Download - University of Alberta

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Molecular ecology wikipedia , lookup

Occupancy–abundance relationship wikipedia , lookup

Biodiversity action plan wikipedia , lookup

Introduced species wikipedia , lookup

Island restoration wikipedia , lookup

Fauna of Africa wikipedia , lookup

Bifrenaria wikipedia , lookup

Latitudinal gradients in species diversity wikipedia , lookup

Transcript
Vol. 136,No. 3
The American
Naturalist
1990
September
INTERCONTINENTAL COMPARISON OF SMALL-LAKE FISH
ASSEMBLAGES: THE BALANCE BETWEEN LOCAL
AND REGIONAL PROCESSES
WILLIAMM. TONN, JOHNJ. MAGNUSON,MARTTIRASK, AND JORMATOIVONEN
ofAlberta,Edmonton,
ofZoology,University
AlbertaT6G 2E9, Canada;Centerfor
Department
and Department
ofZoology,University
ofWisconsin-Madison,
Madison,
Limnology
ofHelsinki,SF-16900Lammi,
Wisconsin
53706;LammiBiologicalStation,University
CentralFishCultureStation
Finland;FinnishGameand FisheriesResearchInstitute,
forEasternFinland,SF-58175Enonkoski,
Finland
SubmittedApril 15, 1987; Revised March 24, 1988, and February21, 1989; Accepted July20, 1989
The idea thatlocal and contemporary
interacprocesses(e.g., interspecific
and
tions),combinedwithsuchregionaland historical
processesas immigration
shouldproducepredictablepatternsof community
reorganization
extinction,
and convergence
kindledinterestin questionsconcerning
community
similarity
and Wilson1967;MacArthur
ofthestructure
(MacArthur
1972).Can knowledge
be used to predicttheorganization
ofone community
ofa second,
and function
similarbutgeographically
distantcommunity
composedofunreenvironmentally
ofourunderstanding
latedspecies?Thisquestionprobesthegenerality
ofcommuand the extentto whichcommunity
nityorganization
ecologycan become a
science(A. Johnson1973;Oriansand Paine 1983;Westoby1988).
predictive
at an answer,however,has not been easy (Orians 1987). Several
Arriving
in variouscommunity
have
foundhighdegreesof similarity
studies
properties
Fuentes
Schluter
Pianka
(e.g.,
1973;Cody 1974;
1976;
1986),butothershave not
(e.g., Ricklefsand Travis1980;Lawton1984;Mahon1984).Two geographically
in similarlocal environments
distantcommunities
mayor maynothave similar
of
or
historical
because
factors.
For example,Mahon
characteristics
regional
that
in
and
fish
streams
rivers
of
Polandand Ontario
(1984)found
assemblages
the
and
that
from
in
richness
two
in distribudiffer species
species
regionsdiffer
and
These
results
tionpatterns,life-history
traits,
morphological
adaptations.
in size and isolationof glacialrefugesand thepresenceand
reflectdifferences
inOntario,ofentirefamiliesoflake-dwelling
importance,
specialists.In contrast,
existbetweenassemblagesofEuropeanandwesternNorth
characteristics
similar
of Pleistoceneand
Americanstreamfishes,in partbecause of greatersimilarity
eventsin theseregions(Moyleand Herbold1987).
post-Pleistocene
of large-scalephenomena,Ricklefs(1987) chalRecognizingthe importance
and historical
scopesof
lengedcommunity
ecologiststo expandthegeographical
Because community-level
characteristics
theirconceptsand investigations.
may
Am. Nat. 1990. Vol. 136, pp. 345-375
All rightsreserved.
? 1990 by The Universityof Chicago. 0003-0147/90/3603-0008$02.00.
346
THE AMERICANNATURALIST
influenced
processes,theseinvestigabe differentially
bysmall-versuslarge-scale
studiesare
tionsmustincorporate
phenomenafromseveralscales. Manipulative
or impractical
forsuchquestions,butcomparative
studfrequently
inappropriate
multivariate
analysesof large-scale
ies and naturalexperiments,
incorporating
testsoflarge-scalehypotheses
can oftenprovideappropriate
(Diamond
pattern,
1986;Ricklefs1987;Brownand Maurer1989).
The value of such large-scalecomparisonsdependson how well the local
arematched(Orians1987).Smallforestlakesinglaciatedregionsof
environments
theHolarcticare similarly
repeatablesuitesofenviaged ecosystemscontaining
conditions.Commonformsofenvironmental
severity,
suchas winter
ronmental
influencefish
hypoxiaand dystrophy
(stained,acidic waters),can profoundly
offish-species
composition
and richassemblages(Rahel 1984).Distinctpatterns
ness have been observedwithina numberof regions(see, e.g., Zhakov 1974;
Robinsonand Tonn 1989).Giventhe insularnatureof lakes (Magnuson1976),
theirisolation,as well as theirarea and habitatdiversity,
mayhave important
and richness(Barbourand Brown1974;
effectson fish-assemblage
composition
Tonnand Magnuson1982;Eadie and Keast 1984;Rahel 1986).
andoverallstructural
Thesecommoncharacteristics
simplicity,
combinedwith
in species composition
and regionalhistory,make small
inevitabledifferences
comparisons
andthe
Holarcticlakesgoodecologicalsystemsforintercontinental
oftherelativerolesoflocalandregionalprocesses.In thisstudy,we
investigation
withfishassemblagesin smallforest
exploretheconceptofcommunity
similarity
questions.Do similar
lakesofFinlandandWisconsin.We addressedthefollowing
richnessexistinsmalllakesofFinlandandWisconsin?To
offish-species
patterns
in each regioninfluenced
whatextentare anycommunity-level
by local
patterns
or by thepresenceofdominant
or competitors?
abioticcharacteristics
predators
ofthetworegionsassociatedin similarwayswiththe
Areassemblagestructures
suchthattherelations
betweenassemblagestructures
andthe
local environment,
forone regioncan be used to predictfish-assemblage
environment
patternsin
affectintercontinental
anotherregion?How do regionalor historicalinfluences
comparisons?
METHODS
StudyAreas
withthousands
Wisconsincontainlakedistricts
Finlandandnorthern
Southern
of smallforestlakes of glacial origin(Hutchinson1957;Svardson1970;Attig
in
bedrockorgranitic
till,resulting
1984).In bothregions,lakeslie atopa granitic
is
lowlevelsofdissolvedminerals(Judayet al. 1938;Toivonen1972).Dystrophy
commonin both regions.AlthoughFinlandis farthernorththanWisconsin,
influenceof the Gulf
overallclimatesare similarowingto the ameliorating
at Jyvaskyla,
air temperatures
Streamin northwestern
Europe. Mean monthly
to 16.6?Cin July
Finland(62?16' N, 25?50' E), rangefrom- 9.4?C in January
Instituteof Finland1984);analogoustemperatures
rangefrom
(Meteorological
- 12.4?C (January)to 19.4?C (July)at Park Falls, Wisconsin(45056' N, 90?27'W;
of Commerce1984).
U.S. Department
INTERCONTINENTAL FISH-ASSEMBLAGE COMPARISON
347
to theirenvironmental
fishfaunasofthetworegionsare
similarities,
In contrast
dissimilar.Because of Cenozoic connectionsand subsequent
compositionally
dispersalbetweenNorthAmericaandEurasia,severalfamiliesoffishesfoundin
Wisconsinare Holarctic(Briggs1986).Since thoseinterFinlandand northern
of the
Percentsimilarity
changes,however,faunashave divergedconsiderably.
tworegionsat thefamiliallevelis 62%, butthisdropsto 25% and 4% at generic
and specificlevels,respectively.
Data Sets
We compiled data sets forfishassemblages and environmentalcharacteristics
for113 Finnishand 51 Wisconsinlakes containingfish.Findingsof several studies
were combinedto cover the rangeof smallforestlakes in both regions.(A
completeset of tabulardata maybe purchasedfromtheDepositoryof UnpubandTechnicalInformation,
forScientific
National
lishedData, CanadianInstitute
ResearchCouncilCanada, OttawaKIA 0S2, Canada.)
and centralFinlandwereobtained
Finland.-Data on 50 lakes fromsouthern
withrotenone
whole-lakesampling
followedbyadditional
froma studyinvolving
collectionby scuba divers(Toivonenet al. 1964;Tuunainen1970;
systematic
Sumari1971).For one or moreyearsfrom1961to 1969,46 otherlakes were
withvariable-mesh
gillnets;we used meanrelativeabunsampledintensively
dances (by biomass)of the 1961and 1962samplings(Anonymous1961,1963).
studieswerecarriedout on 5 lakes in the Evo area (Rask
Mark-and-recapture
1983,1984;RaskandArvola1985;Rasketal. 1985).FiveotherlakesfromtheEvo
FisheriesResearchStationweresampledwithgillnets(M. Pursiainen,
personal
as were3 lakesinNorthKarelia(J. Aho,personalcommunicacommunication),
with5-mm
tion).Finally,4 ponds,also inNorthKarelia,weresampledintensively
meshtrapsand gillnetsor withrotenone(Holopainenand Pitkanen1985;I. J.
Holopainen,personalcommunication).
