Download Physical entity OPB - UW-SIG Publications

Document related concepts

Multi-state modeling of biomolecules wikipedia , lookup

List of types of proteins wikipedia , lookup

Organ-on-a-chip wikipedia , lookup

Transcript
Bridging Biological Ontologies and Biosimulation:
The Ontology of Physics for Biology
Daniel L. Cook 1, 2
John H. Gennari 3
Jose L. V. Mejino 2
Maxwell L. Neal 3
1Physiology
& Biophysics, 2Biological Structure
3Biomedical and Health Informatics
University of Washington, Seattle
AMIA 2008, Washington, DC
Available bioinformatics for “multiscale” structure
> 100
elements
>> 100,000
molecule types
>400
cell-part types
>600
cell types
63
organ types
12 organ
systems
Foundational Model of Anatomy
Gene Ontology
Cell Type
ChEBI
extended from Hunter, P. J. & Borg, T. K. (2003). Nat Rev Mol Cell Biol 24(6):667-72.
2
bodies
No bioinformatics for multidomain processes
> 100
elements
>> 100,000
molecule types
Physical
domains
>400
cell-part types
>600
cell types
Domain
fluids
solids
chemical kinetics
electrochemistry
diffusion
heat transfer
63
organ types
12 organ
systems
2
bodies
Process
blood flow, respiratory gas flow…
myocardial contraction, leg motion…
metabolism, gene expression, cell signaling…
transmembrane potential, action potential…
intracellular calcium dynamics…
body temperature regulation…
Bioinformatic problem: query process knowledge
> 100
elements
>> 100,000
molecule types
Physical
domains
>400
cell-part types
>600
cell types
Domain
fluids
solids
chemical kinetics
electrochemistry
diffusion
heat transfer
63
organ types
12 organ
systems
2
bodies
Process
blood flow, respiratory gas flow…
myocardial contraction, leg motion…
metabolism, gene expression, cell signaling…
transmembrane potential, action potential…
intracellular calcium dynamics…
body temperature regulation…
• How is blood pressure controlled?
• Which nerves control blood pressure?
Processes encoded as biosimulations models
> 100
elements
>> 100,000
molecule types
Physical
domains
>400
cell-part types
>600
cell types
Domain
fluids
solids
chemical kinetics
electrochemistry
diffusion
heat transfer
physics-based
biosimulation model
63
organ types
12 organ
systems
2
bodies
Process
blood flow, respiratory gas flow…
myocardial contraction, leg motion…
metabolism, gene expression, cell signaling…
transmembrane potential, action potential…
intracellular calcium dynamics…
body temperature regulation…
Available models constitute “physiome”
> 100
elements
>> 100,000
molecule types
Physical
domains
>400
cell-part types
>600
cell types
Domain
fluids
solids
chemical kinetics
electrochemistry
diffusion
heat transfer
Hunter, P. J. & Borg, T. K. (2003). Nat Rev Mol Cell Biol 24(6):667-72.
63
organ types
12 organ
systems
2
bodies
Process
blood flow, respiratory gas flow…
myocardial contraction, leg motion…
metabolism, gene expression, cell signaling…
transmembrane potential, action potential…
intracellular calcium dynamics…
body temperature regulation…
Physiome
Physiome problem: reuse and merge models
> 100
elements
>> 100,000
molecule types
Physical
domains
>400
cell-part types
>600
cell types
Domain
fluids
solids
chemical kinetics
electrochemistry
diffusion
heat transfer
63
organ types
12 organ
systems
Process
blood flow, respiratory gas flow…
myocardial contraction, leg motion…
metabolism, gene expression, cell signaling…
transmembrane potential, action potential…
intracellular calcium dynamics…
body temperature regulation…
Physiome
physics-based
biosimulation model
Hunter, P. J. & Borg, T. K. (2003). Nat Rev Mol Cell Biol 24(6):667-72.
