Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
033rd MEETING. LONDON Two distinct populations of labelled peptides were ohtained. one with molecular masses in the range 28-45 kDa and the other in the range 3- 13 kDa. T h e former population appears to include N-terminal regions o f the mAChRs sequences which contain the N-glycosylation sites. T h e higher molecular mass population corresponds to that ohtained when mAChRs are labelled with the highly specific alkylating antagonist propylhenzilylcholine mustard (PrBCM)and cleaved with Lys-C under the same conditions 151. T h e [ 'HINEM-labelled peptides were further separated hy f.p.1.c. gel-filtration and fractions enriched in the higher molecular mass species were subcleaved with cyanogen bromide (CNBr; 4 0 mg/ml) as descrihcd previously (51. Analysis by SDS/PAGE on 18-22'L gradient gels detected two major labelled peptides with molecular masses ahout 3.9 k D n and 2.7 kDa. These peptides seem identical in molecular mass t o the major peptides formed hy CNBr cleavngc o f 13HIPrBCMlahellcd mAChRs. suggesting that the lahellcd cystcine residue is close to the ('HIPrBCM attachment site. Peptide sequencing experiments suggest that the 3.1) kI>a peptide is formed hy cleavage at the conserved methionine residues in T M 2 and T M 3 (corresponding t o Met-79/1 14 in the ml sequence) and the 2.7 kDa peptide hy cleavage at methionine residues in the first extracellular loop and in T M 3 (corresponding t o Met-XX/I 14 in the m l sequence), and that the I 'ti IPrBCM estcrifies a conserved aspartic acid residue in T M 3 (corresponding to Asp-105 in the ml sequence) 161. fidman degradation of the two I 'HINEM-labelled peptides gave release o f label after I 0 and 1 Y sequenator 443 cycles. This is consistent with lahclling o f conserved cysteine residue in the first extracellular loop (corresponding t o Cys98 in the m l sequence). This result strongly supports the participation of this residue in an intramolecular disulphide hridge. Preliminary results suggest that ii conserved cystcine residue in the second extracellular loop of muscarinic reccptors (corresponding t o Cys-178 in the m l sequence) could possihly be the other component o f the disulphide bond. Further experiments must be undertaken t o confirm these results and t o search for other possihle disulphide bonds in the muscarinic receptors. I , Honner. 7'.I.. Hucklcy. N. J., Young. A. <'. YC I3rann. M. K. . S c i c w w 231.527532 2. Bcrstein, (3.. Haga. K.. Haga, I'.di Ichiyama. A. ( I W X ) J. iVc,irroc.licvn. 50. I hX7- 1604 3. Nishiyama. '1. .. I3crstein. G , . lkcgayii. 'I' .. Hngn. '1. .. Ichiyom;i. A.. Kohayashi. A. YC Yamazaki. N . ( I UXO) /3ioc./ic,nr. Re,.\. 10. 25 1-260 4, Florio. V. A. & Stcrnwei\. f'. ( ICMO)i J. / h i / . C ' / i e , ~ i . 264. 3909-3Y I5 5. Curtis. C. A. M.. Whcatley. M.. 13ansol. S., Hirdsall. N. J. M.. Eveleigh. P.. Pcdder. ti. K. YC Hulmc. E. <'. ( I (NU) J. Iliol. <'/icm. 264.4XV-495 0 . Hulme, E. C . . Curtis, C . A. M.,Whcatley, M.. Harris. A. (.. M. di Aitken, A. ( 10x9)) /rcvitl.\ I'/irrrt?iccc~ol.. S u . 10 (.Siippl. .Sirh/y/ic\ o/ h~rr.sc~crrirri1~ /<c~c~c~/l/or.s IV ), 2 2 - 2 5 Kcceived 23 Novcmhcr I 9 X 9 Glutamic acid concentration in brains of patients with Alzheimer's Disease S'l'til'tlt" L. LOWE and DAVID M. BOWEN ,tliri(irtI h1rrX.s Ikpcirirticvri (fN~~iiroc~/ier7ristt~~, Itistinrtc of Nc,rrrolop ( C ) i w c t i Scpuirc). Uriiivr.si!\' o/'Loticloti. I \\'irkc~/icltl Strwr, Loticlori WC'I N II'J. U.K. T h e glutamic acid content o f post-mortem Alzheimer's tlisensc ( A D ) brain tissue has heen found reduced I 1-5 I, hut not consistently 16-I II. However. shortly after death. cxtensive alterations in amino acid content occur with increasing post-mortem delay I I 2 I and changes pcvi-rrioricrii may affect the rate o f autolysis 151. To invehtigate glutamate status further. the concentrations of glutamate and a number o f other amino acids have been determined in samples ohtained hy various neurosurgical procedures. ('ortical grey matter from frontal o r temporal lohe was olitaincd. and maintained at - 196°C. from I 0 patients with AD. 5 with other dcmentias. 