As passive samplinggear,gill nets can involvesome selectivity
by size or
species; however,the use of netswithmultiplemeshsizes reducesselectivity
(Hubert1983). Indeed, 18 of 20 species foundover the entire113 lakes were
and Miller'sthumb
caughtwithgillnets.The exceptions,ninespinestickleback
names),wereeach foundin onlyone of the50 lakes
(see App. A forscientific
thatthesespeciesoccurredinfrequently
in small
treatedwithrotenone,
indicating
withexperimental
forestlakes.Intensivesampling
gillnetsalso providedrelativeabundancedata comparableto thoseobtainedfromwhole-lakerotenone/scuba
sampling.Eighteenlakes had been sampledwithgillnetsbeforerotenonetreatbetweengill-net
catchesand
ment(Toivonenet al. 1964);meanpercentsimilarity
rotenonesampleswas 86%.
and
Our data sourcesprovidedmeasuresof pH, surfacearea, conductivity,
methods.To
maximum
limnological
depthforall 113lakes,collectedbystandard
we devisedan indexoflake isolation(App. B) andcalculated
evaluateinsularity,
itsvalueforeach lake usingdata obtainedfromtopographical
maps.
Wisconsin.-Twostudies(TonnandMagnuson1982;Rahel1984),usingcombinationsof minnowtraps,fykenets,and trammel
nets,provideddata on species
Wisconsin.
composition
(presenceor absence)forfishassemblagesin northern
348
THE AMERICAN NATURALIST
Percentsimilarities
formultiple
samplings
ofsevenlakes,ranging
inrichness
from
1 to 11 species,averaged99% (Tonn 1980,and unpublished
data). Limnological
data came fromthe same publishedsources;we also calculatedour indexof
isolationforeach Wisconsinlake usingmeasurements
fromtopographical
maps.
Analyses
Species richness.-Whencomparingspecies richnessbetweentwo areas, a
numberofdifferent
scales mustbe considered(Whittaker
1972).Listsof species
composingregionalfaunas(Whittaker's
gammarichness)were compiledfrom
distribution
maps and accountsby Becker(1983)and Koli (1984). Regionwas
definedas thegeographical
area boundedby lakeswithinourdata
operationally
sets. A regionalbut ecologicallybased faunawouldincludeonlyspeciesfrom
regionalfaunasthatare able to maintainpopulationsin smallforestlakes; we
definedthisfaunaas speciesnaturally
withinthelakes of our data
reproducing
ofregionalfaunasthatcomposedthesesmall-lake
sets.Proportions
faunaswere
used as an indirect,regionalmeasureof habitatspecialization
by fishes;these
werecomparedbetweenregionsvia thez-test(R. Johnson1973).
proportions
Because thedata set fromFinlandincludedtwiceas manylakes as thatfrom
of
we performed
a simulation
exercisethatgavecumulative
numbers
Wisconsin,
fromone to Ni lakes(NF = 113,NW = 51). For
speciesin setsoflakesranging
fromamongthe
each region,a lake was chosenrandomly
(without
replacement)
studylakes,andall speciespresentinthatlakewererecorded.A secondlakewas
chosenat random,and any speciesnotpresentin thefirstlake wereaddedto a
list.Thisprocesswas repeateduntilalllakeswereselected.Thewhole
cumulative
rateof species
procedurewas thenrepeated99 times.We used the resulting
thatis,
accumulation
amonglakesas an indexofWhittaker's
(1972)betadiversity,
Fromtheresultsof
theextentofchangein speciescomposition
alonga gradient.
we also calculatedtheasymptotic
number
ofspeciesexpectedin
thesesimulations
numberof smalllakes fromeach regionusingthe Walford
sets of an infinite
modelof growth(Ricker
methodfordetermining
Loofromthe von Bertalanffy
1975).
Whittaker's
alpharichness(or local richness)was measuredas thenumberof
fishspecies per lake. Local richnesswas comparedbetweenregionsvia the
test.We also comparedtherelationsoflocal to regionalrichness
Kruskal-Wallis
and Faaborg
betweenFinlandand Wisconsin.Ricklefs(1987;see also Terborgh
thatthislocal-regional
richnessrelation
fora pairorgroupofsites
1980)suggested
could be used as an index of the relativeimportanceof local (vs. regional)
If local conditionsdominate,thenan
local diversity.
processesin determining
on local richness,
increaseinregionalrichnessshouldhavelittleeffect
producing
relation.Iflocal diversity
is sensitiveto regionaleffects,
an asymptotic
thenlocal
richnessshouldcontinueto risewithincreasesin regionalrichness.
how specificlake featuresmay have
Species distributions.-Toinvestigate
thedistribution
of individualspecies,we analyzeddistribution
affected
patterns
method(Schoenerand Schoener1983). For each
by the occurrence-sequence
valueforeachenvironmenregion,we rankedlakesalongsequencesofincreasing
maximum
talfactor(pH, area, isolation,conductivity,
depth)and analyzedpat-
INTERCONTINENTAL
FISH-ASSEMBLAGE
COMPARISON
349
ternsof occurrenceof speciesalongthesesequencesfororderedor haphazard
via Mann-Whitney
distributions
U-tests.Ifthepresenceor absenceofa speciesis
relatedto an environmental
variable,thenthe species' distribution
shouldbe
at one end of theenvironmental
concentrated
sequence;ifthereis no relation,
shouldnotreveala patternrelativeto the sethenthe occurrencedistribution
theprecisionofanypresence-absence
quence.Thisanalysisdetermines
threshold
and has theadvantageofmakingno
ofa speciesalongan environmental
gradient
a prioriassumptionsabout the exact locationof a threshold(Schoenerand
Schoener1983;Cornell1986).Because of limitations
oftheMann-Whitney
test,
to speciesfoundin morethanfivelakes.
analyseswererestricted
To examinehowpairsofspeciesweredistributed
amonglakesrelativeto each
thepotential
effects
ofinterspecific
other,and thusinvestigate
inthe
interactions
two regions,we analyzedpatternsof species co-occurrence.
We used 2 x 2
tables and Fisher'sexact testto assess the degreeof positiveor
contingency
negativeassociationbetweenpairsof speciesin each region.Fisher'stestcould
to testthenullhypothesis
thatthetwospeciesofa pairwere
notbe used directly
distributed
thatall observaindependently
amonglakes,becausetheassumption
is violated(Bowersand Brown1982).Instead,
tionsare statistically
independent
we used the testto classifyco-occurrences
intothreegroups:(1) pairshaving
overallpositiveassociationsand P < .05 fromthe Fisher'stest (positivecooccurrences);
(2) pairshavingnegativeassociationsandFisher'sprobabilities
less
and(3) pairsineitherdirection
than.05(negativeco-occurrences);
havingP - .05
The distributions
of species' pairsamongthesethree
(neutralco-occurrences).
betweenFinlandand Wisconsinvia a
groupswerethentestedforindependence
betweenregions.As above,analyses
ofco-occurrence
G-testto comipare
patterns
to speciesfoundin morethanfivelakes.
wererestricted
Assemblagecomposition.-Toexaminecompositional
offishassempatterns
blagesand relationsamongassemblagesin Finland,we appliedthemultivariate
methodsof ordinationand classification
to the lakes-bycommunity-analysis
low-dimensional
summaries
ofcommunity
speciesdatamatrix.Byproviding
data,
thedata's basic structure;
thesewell-established
analyseshelpecologistsidentify
causes of identified
hypothesescan thenbe generatedconcerningunderlying
in appatterns(Gauch 1982; Hermy1988). Because theyare complementary
andclassification
ofordination
proach,a combination
appliedtothesamedataset
toolforrevealing
thegeneralstructure
can be an especiallyusefulandpowerful
of
data (Gauch 1982;Legendreand Legendre1983).
community
are available;
Several specifictechniquesof ordinationand classification
andweaknessesofeachhavebeenthesubjectofnumerous
strengths
analysesand
muchdiscussionover the years,withno end in sight(Pielou 1984;Kent and
Ballard 1988).We used primarily
principal-components
analysis(PCA) on the
matrix(Franeet al. 1983)forthepurposeofordering
correlation
assemblagesina
low-dimensional
space (patternanalysis).Althoughcriticizedby some workers
PCA is, conceptually,
undercertaincircumstances,
forgivingmisleading
patterns
ordination
themoststraightforward
method,andithas provedsuitableanduseful
is low and the
fornumerouscommunity
analyses,especiallywhenbetadiversity
data set spans a shortgradientor has a linearstructure
(Austinand Noy-Meir
350
THE AMERICANNATURALIST
1971;Legendreand Legendre1983;Pielou 1984;Orloci1988).Preliminary
analyses suggestedthatthesetraitsappliedto theFinnishdata set; however,additional ordinationswere performed
using detrendedcorrespondenceanalysis
(DCA; Hill and Gauch 1980),a methoddesignedfordatawitha nonlinear
strucwe also performed
ture.To complement
ordination,
hierarchical
classification
(Ward'smethodwithsquaredEuclideandistanceand the RELOCATE procedure,as suggestedin Wishart1978).
we omittedrare species, definedin
and ordination,
For both classification
earlieranalysesas those occurringin fiveor fewerlakes. This eliminatesa
whichcan adverselyaffectanalnumberof zeros in thedata matrix,
substantial
yses(Legendreand Legendre1983);withmanymultivariate
methods,especially
and irregular
ordination,
infrequent
appearancesofrarespeciesalso tendto add
becauseanalyses"perceiverarespeciesas outliers,
morenoisethaninformation
theanalysisofthedata set as a whole" (Gauch 1982,p. 214).
thusobscuring
The Finnishassemblageswereanalyzedon twoscales,presence-absence
and
relativeabundance.Community
compositionpatternsamongfishassemblages
fromWisconsin(presenceor absenceonly)havebeendescribedusingordination
(TonnandMagnuson1982;Rahel 1984);we used a compositepattern
(fromTonn
et al. 1983)to classifythe51 Wisconsinassemblagesin thepresentdata set into
recurrent
groupsof co-occurrent
species,or "assemblagetypes."