2
bodies
Proposal for a solution:
Semantics of biosimulation models
can be encoded as ontologies and
mapped to reference ontologies.
Reference
ontologies
SemSim
Biosimulation
model code
Outline:
Semantics of biosimulation models
can be encoded as ontologies and
mapped to reference ontologies.
OPB, FMA,
GO, CheBI, etc.
•
•
•
•
SemSim
Biosimulation
model code
Problems: biosimulation, bioinformatics
SemSim ontology
Ontology of Physics for Biology (OPB)
Conclusion
In practice: code is hand-crafted
structural
knowledge
physics
knowledge
Biophysicists and bioengineers
encode physics-based
mathematical models of
biological processes
physics-based
process
biosimulation
fluids
solids
chemical kin
electrochem
diffusion
heat transfer
Time
In practice: code is formal — meaning is implicit
anatomical
participants
known only by
annotation
structural
physiological
knowledge
variable
names are
arbitrary
real Paorta(t)
real PSysVein(t)
real FSysArt(t)
physics real Rartcap = 0.7
knowledge
mmHg;
mmHg;
ml/sec;
// Pressure of aorta
// Pressure of systemic vein
// Flow in systemic artery
mmHg*sec/ml; // Arterial resistance
FSysArt = (Paorta - PSysVein) / Rartcap; // Ohm's Law
fluids
solids
variable
chemical kin
dependencies
electrochem
known only by
diffusion
annotation
heat transfer
In practice: multiple, incompatible languages
structural
knowledge
physics
knowledge
fluids
solids
chemical kin
electrochem
diffusion
heat transfer
JSim, SBML,
CellML, MatLab,
others…
physics-based
process
biosimulation
In practice: 100’s of models in linguistic silos
structural
knowledge
physics-based
process
biosimulation
physics-based
process
biosimulation
physics
knowledge
fluids
solids
chemical kin
electrochem
diffusion
heat transfer
physics-based
process
biosimulation
CellML
SBML
JSim
physics-based
process
biosimulation
MatLab
physics-based
process
biosimulation
other
Opportunity: a reservoir of process knowledge
CellML
SBML
JSim
MatLab
other
Problem: barriers to biosimulation model reuse
How to find, merge and reencode models?
physics-based
process
biosimulation
CellML
JSim
?
SBML
?
JSim
?
MatLab
other
Problem: no access for bioinformatic queries
How to query knowledge of
biological processes?
SparQL
CellML
SBML
Q&A
JSim
MatLab
other
Two fields, two problems:
Biosimulation — re-use biosimulation models
• Find models of blood pressure control.
• Which models include neural-control?
Bioinformatics — query process knowledge
• How is blood pressure controlled?
• Which nerves control blood pressure?
Outline:
Semantics of biosimulation models
can be encoded as ontologies and
mapped to reference ontologies.
OPB, FMA,
GO, CheBI, etc.
•
•
•
•
SemSim
Biosimulation
model code
Problems: biosimulation, bioinformatics
SemSim ontology
Ontology of Physics for Biology (OPB)
Conclusion
Solution: encode SemSim ontological maps…
SemSim
semantic maps of
biosimulation models
CellML
SBML
SemSim
SemSim
SemSim
SemSim
SemSim
JSim
OWL
MatLab
other
…and annotate to reference ontologies
annotate SemSim
components to
reference ontologies
SemSim
semantic maps of
biosimulation models
CellML
SBML
OPB, FMA,
GO, CheBI, etc.
SemSim
SemSim
SemSim
SemSim
SemSim
JSim
OWL
MatLab
other
SemSim — biosimulation ontological map
structural
knowledge
SemSim model
Physical
model
Computational
model
physics
knowledge
fluids
solids
chemical kin
electrochem
diffusion
heat transfer
Gennari, J. H., M. L. Neal, B. E, Carlson, D. L. Cook (2008)
Integration of multi-scale biosimulation models via light-weight semantics
Pac Symp Biocomput (414-425)
biosimulation
code
:
Paorta
PSysVein
FSysArt
Rartcap
:
:
FSysArt =….