3 Y controls and 1 8 frontal lobe samples from patients with intractable depression 15, I 3 1. Tissue containing all cortical layers. free o f meninges and underlying white matter. was extracted for putative cortical tr;insniitter amino acids (aspartate. glutamate and taurinc) and non-transmitter amino acids (alanine. asparagine, glutamine. glycine, isolcucine, Ieucine, mcthioninc. ornithinc, phcnylalanine. serinc and tryptophan) which were determined by h.p.1.c. with fluorometric detection 15 ]. Nucleolated pyramidal nerve cell packing density in two cortical layers and the frequency o f senile plaques and neurofibrillary tangles were determined in sections from the A D samples I 14I. Results are expressed as mean f s.11Single comparisons were made by either the Student's I-test o r Mann Whitney Utest. ;IS appropriate (Fisher I.-test). Multiple comparisons A1ilircvi;ition i r x d A I). Alzhcimer'h disease. Vol. I8 were made hy either one-way analysis of variance (ANOVA ). followed by the least significant difference test (probabilities significant when I'< 0.05) o r Krusknll-Wallis ANOVA and the Mann Whitncy U-test (null hypothesis rejected at I'< 0.0 I), as appropriate (Fisher I.-test). Intercorrelation of variables was tested by Spearman's rank ( l i , )correlation. T h e effect o f various factors on amino acid values were assessed by dividing suhjects into appropriate subgroups 15 1. None o f the values in any subject group were influenced hy age. gender. drug treiitnient ( A D group) o r associated lesion types (control group). There w a s no difference (/'> 0.05) hetween frontal and temporal cortex (control group) in the content o f any non-transmitter amino acid s o values have hcen pooled t o increase the statistical power o f the study. T h e mean values o f most amino acids are higher in A D compared with control. T h e individual increases ;ire smnll. hut the sum ( I5 nmol) o f the seven significantly affected (five in Fig. I.plus methioninc and ornithine. data not shown) is very similar t o the reduction in glutamate content ( I 0 nmol) which is the only significant reduction in A D (Fig. I ) . A correlation was found hetween glutamate content and only neuron packing density in layer 111 (Table I ). No significant differences occur in the group o f other dementias. but the mean glutamate content is low. Glutamate is not reduced in the depressives. Titurine content (nmol/nig o f protein) o f A D temporal cortex (23.5f 8.1, t i = 7 ) is unchanged from control (22.6k 6.7. I1 = 15). In this series. some pyramidal neurons have disappeared from the neocortex. whereas interneurons seem spared [ 14. 15 I. T h e resulting atrophy o f A D hrain tissue may lead to iiii increase in constituents o f unaffected structures. Such selective degeneration o f structures enriched in glutamate I 10. I 7 1 probably explains the increased content o f amino acids. T h e 444 BIOCHEMICAL SOCIETY TRANSACTIONS Glutamate U *U T T Aspartate I I * Alanine Serine * most straightforward explanation for the one relationship (Table 1 ) is that degeneration o f corticocortical association tracks (see IS])has had a major influence on the glutamate content of the samples. Estimates of the glutamate transmitter pool, based on experimental paradigms, vary from 1 0 to 40% o f total glutamate content [ 16, 171. The latter is reduced by 14% in A D temporal cortex (Fig. 1). so at least 35% of the transmitter glutamate may have been lost, though metabolic changes IS] and neuronal loss may complicate this interpretation. The A D samples were obtained shortly after emergence of symptoms 15. I S ] . Thus glutamate deficiency seems to be quite an early change that is selective, by comparison with other amino acids (including y-aminobutyrate and other transmitters, somatostatin, dopamine and nordrenaline [ 181). not a feature of depression and probably is due to degeneration of glutamatergic corticocortical association tracks. Is this due to excitotoxicity and will either glutamate antagonists [ 191 o r manipulation of oxidative metabolism [ 201 retard disease progression? Dr D. M. A. Mann kindly provided the morphological measurements. $2 Z E -c * *- 41 Leucine * 2 t Isoleucine 1 2 0 0 Fig. 1. Amitio acids altered in A D ., Non-transmitter amino acid values are for 10 AD, 5 other dementia, I8 depressives and 39 controls. 