Download Slides - Indico

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Joint Theater Level Simulation wikipedia , lookup

Computer simulation wikipedia , lookup

Transcript
TCAD Simulation for
SOI Pixel Detectors
October 31, 2006
Hirokazu Hayashi, Hirotaka Komatsubara
(Oki Elec. Ind. Co.),
Masashi Hazumi (KEK)
for the SOIPIX group
SOIPIX collaborators
KEK Detector Technology Project : [SOIPIX Group]
Y. Arai*, Y. Ikegami, H. Ushiroda,
Y. Unno, O. Tajima, T. Tsuboyama,
S. Terada, M. Hazumi, H. IkedaA,
K. HaraB, H. IshinoC, T. KawasakiD, H. MiyakeE,
G. VarnerF, E. MartinF, H. TajimaG,
M. OhnoH, K. FukudaH, H. HayashiH, H.
KomatsubaraH, J. IdaH
KEK、JAXAA, U. TsukubaB, TITC,
Niigata U.D, Osaka U.E, U. HawaiiF, SLACG,
OKI Elec. Ind. Co.H
Financial Support by KEK
(*)—contact person
2006/10/31
Detector Technology Project
2
M. Hazumi (KEK)
Outline
• TCAD Overview
• Breakdown voltage
• Effect of bias voltage on readout
electronics
• P-substrate option
• Summary
2006/10/31
M. Hazumi (KEK)
3
TCAD Overview
2006/10/31
M. Hazumi (KEK)
4
What’s TCAD ?
• TCAD =Technology Computer Aided Design
– Process simulation
– Device simulation
• Finer design rule  more
complicated processes, longer
development time
Real
Virtual
Specifications
LSI
Manufacturing
Function design
TCAD
Logic design
• TCAD can reduce development
time drastically and is necessary
for semiconductor
manufacturing today
• Why not for detector R&D !
2006/10/31
Specifications
Circuit design
Process data
Device data
Process
simulation
Layout design
~3mon. 
Mask fabrication
Device production
M. Hazumi (KEK)
Characterization
Prototyping
Device
simulation
5
TCAD tools used in this talk
• Silvaco TCAD
• AHTENA (Process simulation): 2D simulation
• ATLAS (Device simulation): 2D or 3D simulation
• ENEXSS (Environment for NExt Simulation System)
• Developed by Selete (Semiconductor Leading Edge Technologies,
http://www.selete.co.jp/)
• Full 3D process/device simulation !
ENEXSS example) 3D device simulation for SOI
source current
SOI NMOS
BOX
2006/10/31
 particle
injection
M. Hazumi (KEK)
6
Diode TEG simulation
(unit: mm)
2006/10/31
M. Hazumi (KEK)
7
Diode TEG simulation
Center (N+)
Guard (P+)
Bulk (N-)
N-substrate
P+ > 0  current
(unit: mm)
baskside
fixed at 0V
2006/10/31
M. Hazumi (KEK)
8
Diode TEG simulation
Measurements
2006/10/31
M. Hazumi (KEK)
9
TCAD for SOIPIX R&D
Useful to obtain
 field maps
 device characteristics
 signals induced by particles
• Handle wafer (i.e. sensor) simulation
– Pixel and guard ring design optimization
• Breakdown voltage
• Charge collection
– Problem finding/solving before fabrication
• Effect of bias voltage on readout electronics
– I/O pads
– p-stops for P-substrate option
2006/10/31
M. Hazumi (KEK)
10
Breakdown
voltage
Results of measurements are
reported by H. Miyake:
Breakdown voltage ~ 100V
at bias-ring edges.
2006/10/31
M. Hazumi (KEK)
11
Breakdown voltage simulation
simulated depth
= 130mm
~-92V
ENEXSS
3D process/device simulation
2006/10/31
M. Hazumi (KEK)
12
Electric field simulation
at Vbias = -92V
2006/10/31
M. Hazumi (KEK)
13
Breakdown voltage simulation
with different configurations
** Simulation with smaller pixels: lower breakdown voltages
than the previous case
90
-45V
120
-65V
135
-70V
150
-100V
 Improvements for the next submission
2006/10/31
M. Hazumi (KEK)
14
Effect of bias
voltage on readout
electronics
2006/10/31
M. Hazumi (KEK)
15
Back gate effect
Threshold variation (measurements)
Substrate voltage acts as Back Gate,
and changes transistor threshold.
ON
Back Gate
• Backbias should be less than ~8V; otherwise always ON.
• Problem specific to Monolithic detectors
– readout electronics very close to sensors
• Can we reproduce it with TCAD ?
2006/10/31
M. Hazumi (KEK)
16
Problem Finding with Device Simulation
20
-10
0
+10
Backbias (V)
VB (V)
16
12
8
4
0
-4
-20
-8
Vts0(V)
-12
backbias supplied here
ENEXSS TCAD
-16
handle wafer
0.5
0.4
0.3
0.2
0.1
0
-0.1
-0.2
-0.3
-0.4
-20
BOX
Threshold voltage (V)
NMOS
+20
Measurements reproduced
With backbias > 8V, NMOS becomes always ON.
Substrate voltage under Tr should be kept low.
2006/10/31
M. Hazumi (KEK)
17
P+ implantation to reduce back gate effect
Weakest part: I/O buffer
2006/10/31
M. Hazumi (KEK)
18
P+ implantation to reduce back gate effect
Additional p+ implantation (with voltage fixed at 0V or with some
“anti-bias”) should help reduce the back gate effect.
How close should they be to the I/O pads ?
2006/10/31
M. Hazumi (KEK)
19
Simulation setup
distance
(80, 5, 2mm)
NMOS
BOX
(5 mm wide P+, 1 x 1020 cm-3)
Bulk: N- (~700ohm cm, 6 x 1012 cm-3)
350mm
Gate threshold
voltage at Id=
w/L*1e-7 A
measured with
Vd=1V
Backbias (0-20 V)
Should we perform 3D simulation ?
Comparison made; results don’t show big difference.
2D ~ 10 min., 3D~3days !  choose 2D for this study
2006/10/31
M. Hazumi (KEK)
20
Threshold voltage vs. Bias voltage
Large improvement in case of distance = 2mm
Vth > 0.25V at VB = 100V !
T hreshold voltage
V_B = 0~20 V
V th (V )
Threshold voltage
0.4
0.3
0.2
V th (V )
0.1
0
-0.1 0