:
SemSim — step 1: represent math structure
structural
knowledge
SemSim model
Physical
model
represent variable as
individuals of class Data
structure
physics
knowledge
fluids
solids
chemical kin
electrochem
diffusion
heat transfer
Computational
model
Data structure
biosimulation
code
:
Paorta
PSysVein
FSysArt
Rartcap
:
:
FSysArt =….
:
SemSim — step 1: represent math structure
structural
knowledge
SemSim model
Physical
model
represent variable as
individuals of class Data
structure
physics
knowledge
fluids
solids
chemical kin
electrochem
diffusion
heat transfer
Computational
model
Data structure
use / return
represent equations as
individuals of class
Computation
Computation
biosimulation
code
:
Paorta
PSysVein
FSysArt
Rartcap
:
:
FSysArt =….
:
SemSim — step 2: represent biological meaning
structural
knowledge
SemSim model
Physical
model
e.g., volume,
physics
pressure,
molar flow,
knowledge
chemical
amount
fluids
solids
chemical kin
electrochem
diffusion
heat transfer
Physical
property
Computational
model
Data structure
use / return
Computation
biosimulation
code
:
Paorta
PSysVein
FSysArt
Rartcap
:
:
FSysArt =….
:
SemSim — step 2: represent biological meaning
structural
knowledge
SemSim model
Physical
model
e.g., heart, blood in
aorta, protein kinase,
folate, Ca++
Computational
model
Physical
entity
has_property
e.g., volume,
physics
pressure,
molar flow,
knowledge
chemical
amount
fluids
solids
chemical kin
electrochem
diffusion
heat transfer
Physical
property
Data structure
use / return
Computation
biosimulation
code
:
Paorta
PSysVein
FSysArt
Rartcap
:
:
FSysArt =….
:
SemSim — step 2: represent biological meaning
structural
knowledge
SemSim model
Physical
model
e.g., heart, blood in
aorta, protein kinase,
folate, Ca++
Computational
model
Physical
entity
has_property
e.g., volume,
physics
pressure,
molar flow,
knowledge
chemical
amount
fluids
solids
chemical
kin
e.g.,
Ohm’s
law,
electrochem
law of mass action,
diffusion
mass conservation
heat transfer
Physical
property
Data structure
has_player
use / return
Physical
dependency
Computation
biosimulation
code
:
Paorta
PSysVein
FSysArt
Rartcap
:
:
FSysArt =….
:
Map to reference ontologies of structure
structural
knowledge
FMA
SemSim model
Physical
model
GO
Physical
entity
ChEBI
has_property
physics
knowledge
fluids
solids
chemical kin
electrochem
diffusion
heat transfer
Computational
model
Physical
property
Data structure
has_player
use / return
Physical
dependency
Computation
biosimulation
code
:
Paorta
PSysVein
FSysArt
Rartcap
:
:
FSysArt =….
:
Map to reference ontology of physics — OPB
structural
knowledge
FMA
SemSim model
Physical
model
GO
Physical
entity
ChEBI
has_property
physics
knowledge
fluids
solids
chemical kin
OPB
electrochem
diffusion
heat transfer
Computational
model
Physical
property
Data structure
has_player
use / return
Physical
dependency
Computation
biosimulation
code
:
Paorta
PSysVein
FSysArt
Rartcap
:
:
FSysArt =….
:
Outline:
Semantics of biosimulation models
can be encoded as ontologies and
mapped to reference ontologies.
OPB, FMA,
GO, CheBI, etc.
