterized the velocity by the
thermal velocity
𝑣th ∝
𝑇
π‘š
which gives
dE
𝑛𝑑 𝑛𝑖 βˆ’
∝
𝑔
dΟ‰dVdt π‘š1.5 𝑇
𝑝2
βˆ’
𝑝2 e 2π‘š0kT
Thermal Bremsstrahlungβ€”total power
dE
=
dVdt
dE
dΟ‰ ∝
dωdVdt
𝑛𝑑 𝑛𝑖 βˆ’
β‰ˆ
π‘”πœ”cut
1.5
π‘š
𝑇
𝑛𝑑 𝑛𝑖
π‘š1.5
βˆ’
𝑇
𝑔dΟ‰
Using the fact that the spectra can be
approximated by a box function,
𝑣
πœ”cut ~
𝑏
For πœ”cut , the β€˜b’ that gives the highest
frequency is obviously the smallest b, i.e.
𝑏min .
Here, we can have two cases:
1. The emitting particles have less energy
and a large portion is radiated.
β„Ž
𝑣
mv 2 𝑇
1
𝑏min =
β†’
∝
∝
mv 𝑏 1
β„Ž
β„Ž
min
This idea works but seems slightly incompatible to
the picture given in Rybicki & Lightman p158…
1.5
1
𝑣
𝑇
2. The emitting particles are very energetic
2
𝑏min ∝
β†’ 2 ∝ mv 3 ∝
2
and only give away a small portion of their
mv
π‘š
𝑏min
kinetic energy to radiation.
Thermal Bremsstrahlungβ€”total power
Power per unit volume
1. The emitting particles have less
energy and a large portion is
radiated.
1
𝑏min
β„Ž
𝑣
mv 2 𝑇
=
β†’
∝
∝
mv 𝑏 1
β„Ž
β„Ž
min
Power per unit volume:
dE
𝑛𝑑 𝑛𝑖
βˆ’
∝
𝑇𝑔
dVdt β„Žπ‘š1.5
Power per unit mass:
dE
1
𝑛𝑑 𝑛𝑖
βˆ’
∝
𝑇𝑔
dt dmtot π‘šπ‘ 𝑛𝑝 β„Žπ‘š1.5
dE
dVdt
β‰ˆ
𝑛𝑑 𝑛𝑖 βˆ’
π‘”πœ”cut
π‘š1.5 𝑇
2. The emitting particles are very
energetic and only give away a small
portion of their kinetic energy to
radiation.
2
𝑏min
1
𝑣
𝑇 1.5
3
∝
β†’
∝ mv ∝
mv 2 𝑏 2
π‘š
min
Power per unit volume:
dE
𝑛𝑑 𝑛𝑖 βˆ’
∝ 2 𝑇𝑔
dVdt
π‘š
Power per unit mass:
dE
1 𝑛𝑑 𝑛𝑖 βˆ’
∝
T𝑔
dt dmtot π‘šπ‘ 𝑛𝑝 π‘š2
Thermal Bremsstrahlung
Case1: Low energy
dE
1
𝑛𝑑 𝑛𝑖
∝
dt dmtot π‘šπ‘ 𝑛𝑝 β„Žπ‘š1.5
𝑒 βˆ’ βˆ’π‘–π‘œπ‘›; 𝑒 + βˆ’ ion
Case2: High energy
dE
1 𝑛𝑑 𝑛𝑖
βˆ’
∝
T 𝑔
dt dmtot π‘šπ‘ 𝑛𝑝 π‘š2
What’s caused the
difference in this case?
βˆ’
𝑇 𝑔
π‘’βˆ’π‘’βˆ’; 𝑒+𝑒+
π‘’βˆ’π‘’+
I’m not quite sure whether the π‘š1.5 causes the difference between 147 and 337 for
the 𝑒 βˆ’ βˆ’π‘–π‘œπ‘›; 𝑒 + βˆ’ ion v.s. 𝑒 βˆ’ 𝑒 + case. Using the reduced mass gives an overestimate of
20%...
Thermal Synchrotron
The local synchrotron cooling rate is approximated as a
sum of optically thick and thin emission:
.