in community
data sets,including
structure
thedefinition
Whereasidentifying
orclassification,
ofanyassemblagetypes,is accomplished
environbyordination
and the generationof ecologicalhypothesesabout this
mentalinterpretation
structurerequireadditionaldata and analyses (Gauch 1982; Legendreand
distinctness
Legendre1983). To evaluateenvironmental
amongany identified
environmental
factorscontributing
to thisdisgroupsof lakes and to identify
we appliedmultiple
discriminant
andSampson1983),
tinctness,
analysis(Jennrich
factorsas variables.AllfactorsexceptpH werelogusingthefiveenvironmental
to stabilizevariances.As withPCA, thediscriminant-analysis
transformed
model
frommultinormality
itselfis notsensitiveto departures
(Legendreand Legendre
distinctness
oflakegroupswasjudgedbythepercentage
of
1983).Environmental
classifiedby thediscriminant
functions.
lakescorrectly
RESULTS
LimnologicalConditions
ConsiderableoverlapexistedbetweenWisconsinand Finnishlakes forall
characteristics
(table1). The twosetsof studylakesweresimilarwithrespectto
surfacearea andpH, beingsmallandacidic.StudylakesfromFinlandwere,as a
thanthosein Wisconsin.
set, deeper,less isolated,and higherin conductivity
ofseepagelakes;
GreaterisolationinWisconsinresultedfroma higher
proportion
weresteeperinFinland.Ratherthaneliminate
lakesone byone
streamgradients
to achievestatistical
betweenregions,we concluded
in an attempt
homogeneity
similarenoughtouse as wholeunits
thatthetwosetsoflakeswerelimnologically
in ourintercontinental
comparisons.
INTERCONTINENTAL
FISH-ASSEMBLAGE
351
COMPARISON
TABLE 1
FACTORS
ENVIRONMENTAL
FINLAND
AND
AND
OF THE
RICHNESS
SPECIES
WISCONSIN
EXAMINED
SMALL
IN THIS
X
Environmentalfactors:
pH
Lake area (ha)
Lake isolationa
Conductivity(pLSat 200C)
Maximumdepth (m)
Species richness:
Regional fishfauna (no. of species)
Small-forest-lake fauna (no. of species)
Single-lake
species
of species)
richness
(no.
6.2
9.5
49
28
9.6
37b
20
3.7
Range
4.3-7.5
.2-64.0
0-188
3-96
1.5-27.0
X
6.0
14.0
78
27
4.8
KRUSKAL-
Range
4.3-8.0
.2-86.9
0-156
8-145
1.2-10.0
H
(df = 1)
WALLIS
1.68
.18
5.82*
10.2**
32.9***
65c
23
1-10
4.4
N = 113; Wisconsin, N = 51.
NOTE.-Finland,
a
See App. B for definition and formula.
b Includes "freshwater"
and "holoeuryhaline"
species (Koli 1984).
c Species
and Vilas counties, from distribution
in Forest, Iron, Oneida,
* P < .05.
** P < .01.
***
FROM
WISCONSIN
FINLAND
VARIABLE
LAKES
FOREST
STUDY
1-11
maps
in Becker
2.57
1983.
P < .001.
Species Richness
Wisconsincontains1.8timesas
Ata regionallevel(gammarichness),northern
fishesas does Finland(table1); theseregionalfaunas
manyspeciesoffreshwater
canbe treatedas "mainland"or sourcepoolsforsmalllake "islands." However,
we foundnearlyas manyspecies in smallforestlakes of Finland(20) as in
northernWisconsin (23; App. A). The 20 Finnishspecies representa significantly
oftheregionalfaunathando the23 speciesinWisconsin(z-test,
proportion
higher
lakes(alpharichness),
no significant
difference
P < .01).Atthelevelofindividual
in averagespecies richnessexistedbetweenFinlandand Wisconsin(table 1).
forthetwo regionsalso did notdiffer
(F = 0.9, df =
Species-arearegressions
2,160, P = .4); the regressionequationforWisconsinwas logS = 0.30 +
0.32logA, R2 = 0.41; theequationforFinlandwas logS = 0.23 + 0.34logA,R2
=
0.40.
ofspeciesaccumulation
(fig.1),a setof51 small
On thebasisofoursimulation
a
lakesin Finlandwouldhave an averageof 16.1 species,whichstillrepresents
of the regionalfaunathanwhatwe foundin 51
higherproportion
significantly
accumulatedmorerapidlyin
Wisconsinlakes (z-test,P < .01). Species initially
a higherbeta richnessin Wisconsin.DeWisconsinthanin Finland,suggesting
in cumulative
richness,lake setsfromthetworegions
spitethisinitialdifference
fish
convergewithregardto richnessoftheirsmall-forest-lake
wouldeventually
were22.9 speciesforFinnish
faunas.ValuesofS. calculatedfromthesimulation
lakes and 24.5 forWisconsin.Because alpha richnessdid not differbetween
THE AMERICANNATURALIST
352
O
25
ui(20
000000000
C/) 1,5
u0 10
0
10ogo
*g
I
WISCONSIN
ui0
co
z
FINLAND
5.
0
20
60
40
100
80
120
NUMBER OF LAKES
number
ofspeciesina setofsmallforestlakesversusthe
FIG. 1.-The total(cumulative)
numberof lakesin theset,based on a random-lakes
selection-simulation
exercise(see the
werefromthe studylakes in Finland(N = 113) and
text).Data used in the simulation
simulations
Wisconsin(N = 51). As an exampleofthevariability
amongindividual
(N =
limitsare givenforsetsof sevenlakes.
100),95% confidence
7 .
0
7
REGIONAL
ENRICHMENT
LOCAL SATURATION
6
ZI 5-...........-T
< 24
co 3 ui
2-/
fl. 1-/
0
10
20
30
40
50
60
70
REGIONAL SPECIES RICHNESS
FIG. 2.-Relations betweenlocal and regionalspeciesrichnessforfishassemblagesof
and Wisconsin
The relation
for
smallforestlakesin Finland(opentriangle)
(solidtriangle).
was comparedwitha modeloflocal saturation
Wisconsin
(dashedline)andregionalenrichobservedinFinland.Valuesforlocalrichness
ment(dottedline),on thebasisoftherelation
intervals.
are meansofindividual
assemblages;verticallinesare 95% confidence
regions,therelationof local to regionalrichnesswas nearlyasymptotic
(fig.2),
in local assemblagespredominated.
thatecologicalsaturation
suggesting
Fish Distributions
Occurrence
sequences.-With theconsistent
exceptionofcruciancarp,nearly
orderedsequencesofoccurrence
all speciesexaminedinFinlandhadsignificantly
more
forpH, area, isolation,and conductivity
(table2). Moreover,significantly
in thesame direction
Finnishspeciesthanexpectedweredistributed
alonggra-
INTERCONTINENTAL
FISH-ASSEMBLAGE
COMPARISON
353
TABLE 2
OCCURRENCE
SEQUENCES WITH FIVE ENVIRONMENTAL VARIABLES FOR FISHES IN
SMALL LAKES OF FINLAND AND WISCONSIN
SIGNIFICANT Z VALUES*
TOTAL Z VALUES
ENVIRONMENTAL
VARIABLE
Finland:
pH
Lake area
Lake isolation
Conductivity
Maximumdepth
Wisconsin:
pH
Lake area
Lake isolation
Conductivity
Maximumdepth
Positive
Negative
Positive
0
7
0
9
8
0
9
8
.040
.004
.004
.040
1
7
1
11
.006
0
7
0
0
1
4
0
2
7
0
7
1
5
0
4
2
1
9
0
1
2
8
4
7
Negative
Pt
.004
10
4
8
5
-
.038
.388
.388
.744*
9; forWisconNOTE.-Species occurringin more thanfivelakes were analyzed (forFinland,N
sin, N = 12). Standard normal variates (z values) were determinedfromMann-WhitneyU-tests.
Positive z values indicate a tendencyfor species to be presentin lakes with smaller values of the
environmental
variables; negativez values show a trendtowardoccurrencein lakes withlargervalues.
* P < .05.
t Probabilitythat at least the observed numberof the total negative (or positive for isolation) z
values occurredby chance, on the basis of the binomialdistribution.
factors.Lakes inwhichtheseFinnishspecieswere
dientsofallfiveenvironmental
presentwereless acidic,larger,higherin conductivity,
deeper,and less isolated
thanlakeswithoutthesespecies.
did notexistforWisA comparable,commonpatternof similardistributions
of morethanhalfof thespecieswere
consinspecies(table2); thedistributions
orderedonlyalong the pH gradient.For lake area and isolation,
significantly
northern
pike,black bullhead,whitesucker,and yellowperchhad orderedseinlarger,less isolatedlakes.Pike
morefrequently
quences,occurring
significantly
in
found
more
often
shallow
were
and bullhead
lakes, whereasbluegilland
in
more
bass
occurred
of
largemouth
frequently deeperlakes. Onlyforgradients
more
were
Wisconsin
than
lake
area
distribpH and
significantly
species
expected
thesespecieshadhigher
utedinthesamedirection
(table2); lakescontaining
pH's
andlargerareas thanlakes lackingthem.
Species co-occurrence.-Of 36 species pairsexaminedin Finland,23 (64%)
showedpositiveco-occurrences,12 (33%) exhibiteda patternof neutralcooccurrence,and only 1 (cruciancarp and perch) displayednegativeco-occurrence.Each ofthe9 speciesexaminedinFinlandexhibited
positiveco-occur2
most
co-occurred
withmore
other
least
with
at
rencepatterns
species;
positively
66
made
In
of
others.
of
the
half
than
contrast,
pairwisecomparisons
among
whereas50
Wisconsinspecies,only11 (17%) revealedpositiveco-occurrences,
(76%) exhibitedneutralco-occurrence
patternsand 5 (8%) displayednegative
withpiinvolvedcentralmudminnows,
co-occurrences
5
all
patterns;
negative
354
THE AMERICANNATURALIST
bass andnorthern
pikeandtheassociatedbluegill,
pumpkinscivorouslargemouth
differed
significantly
seed, and whitesucker.Overall,patternsofco-occurrence
between regions(G = 22.1, df = 2, P < .001).