0,Control; H, AD; 0,other dcmentias; depressives. Glutamate values (nmol/mg o f protein), aspartate in parentheses, are 1OS.Xf32.2 ( 2 4 . 7 f 6 . 1 ) , 82.6f20.1 ( 2 0 . 1 f 3 . 0 ) and 98.6 f 15.9 ( 19.6 k 3.7) for 18 depressives, 5 other dementia and 24 controls (frontal cortex), respectively; values for 7 A D and 15 controls (temporal cortex) are as described [ 51. *Difference from control, P < 0.05 (single comparison); **Significantly different from control (multiple comparison). Table 1 . (‘oric,enrrcirion of’ glutumic acid and morphologit,ul mcw.sitri’.s in [hi)remporul cortex Results are for individual A D subjects. Glutamic acid content and morphological values a r e nmol/mg of protein and number/ rnm?, respectively. Tissue glutamate correlates with only neuron density of layer 111 (H,= 0.75; /’= 0.05). Subject I -1 3 4 5 Ti\sue glutamate I20 I I8 6 105 96 88 84 7 76 Pyramidal neurone density Tangle frequency Plaque frequency Layer I l l Layer V 20 1 287 27 18 171 1x1 151 29 19 242 I94 205 259 13 29 I97 31 7 13 8 16 20 I17 I60 I37 I24 16 15 I . Arai. H.. Kobayashi, K.. Ichimiya. Y.. Kosaka, K. & lizutca. K. ( 1984) Niwrohiol. Agitig 5 . 3 I 9-32 I 2. Ellison, D. W., Beal, M. F., Mazurek, M. F., Bird. E. D. & Martin. J. H. ( 1986) Anti. Neitrol. 2 0 . 6 16-62 I 3. Sasaki, H., Murarnoto. 0..Kanazawa, I., Arai. H., Kosaka. K. & lizaka. K. ( 1986) Atin. Ncitrol. 19. 263-260 4. Hyman. €3. T.. Van Hoescn. G. W. & Damansio. A. K. (1987) h i t i . Neitrol. 2 2 . 37-40 5. Procter, A. W.. Palmer. A. M., Francis. P. I..,Lowe. S. L., Neary. E., Murphy. E.. I>oshi. K. & Howen. I>. M. ( I 9 8 8) J. N w r o them. SO, 790-802 6. larbit. I.. Perry. E. K.. Perry. K. H.. Blessed. G. & ‘l‘omlinson. H. E. ( I98 I ) J. Neirrochcm. 35. 1246- I249 7. Antuono. P. G.. Lchmann. J.. Koller. K. J.. Struhle. R. G,. Price. D. L.. Coyle, J. I,.,Whitehouse. P. J. & Clark. A. W. (1984) Neitrology 34 (Suppl. I ), I I 9 8. Perry. E. K., Atack, J. K.. Perry, K. H., Hardy, J. A,. Ilodd. P. K., Edwardson, J. A,, Blessed, G.. Tomlinson. B. E. & Fairbairn. A. F. ( 1984) J. N w r o c h e m . 42. 1402- I4 I0 9. Perry, T. L.. Yong. V. W.. Hergeron. C.. Hansen. S. di Jones. K. (I987)Anti.N ( w r o l . 2 1 , 3 3 1 - 3 3 6 1 0 . Procter, A. W., Lowe, S. L., Palmer, A. M., Francis, P. I..,Esiri, M. M.. Stratmann, G. C.. Najlerahim. A,. Patel, A,. Hunt, A. & Howen. I>. M. ( I 9 8 8 ) J. N w r o l . S c i . 84, 125- 140 I I . Reynolds, G. P., Warner, P. & Mercer. K. ( 1989) J. Noiirul 7rutism. 1 , I I8 12. Perry. 7.. L.. Hanscn. S. di Gandham, S. S. ( I98 I ) J. Ncwrockni. 36,406-4 I 2 13. Francis, P. ‘I.., Poynton. A,. Lowe. S. L.. Pearson, K. C. A,. Bridges. P. K.. Hartlctt, J. K.. Procter. A. W. & Bowen. I>. M. ( 1989) Hruiti K(,.s. 494. 3 15-324 13. Neary. I>.. Snowden. J. S.. Mann. I>. M. A,. Howen, I>. M.. Sims. N. K.. Northen. 13.. Yates. P. 0. & Ihvison. A. N. (1986) J. Niwrol. Noitrosittg. I’.sydiiut. 49, 220- 237 15. Lowe, S. L.. Francis. P. T., Procter, A. W., Palmer. A. M., Davison. A. N. & Bowen, D. M. (1988) Bruin 11 1,785-799 16. Fonnum, F. ( 1984) J. Neirrochem. 42, 1 - 1 1 17. Nicholas, D. G., Sihra. T. S. & Sanchez-Prieto, J. (1987) J. Neurochem 49.50-57 18. Francis. P. T. & Bowen. D. M. (1989) C’uti. J. Nritrol. Sci. 16. 504-5 10 19. Greenamyre. J. T. & Young. A. B. ( 1989) Neitrohiol. Aging 10, 593-602 20. Sims, N. R., Finegan, J. H., Blass. J. P.. Bowen, D. M. & Neary, D. ( 1987) Bruin Rev. 436, 30-58 Received 20 November I989 1990