•
•
•
•
SemSim
Biosimulation
model code
Problems: biosimulation, bioinformatics
SemSim ontology
Ontology of Physics for Biology (OPB)
Conclusion
OPB foundational theory — system dynamics
Engineering system dynamics
• Bond graph theory
Karnopp, Margolis, Rosenberg (1968)
• EngMath - Ontology for Engineering Mathematics
Gruber, Olsen (1994)
• PHYSYS - Physical Systems Ontology
Borst, Top, Akkermans (1994)
Biochemical system dynamics
• Network thermodynamics
Oster, Perelson, Katchalsky (1971)
Mickulecky (1983)
Beard, Qian (2008)
OPB representational goals
• Represent abstractions used in physics-based
biosimulations—not a theory of “reality”.
• Adhere to OBO principles.
• Implement in OWL; deploy to OBO and BioPortal.
OPB:Physics analytical entity
A Physics analytical entity is an
abstraction of the real world created
within the science of classical physics for
the description of physical entities and
the analysis of physical processes.
OPB
OPB:Physical entity
A Physics analytical entity is an
abstraction of the real world created
within the science of classical physics for
the description of physical entities and
the analysis of physical processes.
OPB
A Physical entity is a spatial,
temporal, or energetic abstraction of
the physical world.
OPB:Physical property
A Physics analytical entity is an
abstraction of the real world created
within the science of classical physics for
the description of physical entities and
the analysis of physical processes.
OPB
A Physical entity is a spatial,
temporal, or energetic abstraction of
the physical world.
A Physical property is a quantifiable
attribute of a physical entity whose
value can be determined by physical
measurement at a moment in time.
Physical property organizing principle
Physical domain
fluids
volume flow
pressure
volume
pressure
momentum
solids
velocity
force
displacement
solid
momentum
chemical kinetics
molar flow
chemical potential
chemical
amount
----
electrophysiology
ionic current
voltage
charge
----
diffusion
particle flow
chemical potential
particle number
----
heat flow
temperature
heat amount
----
heat transfer
Physical property class hierarchy
Physical domain
fluids
volume flow
pressure
volume
pressure
momentum
solids
velocity
force
displacement
solid
momentum
chemical kinetics
molar flow
chemical potential
chemical
amount
----
electrophysiology
ionic current
voltage
charge
----
diffusion
particle flow
chemical potential
particle number
----
heat flow
temperature
heat amount
----
heat transfer
Physical property by domain
OPB
A Flow subclass
for each physical
domain
Physical dependency
A Physics analytical entity is an
abstraction of the real world created
within the science of classical physics for
the description of physical entities and
the analysis of physical processes.
OPB
A Physical entity is a spatial,
temporal, or energetic abstraction of
the physical world.
A Physical property is a quantifiable
attribute of a physical entity whose
value can be determined by physical
measurement at a moment in time.
A Physical dependency is a quantitative
dependency between the magnitudes of
two or more physical properties
according to a physical law.
Physical dependency organizing principle
A Physical dependency is a quantitative
dependency between the magnitudes of
two or more physical properties
according to a physical law.
Axiomatic physical dependency
Flow
Constitutive physical dependency
Force
e.g., “Ohm’s law”
Flow
Constitutive physical dependency
Displacement
Force
Force
e.g., “Hooke’s law”
Flow
Constitutive physical dependency
Displacement
Force
Momentum
Force
Flow
Physical dependency class hierarchy
OPB
Physical dependency by domain
OPB
A Resistive dependency
subclass for each
physical domain
OPB-SemSim working example
SemSim model
Physical
model
Computational
model
model code
Physical
entity
:
has_property
Physical
property
Data structure
has_player
use / return
Physical
dependency
Computation
:
:
:
Paorta
PSysVein
FSysArt
Rartcap
FSysArt =….
:
Neal, M. L., J. H. Gennari, T. Arts, D. L. Cook (2009)
Advances in semantic representation of multiscale
biosimulations: A case study in merging models
Pac Symp Biocomput (in press)
Conclusion
CellML
OPB
FMA
GO
ChEBI
etc.