π‘žπ‘ βˆ’
2Ο€kT𝑒 3
=
𝜈 +
3Hc 2 𝑐
∞
πœ–π‘  𝜈 π‘‘πœˆ
πœˆπ‘
Turnover
frequency
Break
frequency
*Note that there. is some confusion in
the units here, π‘žπ‘ βˆ’ should be erg/g/s but
for the synchrotron part, all units are
erg/s/π‘π‘š3
I think just dividing by the mean density
of the plasma should fix the small bug:
∞
1 2πœ‹kT𝑒 3
.βˆ’
π‘žπ‘  =
𝜈 +
πœ–π‘  𝜈 dΞ½
𝜌 3𝐻𝑐 2 𝑐
πœˆπ‘
Optically
thick
emission
Optically thin power law
Synchrotron emission
Therefore, for the Synchrotron section, we will follow the book but keep in mind the
small difference.
Thermal Synchrotron –Optically
thick part
Since we are considering a Thermal distribution of emitting particles, the optically
thick emission can be approximated by Rayleigh-Jeans Law
Then, calculating the power per unit
volume gives:
dE
πœ‹
2πœ‹kT𝑒 3
β‰ˆ
𝐡𝜈 𝑇 dΞ½ =
𝜈
dVdt 𝐻
3Hc 2 𝑐
As given in the textbook.
2kT 2
𝐡𝜈 𝑇 = 2 𝜈
𝑐
.
π‘žπ‘ βˆ’
2Ο€kT𝑒 3
=
𝜈 +
3Hc 2 𝑐
∞
πœ–π‘  𝜈 π‘‘πœˆ
πœˆπ‘
*Note that in most texts, one will see that the intensity of optically thick
synchrotron is 𝐼𝜈,thick 𝜈 ∝ 𝜈 2.5 . That is derived using a Power Law population of
emitters, not thermal (as is assumed here)!
Thermal Synchrotron –Optically thin part
Normalizing the integration
Integrate over relativistic Maxwellian???
Radio
astrophysics.
Nonthermal
processes in
galactic and
extragalactic
sources by
Pacholczyk, A. G
1996ApJ...465..327M
1996ApJ...465..312E
Thermal Synchrotron –Optically thin part
Comptonization – Why we are interested
From what we introduced last week about the opacities of electron scattering and
absorption, we find from the figure below that electron scattering is more important.
Electron Scattering Dominates
Comptonization – Inverse Compton
In each of these photon scatterings, if the electron and photon energies are
very different, an inelastic scattering (the Compton process) will occur, either
raising or lowering the photon energy in the process. In most cases we will
encounter, the photons will be cooler than the electrons, resulting in raising the
energy of the photons and, therefore, cooling the hot, electron-scattering
plasma in the process.
Comptonization
Since Compton scattering itself doesn’t create new photons, what is does is to
use the photons emitted by synchrotron and Bremstrahlung to steal more
energy from the system.
Therefore, one way to write the cooling rate is to multiply some Comptonenhancement factor πœ‚πΆ 𝜈
.
.βˆ’
.
π‘ž = πœ‚br,𝐢 π‘žbr
+ πœ‚π‘ ,𝐢 π‘žπ‘ βˆ’
Comptonization
𝜌 = 10βˆ’10 𝑔 · cmβˆ’3 ; 𝐡 = 8380𝐺 ; 𝐻 = 2.7 × 107 cm
109 𝐾 ≲ 𝑇𝑒
Compton Enhanced
Synchrotron dominated
109 𝐾 ≲ 𝑇𝑒
Synchrotron
dominated
104 𝐾 ≲ 𝑇𝑒 ≲ 109 𝐾
Bremsstrahlung dominated
Bremsstrahlung quenched
due to recombination of
free electrons with ions.
2009ApJ...693..771F
Repeated Scattering
After the initial emission of Bremsstrahlung or synchrotron photons, if the optical
depth 𝜏es is high, these photons do not immediately leave the plasma.
They remain within the hot medium, gaining energy from most of the inelastic
scatterings they encounter. Depending on how large the Compton y parameter is,
this can drastically affect the final spectrum that emerges from the plasma.
Comptonized spectra for different values of
Sunyaev and Titarchuk’s parameter 𝛾 β‰ˆ 𝑦 βˆ’1
Wien peak is produced as
plasma is Compton thick.
Single freq. photon
injection 𝜈0 = 10βˆ’3 kT𝑒 β„Ž
Compton thin but still produces
a power law spectrum up to the
characteristic thermal
frequency kT𝑒 β„Ž
As long as the injected photons
are much cooler than the hot
electron scattering plasma, the
nature of the output spectrum
from Comptonization depends
mainly on y, not on the nature of
the input spectrum.