Connorand Simberloff
(1983,p. 461) pointedout thatgeneralproceduresfor
failto accountforexpectedco-occurrences
co-occurrence
caused by
examining
For our Finnishdata set, such
the "omnipresent"species-arearelationship.
omnipresent
patternsalso includedrelationsofrichnesswithpH, isolation,conrelaand depth(table2). To correctforsimilarspecies-environment
ductivity,
tions,we repeatedour co-occurrenceanalyses,except thatfor each pair of
species,we includedonlylakes havingat least as manyspecies as the most
depauperate
assemblagein whichthetwospecieswerefound.In thisreanalysis,
in Finlanddroppedto only9 (25%), inthenumberof positiveco-occurrences
thecomofneutralpairsto26 (72%). Thesechangesreflected
creasingthenumber
monpatternof occurrencesequencesdescribedabove. Few changesoccurred
in pairwisecomparisonsfor Wisconsin;3 additionalnegativeco-occurrences
involvednorthern
redbellydace withthepiscivorouslargemouth
bass, northern
remained
pike,and yellowperch.Despite thesechanges,overalldistributions
betweenregions(G = 6.4, df = 2, P < .05).
different
Patterns of Species Composition
Wisconsin.-An earlierstudy(Tonnet al. [1983],whichused thedata set of
Tonn and Magnuson[1982]and a portionof Rahel's [1984]data) dividedfish
Wisconsinlakes into threeassemblagetypes
assemblagesof small,northern
Rahel(1984)subsequently
subdivided
(mudminnow,
pike,bass; table3). Although
themudminnow
becauseof
assemblagetypeintotwo(Umbra-Perca andcyprinid)
theabsenceofmanycyprinid
(minnow)speciesinboglakesoflowpH, thatfinerscale subdivisionwas not evidentin analysesof our largerdata set. Rahel's
"centrarchid"
assemblagesare equivalentto ourbass assemblagetype.
classified84% ofthelakesin termsof
Multiplediscriminant
analysiscorrectly
whichassemblagetypetheycontained(table4; see also table9). Combinations
of
environmental
severity(low pH, low winteroxygen),bioticseverity(especially
fromtheseconditions
andthepresenceorabsenceofrefuges
predation),
appeared
and occurrencepatternof assemto be largelyresponsibleforthecomposition
blage types.Mudminnowassemblageswere foundin small,shallow,isolated
had low levelsofdissolvedoxygenduringthewinter(Tonn
lakesthatfrequently
and Magnuson1982; Tonn and Paszkowski1986). These assemblageslacked
specializedpiscivores(largemouth
bass, northern
pike)and weredominated
by
northern
small,soft-rayed
species (centralmudminnow,
redbellydace, golden
shiner,and othercyprinids),
manyofwhichrarelyoccurredin theotherassemblagetypes.Bass assemblagesalso occurredin small,isolatedlakes,butonlyin
hadhigherlevelsofwinter
lakesthatweredeeperandtherefore
dissolvedoxygen
(Tonnand Magnuson1982;Rahel 1984).In additionto largemouth
bass, these
of large,spiny-rayed
assemblageswerecomposedprimarily
species.Pike lakes
thanmudminnow
werelargerand moreproductive
or bass lakes,and although
thewinter,
theywereshallowandhadlow levelsofdissolvedoxygenduring
they
werewellconnectedto streamsthatcouldproviderefuges
fromseasonallyharsh
COMPARISON
FISH-ASSEMBLAGE
INTERCONTINENTAL
355
TABLE 3
RELATIVE FREQUENCIES
OF OCCURRENCE OF FISH SPECIES, AND OTHER COMMUNITY
THREE ASSEMBLAGE TYPES IN NORTHERN WISCONSIN LAKES
CHARACTERISTICS, IN
ASSEMBLAGE TYPE
(N = 8)
Bass
(N = 23)
Mudminnow
SPECIES
Yellow perch
Centralmudminnow
Largemouthbass
Bluegill
White sucker
Black bullhead
Pumpkinseed
Golden shiner
Northernpike
Yellow bullhead
Black crappie
Northernredbellydace
Brook stickleback
Rock bass
Iowa darter
Blacknose shiner
Finescale dace
Fathead minnow
Bluntnoseminnow
Pearl dace
Common shiner
Redhorse
Smallmouthbass
Total no. of species
Species richness:
Mean no. of speciesa
Range
No. of unique speciesb
.88
.12
.25
.38
.88
1.00
.75
.38
1.00
.25
.25
...
...
.50
.25
.12
...
...
.25
...
.12
.12
...
17
.91
.43
.78
.52
.26
.09
.30
.17
.13
.30
.22
...
...
.04
...
...
...
...
...
...
...
...
.04
13
.60
.90
...
...
.05
.20
...
...
12
7.5t
5-10
1
4.2t
2-7
0
3.3t
1-11
5
Pike
(N
=
20)
ALL LAKES
(N = 51)
.78
.57
.39
.29
.27
.27
.25
.25
.22
.18
.14
.12
.10
.10
.10
.08
.06
.06
.04
.04
.02
.02
.02
...
.30
...
...
...
.30
.25
...
.15
.15
.15
.15
...
.10
...
23
4.4
a
different
fromeach other(Tukey-Kramertest).
Means withthe same symbolare not significantly
Overall ANOVA, F = 11.3, df = 2,48, P < .001.
b Species thatoccur in two or more lakes but in only one assemblage type.
abioticconditions.Like bass assemblages,pikeassemblagesconsistedprimarily
are
of large,spiny-rayed
species. These patternsand ecologicalrelationships
discussedindetailelsewhere(TonnandMagnuson1982;Rahel1984;Magnusonet
al., in press).
Finland.-Ordinationof Finnishfishassemblagesbased on species' presence
distinctassemblagetypes(Tonnet al., unpublished
or absencedid notidentify
data); rather,a hierarchicalcontinuumof species richnessbased on species
we dividedthe
additionwas suggested.To facilitate
analysisof thiscontinuum,
assemblagesintothreegroupsbased on species richness(table5): groupI included assemblageswith 1-3 species; group II assemblagescontained4-6
species; and groupIII lakes had 7-10 species. Examinationof these groups
Thiscontinuum
of species
revealeda nestedpatternofassemblagecomposition.
continuum
(table6). Areawas themost
composition
paralleledan environmental
TABLE 4
MEAN VALUES OF ENVIRONMENTAL FACTORS FOR THREE FISH ASSEMBLAGE TYPES IN
NORTHERN WISCONSIN LAKES
ASSEMBLAGE TYPE
FACTOR
Pike
(N = 8)
Bass
(N = 23)
Mudminnow
(N = 20)
UNIVARIATE F
(df = 2,48)
pH
Lake area (ha)
Lake isolationa
Conductivity([iS at 20?C)
Maximumdepth (m)
7.2
41.6
0.7
59.3
2.1
5.8
6.1
73.4
12.3
6.3
5.7
3.5
72.2
19.0
3.5
10.7***
23.2***
49.1***
22.1***
25.4***
beforeanalyses. Equations forthe two canonNOTE.-All factorsexcept pH were log-transformed
ical variables (X, Y) froma discriminantanalysis are as follows:X = - 1.01 + 1.73log(isolation + 1)
+ O.241og(depth) - 1.04log(area + 1) - 0.621og(conductivity)- 0.03pH; Y = -3.27 0.621og(isolation + 1) + 4.881og(depth) + 1.851og(area + 1) - 2.861og(conductivity)+ 0.53pH.
a See App. B forformulaand description.
*** P < .001.
TABLE 5
RELATIVE FREQUENCIES
OF OCCURRENCE OF FISH SPECIES, AND OTHER COMMUNITY
THREE SPECIES-RICHNESS GROUPS IN FINNISH LAKES
GROUP
SPECIES
Core species:
Eurasian perch
Northernpike
Roach
Burbot
Ruffe
Secondary species:
Crucian carp
Bream
Bleak
Tench
Satellite species:
Minnow
Rudd
I
1-3
Species
(N = 58)
GROUP
4-6
Species
(N = 41)
GROUP
III
7-10
Species
(N = 14)
ALL LAKES
(N = 113)
.86
.50
.14
.07
.14
1.00
.98
.80
.85
.56
1.00
.93
1.00
1.00
1.00
.92
.72
.48
.46
.39
.14
.07
.07
.12
.05
.57
.79
.50
.50
.17
.12
.11
.08
...
...
...
.03
...
Ninespine stickleback
...
Miller's thumb
Vendace
...
...
.02
.07
...
...
.02
...
.02
.02
...
.14
Dace
...
Smelt
Ide
White bream
Zander
Whitefish
...
...
...
...
...
...
...
...
...
...
7
1.9
0
15
4.8
1
Total no. of species
Mean species richness
No. of unique speciesa
II
CHARACTERISTICS, IN
.02
...
.21
.14
.14
.14
.07
16
8.1
4
a Species thatoccur in two or more lakes but in only one species-richnessgroup.
.03
.03
.01
.01
.01
.04
.03
.02
.02
.02
.01
20
3.7
FISH-ASSEMBLAGE
INTERCONTINENTAL
357
COMPARISON
TABLE 6
MEAN VALUES OF ENVIRONMENTAL
FACTORS FOR THREE SPECIES-RICHNESS
GROUP
FACTOR
pH
Lake area (ha)
Lake isolationa
Conductivity([iS at 20?C)
Maximumdepth (m)
I
1-3
Species
(N = 58)
5.9
3.1
45.5
19
7.6
GROUP
II
4-6
Species
(N = 41)
6.4
10.2
11.3
24
8.1
GROUPS IN FINNISH LAKES
GROUP
III
7-10
Species
(N = 14)
6.6
13.8
7.9
40
10.2
F
(df = 2,110)
UNIVARIATE
18.3***
29.7***
19.2***
8.8***
1.3
beforeanalyses.