SBML
SemSim
SemSim
SemSim
SemSim
SemSim
JSim
MatLab
other
Acknowledgements
SemSim / OPB team
• Maxwell L. Neal (Grad student)
• Michal Galdzicki (Grad student)
• John H. Gennari, PhD (Assoc Prof)
• Daniel L. Cook, MD, PhD (Res Prof)
UW contributors
Bioinformatics
• Cornelius Rosse
• Onard Mejino
• James Brinkley
• Todd Detwiler
Partial funding from NIH
MLN, MG: T15 LM007442-06
DLC, JHG: R01HL087706-01
Biophysics / biosimulation
• James B. Bassingthwaighte
• Herbert Sauro
• Erik Butterworth
• Hong Qian
• Adriana Emmi
• Fred Bookstein
Next steps…
structural
knowledge
SemSim model
Physical
model
FMA
GO
Physical
entity
ChEBI
has_property
physics
knowledge
fluids
Ontology
ofsolids
chemical
kin
Physics
electrochem
for
diffusion
Biology
Computational
model
Physical
property
Data structure
has_player
use / return
Physical
dependency
Computation
:
Paorta
PSysVein
FSysArt
Rartcap
:
:
FSysArt =….
:
heat transfer
access classes
biosimulation
code
parse code
SemGen
write new code
SemSim use-case 1: reuse legacy models
VSM
JSim
BARO
JSim
VSM
SemSim
CV+
BARO
SemSim
SemSim
CV
JSim
1. create SemSim
models of JSim
biosimulation models
CV+
JSim
CV
SemSim
3. encode merged SemSim
as JSim model
2. use Prompt plug-in to
Protégé to analyze and
merge SemSim models
Gennari, J. H., M. L. Neal, B. E, Carlson, D. L. Cook (2008)
Integration of multi-scale biosimulation models via light-weight semantics
Pac Symp Biocomput (414-425)
SemSim use-case 2: reuse merged model
VSM
JSim
1. reuse archived
BAROmodel
SemSim
JSim
2. create and merge
CV
model in different
language JSim
CircAdapt
MATLAB
CA
sys art
JSim
VSM
SemSim
CV+
CV+
BARO
SemSim
SemSim
JSim
CV
SemSim
CA
sys art
CV-CA
CV-CA
sys art
CA
sys art
SemSim
SemSim
Neal, M. L., J. H. Gennari, T. Arts, D. L. Cook (2009)
Advances in semantic representation of multiscale biosimulations: A case study in merging models
Pac Symp Biocomput (in press)
JSim
SemSim use-case 3: folate chemical kinetics
1. create SemSim models of
folate metabolism from
published descriptions
2. merge FOL & METH
SemSim models
Nijhout, et al. (2004)
Reed, et al. (2004)
FOL
FOL
METH
SemSim
Fol-all
METH
SemSim
Fol-all
JSim
SemSim
FOMC
FOMC
Reed, et al. (2006)
FOMC
SemSim
JSim
3. encode SemSim
models in JSim;
compare model output
Mike Galdzicki, J. H. Gennari, M. L. Neal, D. L. Cook (work in progress)
Model are complex but can be parsed
physical
participants
real Paorta(t)
real PSysVein(t)
real FSysArt(t)
mmHg;
mmHg;
ml/sec;
// Pressure of aorta
// Pressure of systemic vein
// Flow in systemic artery
real Rartcap = 0.7 mmHg*sec/ml; // Arterial resistance
FSysArt = (Paorta - PSysVein) / Rartcap; // Ohm's Law
Yngve, G., J. F. Brinkley, D. L. Cook, L. G. Shapiro (2007)
A Model Browser for Biosimulation
AMIA Annu Symp Proc (836-40)
physical
variables
variable
dependencies
Ontological maps can be queried for facts
aortic blood
pressure
vagus nerve
firing rate
Aortic blood pressure depends on vagus nerve firing rate.