Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
More on Ionic Compounds and Ionic Bonds I. Ionic compounds are held together as ions in a crystal or “lattice” structure by ionic bonds. A. Lattice = “regular arrangement” in repeating patterns. B. Ions are charged atoms. Examples: Na+ ; ClC. In ionic bonds, ions are held together by electrostatic force between oppositely charged atoms. 1. “Opposite charges attract each other” = electrostatic force. D. Ionic compounds have the following traits: 1. They have a high melting point. 2. They have a high boiling point. 3. They are hard and very brittle. 4. They conduct electricity well when dissolved in water. 5. They don’t conduct heat well. E. In ionic compounds, the positively charged atom is called a cation (“positive cat”) F. The negatively charged atoms is called an anion (“negative Ann”) II. In the crystal structure of sodium chloride (NaCl): A. The sodium atom is a cation (Na+) B. The chlorine atom is an anion (Cl-) III. Most importantly, the chemical formula only tells you the repeating “units” that connect in a certain lattice (crystal) structure to make the compound. A. For NaCl, it’s: Na+ Cl- NaCl (this is the repeating unit for the crystal) Ionic compound In chemistry, an ionic compound is a chemical compound in which ions are held together in a lattice structure by ionic bonds. Usually, the positively charged portion consists of metal cations and the negatively charged portion is an anion or polyatomic ion. Ions in ionic compounds are held together by the electrostatic force between oppositely charged bodies. Ionic compounds have a high melting and boiling point, and they are hard and very brittle. The crystal structure of sodium chloride, NaCl, a typical ionic compound. The purple spheres are sodium cations, Na+, and the green spheres are chloride anions, Cl−. Ions can be single atoms, as the sodium and chloride in common table salt sodium chloride, or more complex groups such as the carbonate in calcium carbonate. But to be considered an ion, they must carry a positive or negative charge. Thus, in an ionic bond, one 'bonder' must have a positive charge and the other a negative one. By sticking to each other, they resolve, or partially resolve, their separate charge imbalances. Positive to positive and negative to negative ionic bonds do not occur. (For an easily visible analogy, experiment with a pair of bar magnets.) Chemical compounds are never strictly ionic. Even the most electronegative/electropositive pairs such as caesium fluoride exhibit a degree of covalency. Similarly, covalent compounds often exhibit charge separations. See also HSAB theory. Contents: 1. Physical properties 2. Characteristics 3. Solubility 4. Electricity conductivity 5. Name 6. See also 7. References 1. Physical properties Physical Properties Ionic Compounds States(at room temperature) Solid Electrical conductivity Solid: No Liquid: Yes Aqueous: Yes (if soluble) Boiling point and Melting Point High Solubility in water Often high Thermal conductivity Low 2. Characteristics Ionic compounds have strong electrostatic bonds between particles. As a result, they generally have very high melting and boiling points. They also have good electrical conductivity when molten or in aqueous solution. While ionic inorganic compounds are solids at room temperature and usually form crystals, organic ionic liquids are of increasing interest. The ions produced by electron transfer attract each other by electrostatic attraction and this creates an ionic bond. 3. Solubility Following the aphorism, "like dissolves like", ionic compounds dissolve in polar solvents, especially those that ionize, such as water and ionic liquids. They are usually appreciably soluble in other polar solvents such as alcohols, acetone and dimethyl sulfoxide as well. Ionic compounds tend not to dissolve in nonpolar solvents such as diethyl ether or petrol. When the oppositely charged ions in the solid ionic lattice are surrounded by the opposite pole of a polar molecule, the solid ions are pulled out of the lattice and into the liquid. When this force is more than the electrostatic attraction of the lattice, the ions become dissolved in the liquid. 4. Electricity conductivity Solid ionic compounds cannot conduct electricity because there are no mobile ions or electrons present in the lattice. When the ionic compounds are dissolved in a liquid or molten, they can conduct electricity with the mobile ions. 5. Name According to the IUPAC, an ionic compound's common name is written using two words. The name of the cation comes first (when using stock nomenclature with the oxidation number written in parentheses, followed by the name of the anion. [1] For example, Fe2(SO4)3 is named as iron(III) sulfate. If the Classical naming system is being used, some ionic compounds have special "old" names, such as ferric (iron(III)), ferrous (iron(II)), cupric (copper(II)), and cuprous (copper(I)).