NOTE.-All factorsexcept pH were log-transformed
a See App. B forformulaand description.
*** P < .001.
the species-richness
factordistinguishing
groups,inenvironmental
important
groupIII
creasingfromthedepauperategroupI lakes to themorespecies-rich
variablesincludedlake isolation(greatestin groupI) and
lakes. Otherimportant
pH (highestin groupIII).
Five corespecies(Hanski1982)appearedinall threerichnessgroupsandwere
nearlyubiquitousingroupIII lakes(table5). Perchandpikewereusuallypresent
in groupII lakes and in 63% of two-specieslakes; perchwerefoundin 68% of
lakes. Secondaryand satellitespeciesweregenerally
absentfrom
single-species
in progressively
withgreaterfrequency
richerasdepauperatelakes, occurring
exceptiontothis
semblages.Cruciancarp,a secondaryspecies,was an important
in 21% of single-species
lakes.
occurring
pattern,
ourmultivariate
comFor Finnishassemblages,we werealso able to perform
munity
analyseson a secondscale,usingbiomassrelativeabundance.Ratherthan
each witha different
threegroupswere distinguishable,
a singlecontinuum,
gavesimilarresults(Tonnet
species(fig.3; table7); DCA ordination
predominant
data). The threeassemblagetypesconsistedof 58 assemblages
al., unpublished
dominated
byroach(or,rarely,pike),and 8
byperch,47 assemblagesdominated
speciesusuallycontribassemblagesdominatedby cruciancarp. The dominant
species. As exutedat least twiceas muchbiomassas did the second-ranked
pected fromthe presence-absenceanalyses,assemblagetypesdid not differ
fewspecieswererestricted
to one asemblagetype
in speciescomposition;
greatly
(table7).
characteristics
of the lakes of each Finnishassemblagetype
Environmental
as indicatedby discriminant
analysis(table8). Thisfivewererelatively
distinct,
on Wisconsinlakes, correctly
variableanalysis,comparableto one performed
classified68% of the lakes (table9). The indexof local isolationwas the most
the threegroups;roachlakes were significantly
factordistinguishing
important
variables
less isolatedthaneitherperchor cruciancarplakes. Otherimportant
includedmaximum
depth(lowerin cruciancarplakes) and pH (higherin roach
lakes).
THE AMERICAN NATURALIST
358
6
/|PERCH Assemblages= O
/ROACH
Assemblages=0
CRUCIAN CARP Assemblages=A
0
0
P.42
'.4
0-2
-1
0
1
2
1st PRINCIPAL COMPONENT
3
FIG.3.-Ordinationoffishassemblagesin 113Finnishlakes,basedon therelativeabundanceofspecies.Threetypesofassemblagesaredistinguished,
identifiable
bythepredominantspeciesin theassemblages.The first
threeprincipal
components
explained20%, 16%,
and 13%ofthetotalvariance,respectively.
IntercontinentalComparisons of Assemblage-Environment
Relations
Fromtheabove community
analyses,itappearedthatfish-assemblage
typesof
in similarways alongenvironmental
thetwo regionsweredistributed
gradients
oflakescontaining
(cf.tables4 and 8). Characteristics
perch,roach,and crucian
carpassemblagesinFinlandparalleledthoseofbass,pike,andmudminnow
lakes,
in Wisconsin.Roach and pike lakes were generallylarger,less
respectively,
acidic,and less isolated,relativeto theotherlake types.Cruciancarpand mudminnowlakestendedto be small,shallow,and isolated,whereasperchand bass
isolatedbutrelatively
lakesweretypically
deep.
thisapparentpattern,
we used discriminant
To investigate
functions
fromone
forthesecondregion(rather
thanas descriptors
regionas a prioripredictors
ofthe
originaldata set, as used above; see also Cody 1978;Tonn et al. 1983). We
calculatedcanonicalvariatescoresforeach Finnishlake usingfunctions
generated by the discriminant
analysisof Wisconsinlakes (table 4) and calculated
canonicalvariatescoresfortheWisconsinlakesusingdiscriminant
functions
from
TABLE 7
MEAN RELATIVE ABUNDANCE
OF FISH SPECIES, AND OTHER COMMUNITY CHARACTERISTICS, IN THREE
ASSEMBLAGE TYPES IN FINNISH LAKES
ASSEMBLAGE TYPE
SPECIES
Roach
(N = 47)
Eurasian perch
Northernpike
.23
.18
Roach
.50
Ruffe
Crucian carp
Bream
.02
Bleak
Tench
Perch
(N = 58)
Crucian
Carp
(N= 8)
.86
.06
.06
.08
.53
.11
.ooa
.20
.OOa
.02
Burbot
Total no. of species
Species richness:
Mean no. of speciesb
Range
No. of unique speciesc
.02
...
.OOa
.ooa
.00a
.85
.03
.00a
...
.ooa
.ooa
...
.ooa
.ooa
17
.04
16
2.7t
1-9
2
5.3t
1-10
1
ALL LAKES
(N = 113)
.02
.03
.05
.01
.ooa
.ooa
5
2.Ot
1-5
0
20
3.7
NOTE.-Only species occurringin fiveor more lakes are listed.
a Presentin at least one assemblage.
b Means withthe same symbolare not significantly
fromeach other(Tukey-Kramertest).
different
Overall ANOVA, F = 28.1, df = 2,110, P < .001.
Species thatoccur in two or more lakes but in only one assemblage type.
TABLE 8
MEAN VALUES OF ENVIRONMENTAL
FACTORS FOR THREE ASSEMBLAGE TYPES IN FINNISH LAKES
ASSEMBLAGE TYPE
FACTOR
Roach
(N = 47)
Perch
(N = 58)
pH
Lake area (ha)
Lake isolationa
Conductivity([LS at 20?C)
Maximumdepth (m)
9.6
8.7
30.2
8.1
6.5
5.9
6.1
40.5
19.4
8.7
Crucian
Carp
(N = 8)
UNIVARIATE F
(df = 2,110)
6.0
2.2
50.3
16.7
3.3
14.0***
10.9***
18.9***
7.6***
8.7***
beforeanalyses. Equations forthe two canonNOTE.-All factorsexcept pH were log-transformed
ical variables(X, Y) froma discriminant
analysis are as follows:X = 5.23 + 1.21log(isolation + 1) 0.16log(depth) - 0.31log(area + 1) - 0.241og(conductivity)- l.OOpH;Y = 1.59 + 0.52log(isolation + 1) + 2.731og(depth) + 1.341og(area + 1) + 1.04log(conductivity)- 0.67pH.
a See App. B forformulaand description.
*** P < .001.
THE AMERICAN NATURALIST
360
TABLE 9
ANALYSES
MATRICES
RESULTING
FROMDISCRIMINANT-FUNCTION
CLASSIFICATION
FISH ASSEMBLAGE
TYPE
LAKEENVIRONMENT
TYPE
Pike Bass
N
Pike:
W
F
Bass:
W
F
Mudminnow:
W
F
% correct:
W
F
Mudminnow
8
23
20
8
8
1
1
2
2
0
0
20
17
3
4
0
0
2
5
15
14
100
100
87
74
75
70
FISH ASSEMBLAGE
TYPE
LAKEENVIRONMENT
Roach
TYPE
N
Roach:
W
F
Perch:
W
F
Crucian carp:
W
F
% correct:
W
F
Perch
Crucian
Carp
47
58
8
34
35
12
13
1
1
9
9
33
36
1
1
4
3
13
9
6
6
72
74
57
62
75
75
NOTE.-Lakes of each fishassemblage type were classifiedinto groups accordingto discriminant
functionsfromenvironmentalanalyses. Presentedare the numberof lakes of each assemblage type
thatwere classifiedinto each lake environmenttype and the percentageof lakes thatwere correctly
classified.W (Wisconsin) and F (Finland) are the sets of lakes fromwhichthe discriminantfunctions
were derived.
five-variable
thecomparable
analysisofthelakesinFinland(table8). Usingthese
canonicalvariatescores,new discriminant
analyseswere then
between-region
whether
relations
thatseparatedlakesof
foreach regionto determine
performed
couldsuccessfully
lakes
different
distinguish
assemblagetypeson one continent
containing
analogousassemblagetypeson theothercontinent.
analyses
Discrimination
amongassemblagetypesusingthesebetween-region
was nearlyas good as in theoriginalwithin-region
analyses(table9). Distributionsof Finnishlakes havingperch,roach,and cruciancarp assemblagesdiffromeach otherin discriminant
feredsignificantly
space usingthe two canonanalysisof variance,
ical variablesderivedfromWisconsinlakes (multivariate
MANOVA,P < .001).CanonicalvariablesderivedfromtheWisconsindiscrimiclassified73 of the 133Finnishlakes (65%), compared
nantfunctions
correctly
derivedfromtheFinnishlakes themwith77 correct(68%) based on functions
than40
selves.This was a significantly
greaternumberofcorrectclassifications
analysesin whicheach Finnishlake
(36%), theaverageof 20 cross-continental
thatthetotal
was randomly
assignedto an assemblagetype,withtherestriction
oflakesin each typewas thesameas in theoriginalanalysis(t = 6.9, df
number
=
19, P < .001).
ofWisconsinlakeswithbass,pike,andmudminnow
assemblages
Distributions
fromeachotheralongcanonicalvariablesderivedfromFinnishlakes
also differed
classified39 of 51
(MANOVA, P < .001). These canonicalvariablescorrectly
Wisconsinlakes (76%) yersus43 correctwiththe originalWisconsinvariables
(84%); thiswas greaterthanthe22 correct(43%) produced,on theaverage,with
INTERCONTINENTAL FISH-ASSEMBLAGE COMPARISON
361
assignedto thethreeassemblagetypes
20 analysesinwhichlakeswererandomly
(t = 5.9, df = 19,P < .001). Analogous assemblage typesare indeed distributedin
space in parallelwayson thetwocontinents.
environmental
DISCUSSION
Our comparativeanalysesof fishassemblagesin a Nearcticand Palearctic
of
thatreflect
jointbutvariableinfluences
patterns
regionrevealcommunity-level
and
are
regional
that
and
those
and
local
contemporary
are
that
phenomena
historical.Althoughour assessmentof therelativerolesof thesetwogroupsof
evidence,itis apparent
andbynecessity,reliedon indirect
processesfrequently,
by phenomena
primarily
are
influenced
of
fish
assemblages
features
thatcertain
other
scale
dominate
the
on
alternative
operating
whereas
processes
on one scale,
proand
study
of
these
differences
be
aware
must
ecologists
features.Clearly,
(Allen
being
investigated
trait
the
to
community
scale
on
the
appropriate
cesses
and Starr1982).
