Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
BASIC CONCEPTS •Signal Waveforms Continuous/Discontinuous SINUSOIDS x(t ) X M sin t Adimensional plot As function of time X M amplitude or maximum value angular frequency (rads/sec) t argument (radians) T 2 " leads by " Period x (t ) x (t T ), t 1 frequency in Hertz (cycle/sec) T 2 2 f f " lags by " BASIC TRIGONOMETRY ESSENTIAL IDENTITIES sin( ) sin cos cos sin cos( ) cos cos sin sin sin( ) sin cos( ) cos SOME DERIVED IDENTITIES sin( ) sin cos cos sin cos( ) cos cos sin sin 1 1 sin cos sin( ) sin( ) 2 2 1 1 cos cos cos( ) cos( ) 2 2 APPLICATIO NS cos t sin( t ) 2 sin t cos( t ) 2 cos t cos( t ) sin t sin( t ) RADIANS AND DEGREES 2 radians 360 degrees 180 (rads) (degrees) ACCEPTED EE CONVENTION sin( t ) sin( t 90) 2 Derivative and Integral a A sin( t ) da A cos(t ) A sin( t ) dt 2 A A A sin( t )dt cos(t ) k sin( t ) k 2 Example cos( t 45) cos( t 45 360) cos( t 45) cos( t 45 180) cos( t ) Leads by 45 degrees Lags by 315 Leads by 225 or lags by 135 Example v1 (t ) 12 sin(1000t 60), v2 (t ) 6 cos(1000t 30) FIND FREQUENCY AND PHASE ANGLE BETWEEN VOLTAGES Frequency in radians per second is the factor of the time variable f ( Hz) 159.2 Hz 2 1000 sec1 To find phase angle we must express both sinusoids using the same trigonometric function; either sine or cosine with positive amplitude take care of minus sign with cos( ) cos( 180) 6 cos(1000t 30) 6 cos(1000t 30 180) Change sine into cosine with cos( ) sin( 90) 6 cos(1000t 210) 6 sin(1000t 210 90) We like to have the phase shifts less than 180 in absolute value 6 sin(1000t 300) 6 sin(1000t 60) v1 (t ) 12 sin(1000t 60) (1000t 60) (1000t 60) 120 v2 (t ) 6 sin(1000t 60) (1000t 60) (1000t 60) 120 v1 leads v2 by 120 v2 lags v1 by 120 Unit step For positive time functions f ( t ) f ( t ) u( t ) Using square pulses to approximate an arbitrary function Pulse width = T, Pulse height = 1 Using the unit step to build a pulse function THE IMPULSE FUNCTION (Good model for impact, lightning, and other well known phenomena) Approximations to the impulse Height is proportional to area Representation of the impulse Periodic Functions To 2 vA for 0 t v -A To t To 2 3To for To t 2 vA for etc... Square Waveforms Triangle Wavefrom Sawtooth Waveform EFFECTIVE OR RMS VALUES Instantaneous power i (t ) p( t ) i 2 ( t ) R R If the current is sinusoidal the average power is known to be 1 2 Pav I M R 1 2 2 2 I eff IM 2 The effective value is the equivalent DC value that supplies the same average power If current is periodic with period T 1 Pav T 1 t0 T 2 p(t )dt R T i (t )dt t0 t0 t 0 T 2 Pdc RI dc 2 I eff 1 T t 0 T 2 i (t )dt t0 I eff 1 T t 0 T i the effective value is X X eff M 2 1 For sinusoidal case Pav VM I M cos( v i ) 2 I eff : Pav Pdc If current is DC (i (t ) I dc ) then For a sinusoidal signal x (t ) X M cos( t ) Pav Veff Ieff cos( v i ) effective rms (root mean square) 2 (t )dt t0 Definition is valid for ANY periodic signal with period T EXAMPLE Compute the rms value of the voltage waveform T 3 X rms One period v 1 2 3 (t )dt (4t ) dt (4(t 2))2 dt 0 2 0 2 1 3 16 3 32 v ( t ) dt 2 3 t 3 0 0 2 Vrms t 0 T x 2 (t )dt t0 The two integrals have the same value 4t 0 t 1 v (t ) 0 1 t 2 4( t 2) 2 t 3 T 1 T 1 32 1.89(V ) 3 3 EXAMPLE Compute the rms value of the voltage waveform and use it todetermine the average power supplied to the resistor T 4( s) i (t ) R 2 R i (t ) 16; 0 t 4 2 X rms I rms 4( A) 2 Pav RI rms 32(W ) 1 T t 0 T x t0 2 (t )dt