10
20


-0.2
-0.3
-0.4
-0.5
-0.6
V_B (V)
0.4
0.35
0.3
0.25
0.2
0.15
0.1
0.05
0
-0.05 0
-0.1
-0.15
distance

80mm
5mm
2mm
50
100
V _B (V )
2006/10/31
M. Hazumi (KEK)
21
P-substrate option
2006/10/31
M. Hazumi (KEK)
22
n+ guard ring
p+ stop
n+ pixel
p substrate (1.5k ohm)
2006/10/31
M. Hazumi (KEK)
23
Backgate problem on pixel readout electronics
Device simulation  p-stop voltage  0
SOIPIX readout electronics very close to p-stops may suffer from
this “backbias”.
p-stops
ATHENA/ATLAS
TCAD
2006/10/31
M. Hazumi (KEK)
24
Interface charge (qf)
n+ pixels
qf = 0
V(p-stop) = -45V
qf = 3e11/cm2
V(p-stop) = -27.5V
qf = 1e13/cm2
V(p-stop) = -23.5V
Effect depends on irradiation.
2006/10/31
M. Hazumi (KEK)
25
P-stop optimization
(1 small pixel in 1 cell)
p-stops
2
2
2
1
4
1
1
2
1
2
(common)
V(p-stop)
[V]
-23.5
-20
-14.5
-11
V(p-p) [V]
-22
-18.5
-13
-11
Vbias = -500V for
250mm thick p-bulk
Best result
smaller |Vbias| sufficient
for thinner detector
Cf. 1/1/1 must be even better
2006/10/31
Max. Efield
(105V/cm)
10
10
5
9
M. Hazumi (KEK)
26
Pixel configuration
1 small pixel
in 1 cell
20mm
1 large pixel
in 1 cell
4 small pixels
in 1 cell
(octagon for
actual design)
 Which is better to avoid microdischarge ?
 Which makes the p-stop potential closer to 0 ?
 no difference is seen for qf=1e13/cm2
2006/10/31
M. Hazumi (KEK)
27
Choice of pixel design
•
•
•
•
2006/10/31
4 n+ octagons in one pixel
individual p-stops
p-stop as thin as possible (1mm)
p-stop distance as close as possible (1-2 mm)
M. Hazumi (KEK)
28
Summary
• Handle wafer (i.e. sensor) simulation
– Pixel and guard ring design optimization
• Breakdown voltage well understood and new designs proposed
– Problem finding/solving before fabrication
• Effect of bias voltage on readout electronics
– New P+ bias rings proposed for I/O pads
– P-substrate option seems more complicated because of p-stops
• TCAD is very useful for SOIPIX R&D !
2006/10/31
M. Hazumi (KEK)
29
Backup Slides
2006/10/31
M. Hazumi (KEK)
30
TCAD at work for sensor R&D (1)
2006/10/31
M. Hazumi (KEK)
31
TCAD at work for sensor R&D (2)
2006/10/31
M. Hazumi (KEK)
32
Aluminum (0V)
1000nm
distance to
the 1st metal
2006/10/31
M. Hazumi (KEK)
33
End
2006/10/31
M. Hazumi (KEK)
34