Species Richness
to differences
in
Historicalfactorsare generallyrecognizedas contributing
manyfamiliesoffreshwater
regionalspeciesrichness(Westoby1988).Although
between
as a resultof Cenozoicconnections
fishesare Holarcticin distribution
effectsof Pleistocene
NorthAmerica,Europe,and Asia (Briggs1986),differing
Europe than in
glaciationresultedin a more depauperatefauna in northern
similarregionsin centralNorthAmerica.Because of the lack of
climatically
occurredwithin
(Banarescu1975),widespreadselectiveextinction
nearbyrefuges
Europeanfauna,withconditionsfavoringlarge,long-lived,and
the northern
Wisconspecies(Mahon1984;Moyleand Herbold1987).In contrast,
migratory
sin's fishfaunaenjoyeda large,nearbyrefuge(and a centerof speciation)in the
MississippiRiverbasin (Burrand Page 1986),withconditionsfavoringsmall,
narrowrangesof habitats(Mahon
short-lived
speciesor speciesusingrelatively
1984).
European
Mahon (1984) suggestedthatlow species richnessin the northern
faunaand the absence of a numberof NorthAmericanfamilies(e.g., Centrarofbroad
anddevelopment
competition
intraspecific
chidae,Ictaluridae)promoted
oftheEuropeanfaunacan be
in Europe.A largeproportion
habitat-use
patterns
foundin rivers,streams,large lakes, and smallforestlakes, whereasNorth
in fewertypesof
Americanspeciestendto be morespecialized,each occurring
fishes
habitat(MuusandDahlstr0m1978;Becker1983).Onlya thirdoffreshwater
Wisconsinoccurinsmallforestlakes,andbetarichnessis significantly
innorthern
highertherethanin Finland.Greaterspecializationand higherspatialturnover
species (Brownand Maurer1989),
maybe a commonpatternforsmall-bodied
partoftheWisconsin,butnotFinnish,fauna.
whichmakeup a significant
PostglacialFennoscandiahas been coveredby severalbodiesofbrackishand
freshwater(Svardson1970,1976),in whichmostspeciesofthemodernregional
faunaprobablylived (Nordqvist1903). Because smalllake basinshad already
believedthat
formed
bythetimeofAncylusLake (8,500-8,000yrago),Nordqvist
362
THE AMERICANNATURALIST
mostfishessimplyremainedin the smallerbasinsas waterlevels droppedand
remainedsuitable.If so, a largesetofforestlakes
persistedas longas conditions
faunanotonlybecause of
of theregionalfreshwater
containsa highproportion
from
butbecause theforestlake faunais a remnant
theirecologicalgenerality
historicalextinctions
mayhave been moreimportant
AncylusLake. Therefore,
ofindividthespeciesrichnessandcomposition
indetermining
thancolonizations
Wisconsin(Attig
ual lakes. The absence of largepro-glaciallakes in northern
less isolatedregionally
fromglacialrefuges,
Wiscon1984)suggeststhatalthough
thanwereFinnish
of
from
local
sources
immigrants
sinlakesweremoreisolated
in gamma(regional)and beta (among-lake)
richness,
lakes. Despitedifferences
fishassemblageswithinindividuallakes of thetworegionsrevealedconvergent
and similarlevels of richness.Lakes of the two regionshad similarareas and
bothofwhichcouldhave contributed,
or indirectly,
directly
to
waterchemistry,
Greater
and
Keast
and
of
local
richness
less
levels
depth
1984).
similar
(Eadie
richnessinFinnishlakes,all else being
isolationbothshouldhavefavoredgreater
equal; the increasedbeta richnessin Wisconsin,suggestedby figure1, and an
in theNorthAmericanfauna(Mahon
increaseddegreeof habitatspecialization
forthehigherregionalrichnessinWisconsin.The
1984)couldhavecompensated
thatfoundin
rangeoflocal speciesrichnessinourstudylakesalso approximated
USSR
and
Jaroslavl
lakes
of
sized
(Zhakov
1974),
provinces,
Vologda
similarly
Sweden(Alm1960,1961),and Ontario(Eadie et al. 1986).
relationof local to regionalrichness(fig.2) can be
The nearlyasymptotic
oflocal(vs. regional)processes
oftherelativeimportance
viewedas an indication
local diversity
relationalso has
in determining
(Ricklefs1987).The asymptotic
and marinesystems(Cody 1966;Heck 1979;Bohnsack
beenfoundin terrestrial
and Faaborg1980),suggesting
somegenerality
ofthe
andTalbot1980;Terborgh
pattern.
have stressedthatsaturation
wouldoccurbecausecomStandardexplanations
species(Cornell1985).
petition
imposesa fixedlimiton thenumberofcoexisting
to increasedhabitatspecialization
ofeastCompetition
probablyhas contributed
ernNorthAmericanfishesrelativeto thosein northern
Europe(Mahon 1984).
andhabitatseverity
ofsmall
However,theisolation,ecologicalimpoverishment,
also have structured
fish
forestlakesandtheoccurrenceofsize-limited
predation
assemblagesin smallWisconsinlakes (Rahel 1984;Tonnand Paszkowski1986,
than
1987;Magnusonet al., inpress).Thesefactorsareprobablymoreimportant
the numberof species in individualWisconsinlakes to
in limiting
competition
in Finland.
levelssimilarto thoseoccurring
relationbetweenlocal and regionalrichnessis notuniversal.
An asymptotic
between
Lawton(1984)and Cornell(1985,1986)bothfoundstrongcorrelations
systems,whichled themto conalpha and gammarichnessforhost-herbivore
andthatlocalinteractions
cludethattheseassemblageswerenotsaturated
among
Causes behindthedifferent
patternsare notclear.
specieswerenotimportant.
on thetypeof relationobservedbetweenlocal and regional
Potentialinfluences
richnessinvolvethesizes oflocal assemblagesand regionalspeciespools in the
Pool "exhaussystemsbeingcompared(J. Lawton,personalcommunication).
INTERCONTINENTAL FISH-ASSEMBLAGE COMPARISON
363
tion' (Lawton and Strong1981,p. 326) can producean asymptotic
relation;
richnessin systemsreported
to havelinearrelations
alternatively,
might
level-off
iflocalitieswithlargerregionalpoolsarediscovered.Finally,theresimplyappear
"kinds" of communities
forwhichdifferent
to be different
processes,operating
on different
scales, are important
(Schoener1986a;Westoby1988).Currently,
a
generalexplanationaccountingfor variouslocal-regional
relationscannotbe
provided.
Fish Distributionand Assemblage Composition
A proximate
factorinvolvedin thehigherbetarichnessofWisconsinwas the
irregular
patternsof occurrenceof Wisconsinspeciesalongenvironmental
grain
Finland
most
whereas
species
displayed
similar,
regular
occurrence
dients,
patternsalong the same gradients.Resultsof co-occurrence
analysisand the
occurrencesequencesofindividual
speciessuggestthatindividualistic
responses
ratherthanbioticinteractions
to theenvironment,
amongspecies,playedmajor
rolesin creatingoverallpatternsof occurrenceand assemblagecomposition
in
Finlandat thelevel of species' presenceor absence.Strong,bioticinteractions
favorable
thatcan eliminate
lakescouldwellhaveresulted
speciesfromotherwise
in haphazardoccurrencesequencesalong environmental
gradients.Nearlyall
orderedsequencesofoccurrence
speciesexaminedinFinlandhadsignificantly
for
fouroffiveenvironmental
low numbersof
factors;combinedwithexceptionally
thissuggeststhatnegativeinteractions
negativeco-occurrences,
werenotimporinsimilarways
tant.Rather,itseemsthatspecieswereresponding
independently
to an overallenvironmental
gradient.These patternsare consistentwiththe
observation
that,on the scale of species' presenceor absence,Finnishassemratherthandiscretegroups;thatis, assemblagesare
blagespresenta continuum
fashion(table5; see also Cornell1986;Schoener1986b).
nestedin a hierarchical
of species richnessand composition,
Zhakov(1974) also noteda continuum
withthesame fivecore speciesbeingubiquitousin richerassemblages;he also
thisas a formof
describeda regularpatternof speciesloss. Zhakovinterpreted
intoothers,"
of certainichthyocoenoses
succession,"regulartransformations
inthenumberof
andhe believedthat"thisprocessis accompaniedbyreduction
ofspeciesto each
speciesand a continuously
increasing
degreeofco-adaptation
other"(1974,p. 213).
can be viewedintermsoftheregionalandhistorthecontinuum
Alternatively,
outlinedbyNordqvist(1903),inwhichnearlyall speciespresent
icalprocessfirst
in thefaunagainedaccess to smalllake basinsat thetimeofAncylusLake. As
individual
conditions
andlimnological
climatic
changedwithin
basins,moresensior perished.In thisview,the currentorderedrichness
tive species emigrated
effectofprogresof speciestoleranceto thefiltering
a gradient
reflects
gradient
of small,isolatedforestlakes,comparedwith
environments
sivelydeteriorating
to thisdeterioration
in earlierlargelakes. Likelyfactorscontributing
conditions
thatdevelopas a
includetheincreasedacidityand decreasedhabitatcomplexity
floating
bogmatencirclestheshoreline
(Rahel1984)andtheincreasedprobability
accumulatesand depthdecreases(Tonnand Magas organicmatter
ofwinterkill
364
THE AMERICANNATURALIST
inducedextinction,
nuson1982).Thus,environmentally
augmented
by recolonizationinless isolatedlakes,is proposedas theprimary
ecologicalprocessbehind
in Finland.
continuum
theobservedpresence-absence
In contrast,less regularand consistentpatternsof occurrencesequencesfor
Wisconsinfishessuggestthatdistinct
groupsof speciesare morespecializedfor
and/orthatbiologicalinteractions
withinor among
specificlake environments
in determining
thesegroupsare important
species' presenceor absence. The
negativeco-occurrences,
involving
small-bodied,
soft-rayed
fishesand eitherpiscivoresorotherlarge-bodied,
are
spiny-rayed
speciesassociatedwithpiscivores,
withtheexistenceofdiscreteassemblagetypesin Wisconsinand
also consistent
of predationin determining
suggestthe importance
species composition
(Tonn
and Magnuson1982;Rahel 1984;Magnusonet al., in press).We believethata
betweenWisconsinand Finlandincommunity-level
majorreasonfordifferences
patternson the scale of species' presenceor absence is the abilityof North
Americanpiscivoresto excludemanysmallpreyspecies,forexample,central
northern
mudminnow,
redbellydace, and others(see also Tonnand Paszkowski
1986;Robinsonand Tonn 1989).In contrast,
predatorsand preycoexistin Finland,at leastin partbecause mostsoft-rayed
speciesin northern
Europe,includresemblewhitesuckersin Wisconsinin thattheycan growlarge
ingcyprinids,
enoughto acquirea size refugefrompredation(Tonnet al. 1989).
in structuring
can also be important
Finnishassemblages,
Bioticinteractions
buton thescale ofrelativeabundanceratherthanpresenceor absence.In most
lakes whereroachwas dominant,
perchpopulationsweremuchreduced,often
is theprimary
mechanism
making
up less than10%oftotalbiomass.Competition
dominanceby roachin moreproductive
lakes (Sumari1971;
behindthefrequent
thanis perch;in addition,
Persson1986).Roach is a moreefficient
planktivore
blue-green
algae and detritusserve as exclusiveresourcesforroach (Persson
1983,1987). Both factorsgive roach a competitive
advantagewherethesereabundant.In contrast,
sourcesarerelatively
perchlakesweremoreisolated,more
thanwerelakes dominated
acidic,smaller,and lowerin conductivity
by roach.
Manyperchlakes,in fact,containedonlyperchor perchand pike,withlow pH
filter
suchas roach(Overrein
et
apparently
actingas an effective
againstcyprinids
characteristics
ofparticular
lakes maymodify
or overal. 1981).Environmental
and thushave broader,assemblage-wide
ridebioticinteractions
consequences
(Perssonet al. 1988).
Isolated,small,andshallowlakesdominated
bycruciancarpwereenvironmenThistypeoflakefrequently
severewinter
tallymostdistinct.
experiences
hypoxia
an unfavorable
environment
tomostfishes.However,crucian
offers
andtherefore
well adaptedforsurviving
winterhypoxia(Holopainen
carpare physiologically
and Hyvarinen1985;Hyvarinenet al. 1985;Piironenand Holopainen1986)and
attainhighdensitiesinthesesevereanddepauperate
lakes(Holopainen
frequently
andPitkanen1985).In benignlakeswithricherassemblages,onlysparsepopulationsoflargecruciancarpoccur(table7; Hamrin1979;Piironenand Holopainen
1988)as a resultof predationand/orinterspecific
competition
(Svardson1976;
ofa body-sizerefugeto manyFinnishspecies,
Tonnet al. 1989).The availability
INTERCONTINENTAL FISH-ASSEMBLAGE COMPARISON
365
refuges
(Holopainenet al. 1988),mayprevent
withtheiruse ofstructural
together
piscivores.
lakes
from
containing
completeexclusionofpreyspecies
Relations
IntercontinentalComparisons of Assemblage-Environment
factorsand
betweenlocalenvironmental
andsimilarrelations
Becauseofstrong
to
makeand
we
were
able
both
in
regions,
of
local
assemblages
thecomposition
ability,
fish
of
This
type.
assemblage
intercontinental
predictions
test
successfully
usingassemblagetypesof largelyunrelatedspecies,is ecologicallysignificant
relations
thatsomeoftheseintercontinental
(Oriansand Paine 1983),suggesting
similaroperationsoflocal bioticor abioticprocesses.
reflect
of winterhypoxiaand lake isolationpreventsmostspecies
The combination
and cruciancarp
populationsin mudminnow
and maintaining
fromestablishing
bothcentralmudmindifferences,
and morphological
lakes.Despitephylogenetic
havedevelopedwaysofsurviving
nows(Umbridae)andcruciancarp(Cyprinidae)
(Gee 1981;Magnusonet al. 1983;Holopainen
severity
thistypeofenvironmental
tobioticinterac1985).However,bothspeciesalso arevulnerable
andHyvarinen
and enjoytheir
predation(moreso formudminnows)
tionssuch as size-limited
lakes (Tonn 1985;Tonnand Paszkowski1986;
greatestsuccessin single-species
Paszkowskiet al. 1989).
speciesand organizing
Somewhatless similarecologicallyare thecomponent
processesof bass (Wisconsin)and perch(Finland)assemblages.Abioticfactors
combinedwith
diversity,
and structural
low levels of pH, nutrients,
(primarily
assemblagesfor
highisolation)exclude severalspecies, creatingfundamental
intorealizedassemblagesby
thatcan thenbe shapedfurther
theseenvironments
in perchlakes
is especiallyeffective
filter
The environmental
bioticinteractions.
and often
ofcyprinids
theestablishment
(meanrichness,2.7 species),restricting
perchand,
tolerantand ecologicallygeneralized
leavingonlythephysiologically
theassemblages(RaskandArvola1985).Low
toa lesserextent,piketo dominate
frommanybass lakes(Rahel1984),butevenwherethe
cyprinids
pH also restricts
bass can preventthe
is morebenign,predationby largemouth
environment
et al. 1987).Othercore
oftheseandothersmallspecies(Carpenter
establishment
tolerspeciesofbass assemblages,yellowperchand bluegill,are physiologically
thatreducevulnerability
andhavemorphologies
generalized,
ant,areecologically
to predationby piscivores(Wahl and Stein 1988; Robinson1989). Withthe
exceptionof perch,the regionalabsence of species havingall threeof these
to theloweraveragerichnessofperch
in Finlandmaycontribute
characteristics
withbass assemblages.
assemblagesin comparison
ecologicallyare pike(Wisconsin)and roach(Finland)assemMost dissimilar
blages.Lakes ofthesetwotypesare thelargest,leastisolated,leastacidic,and
shouldbe
filters
ofthestudylakes;theirenvironmental
mostproductive
probably
that
is
it
and
unlikely manyspecies
moreporousthanthoseofotherlake types,
are also unableto excludeor
are excludedat thislevel.In roachlakes,predators
of
evenregulatemanypreypopulations(Perssonet al. 1988);a largeproportion
dominant
of
the
competitively
thefishbiomassintheseassemblagesis composed
dominanceby
roach.It is not clear,however,to whatextentthe competitive
366
THE AMERICANNATURALIST
predation
is mostlikely
roachresultsintheexclusionofotherspecies.in contrast,
fortheabsenceof mostminnowsand othersmall-bodied
speciesin
responsible
local
pikeassemblagesin Wisconsin(Tonnand Magnuson1982).Thus,although
assemblage
are similarinbothregionsand associatedwithdistinct
environments
and influence
types,dominantspecies in each regionare ecologicallydifferent
forthepresassemblagesvia different
processes.Historicalfactorsresponsible
in Finlandand small-bodied
speciesin Wisconsin
ence oflarge-bodied
cyprinids
observedbetweenanalogousasin the ecologicaldifferences
appearimportant
semblagetypes.
CONCLUSIONS
Our comparative,multiple-scale
approachallowedus to examineimportant
amenableto investigation
methods.By
by manipulative
questionsnottypically
intercontinental
employing
comparisonsof fishassemblagesfromhistorically
similarlocal environments,
in environmentally
faunasoccurring
we were
distinct
andhistorical
and
also able to expandthegeographical
scopeofourinvestigation
assess the relativeroles of local and regionalprocesses(Ricklefs1987).From
multivariate
analyses,we wereable to extractoverallstructural
complementary
data sets; by relatingthesepatternsto our mulpatternsfromthe community
tivariateanalysesof the lakes' environmental
features,we were thenable to
and initiatetheecologicalinterpretation
ofthecommunitygeneratehypotheses
A seriesofanalysesoflower-level
phenomena-forexample,the
levelpatterns.
of species pairs,and the
of individualspecies, the co-occurrence
distribution
accumulationof species among individuallakes-aided our interpretation,
and identified
ourhypotheses,
to commuprocessesthatcontribute
strengthened
associatedwith
hypotheses,
nity-level
patterns.Some of theseprocess-oriented
are amenableto direct,experimental
testing(Tonnand
lower-level
phenomena,
Paszkowski1986;Tonn et al. 1989).However,we stressthat,althoughmany
in termsof the population-and
community-level
patternsmay be interpreted
individual-level
processesof autecology,it is unlikelythatautecologicalstudies
Andwithoutstudiesoflarge-scalephenomwillactuallydiscoversuchpatterns.
fromeven a largenumberof
to drawusefulgeneralizations
ena, it is difficult
microecological
manipulations
(Brownand Maurer1989).A balanced,complementary
approachis calledfor.
An outcomeof thisapproachis our viewthatlocal fishassemblagesin small
thatoperate,alongwithuniqueor
forestlakes are productsof a seriesoffilters
unpredictable
events,on several spatialand temporalscales (fig.4; see also
Simpson1953;SmithandPowell1971;Holmes1986;Tonn1990).Higherlevelsof
withonlya portionoftheproperties
act as filters,
passing
biologicalorganization
lowerlevels.Although
theselarger-scale
and influencing
filters
directly
through
at the adjacentlowerlevel,theyalso can influence
affectcharacteristics
levels
whichspecies are availableto entersubsequent
down by determining
farther
filters.
Local assemblagesare immediateproductsof local and contemporary
proarestrong,
ofregionalandhistorical
filters
thentheimpactof
cesses,butifeffects
FISH-ASSEMBLAGE
INTERCONTINENTAL
Regional
Regional
Processes
\
/
\
Lake-Type
Local Processes
Local
Community
Structure
,northernWisconsin
lake district
* Abiotic conditions
Characteristics
Small-Lake
Species Pool
367
* Pleistoceneevents
* Dispersal barriers
* Climaticdifferences
Geomorphic/edaphic
limits
"
eg
Regional
Species Pool
COMPARISON
. Resource distribution
* Habitat stability
& complexity
CA
e.g., small lakes in
northernWisconsin
0 Area
*
*
*
*
Structural
complexity
Isolation
Abioticconditions
Biotic interactions
e.g., Jude Lake
FIG. 4.-Conceptual modelof theoriginand maintenance
of fishassemblagesin small
theeffects
forestlakes,illustrating
offilters
on faunalcharacteristics
andcommuoperating
on different
scales.Modified
fromTonn1990.
nitystructure
spatialand temporal
factorson aspectsof individual
theselarger-scale
assemblagescan be significant
structure
is
(Holmes 1986;Ricklefs1987).Whethera traitlikelocal community
in two regionsdepends notonlyon the matchoflocal phenomsimilaror different
ena butalso on therelativeeffects(e.g., "pore size" or "selectivity")oflargerSimilarities
and differences
betweenfishassemblagesin smallforest
scale filters.
and differences
of local and
lakes of Finlandand Wisconsinreflectsimilarities
368
THE AMERICANNATURALIST
thatis, thelakesin whichtheassemblagesoccurand thefaunas
regionalfilters,
fromwhichtheyare derived.
SUMMARY
of fishassemblagesfromFinlandand northern
We comparedcharacteristics
in environsimilarity
to
scales
community-level
investigate
Wisconsinon several
has only
Finland
lakes.
Although
small
different
but
faunistically
similar
mentally
differ
not
did
richness
local
species
pool,
its
in
species
fishes
regional
as
many
half
assemblages
among
in
composition
species
Variability
two
regions.
the
between
of the faunacould
thata largeproportion
was lower in Finland,suggesting
whereas
conditions,
maintain
populationsacrossa broadrangeofenvironmental
theWisconsinfaunawas composedof morespecializedspecies.Threetypesof
in Wisconsinbased on species' presenceor
fishassemblageswere identified
a hierarchical
absence,whereasonthesamescale,Finnishassemblagespresented
based on species addition.These and otherpatternssuggestthat
continuum
habitatspecializationand the exclusionof smallpreyspecies fromlakes with
assemblagetypesin
to theoccurrenceofpresence-absence
piscivorescontribute
can affectpopulationdensitiesof Finnishspecies
Wisconsin.Bioticinteractions
inFinlandonlyon the
exclusion,andassemblagetypescouldbe identified
without
by perch,
basis of species' relativeabundance.Finnishassemblagesdominated
similarto
roach,and cruciancarp occurredin lakes thatwereenvironmentally
assemblages,respectively.
lakesin Wisconsinwithbass, pike,and mudminnow
fromone regioncould
functions
Because ofthesesimilarrelations,discriminant
theassemblagetypesthatoccurredin lakesfromtheother
identify
successfully
suggeststhatfishassemblagestrucpredictability
region;thiscommunity-level
by commonsets of environmental
forestlakes are influenced
turesin northern
thebalancebetween
scalesreflect
on different
anddifferences
factors.Similarities
are well matched
local and regionalprocesses; althoughlocal characteristics
Because
aredissimilar.
phenomena
betweenregions,manyregionalandhistorical
community
on severalscales,viewedas a seriesoffilters,
operating
ofinfluences
ecologistsshouldnot be contentwithsimpleacceptanceor rejectionof the
willcomefrom
of communities
Greaterunderstanding
hypothesis.
convergence
ofcauses and effects.
studiesthatencompassa hierarchy
comprehensive
ACKNOWLEDGMENTS
theFinnish
whoassistedus in compiling
We wishto thankthehydrobiologists
data:J.Aho,
allowedus to use theirownunpublished
datasetand/orgenerously
and P. Tuunainen.S. Magnusonand A. McLain
I. Holopainen,M. Pursiainen,
the map workrequiredforcalculationof the isolationindexes;L.
performed
LeClairdraftedthefigures.W.M.T. and J.J.M.wouldliketo acknowledgethe
of our hosts at the Universitiesof Helsinki,Joensuu,Jyvaskyla,
hospitality
Kuopio,and Turkuand especiallyof J. Syijamaki,I. Hakala, and theirstaffat
contributed
LammiBiologicalStation.DiscussionswithmanyFinnishscientists
of smallforestlakes; special
of theecologyand limnology
to ourunderstanding
INTERCONTINENTAL FISH-ASSEMBLAGE COMPARISON
369
thepapers
to ourattention
thanksgo to 0. Lindqvistandto P. Baggeforbringing
criticisms
by J. Holmes,J. Lawton,C.
ofNordqvistand Zhakov.Constructive
Paszkowski,L. Persson,F. Rahel,C. Robinson,R. Stein,and an anonymous
This projecthas been
reviewerimprovedearlierversionsof the manuscript.
generouslysupportedby grantsfromthe NationalScience Foundation(INTResearchCouncilof Canada
8312862),the NaturalSciences and Engineering
ofAlberta'sCentralResearchFund.
(A2363and IC-0269),and theUniversity
;
!
s.:
r
2
v
? . EX
= &
E=
E r
X
y s X
Q
E~~~~~~~~t
;~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~t
-
o
r
z
:
u
;
N<
>
*gu
wg <
>;
H;
f 4
3;
U
r
2
,z
<
_
m;
G~;
c;
*
CL-
z
d
u
u
t
s
,
INTERCONTINENTAL
FISH-ASSEMBLAGE
COMPARISON
371
APPENDIX B
DETERMINATION OF THE INDEX OF ISOLATION
ofeach studylake,one
To calculatethisindex,usedinassessingthedegreeofinsularity
was used:
oftwoformulas
fordrainagelakes:I = G,
for seepage lakes: I = G + 3A + 90,
(m km 1) alonga watercourse
whereI is theindexofisolation,G is theverticalgradient
distancefrom
andA is thetotalaltitudinal
fromthestudylaketothenextlakedownstream,
A is
direction.
thestudylaketothenearestbodyofwater(lenticorlotic)inthedownstream
in altitudebetweenthestudylake and thedownslopewater
nearlyalwaysthedifference
wereaddedto
irregularities
body;however,in a fewcomplexlandscapes,topographical
theverticaldistances.
two lakes is a simplebut
The verticalgradientor slope of the streamconnecting
thedifference
ofisolationforan upstream
lake,measuring
ecologicalyardstick
appropriate
fish,thuscreatinga largeror
in habitatthata streamwouldpresentto a lake-dwelling
For studylakeslackingoutletstreamsdirectly
connecting
smallerbarrierto colonization.
sources,totalverticaldistanceto thenearestdownslopewaterbody
themto downstream
moreimportant
thanslopewhenconsidering
pastchangesin
shouldbe biogeographically
waterlevelsand/orpostglacialisostaticreboundofland(Nordqvist1903;Svardson1970).
relativetoanyportion
thatwas
Theterm3A + 90 was usedto weightthisoverlandportion
To putA, whichrangesfrom0 to 30,onthesamescaleas G (0-90),A
alonga watercourse.
by3. We added90tothe3Atermbecausewe believedthattheleastisolated
was multiplied
seepagelake (A = 0) is at least as ecologicallyisolatedforfishesas themostisolated
forWisconsin
drainagelake (G = 90). The scalingfactor3A + 90 was also appropriate
seepagelakes since,forall drainagelakes,G < 90.
LITERATURE CITED
University
forecologicalcomplexity.
perspectives
Allen,T. F. H., andT. B. Starr.1982.Hierarchy:
ofChicagoPress,Chicago.
Res.
Inst.Freshwater
indenKalarne-Seen.
Untersuchung
Alm,G. 1960.Limnologisch-fischereiliche
Rep. 41. CarlBloms,Lund.
Res. Rep. 42.
Inst.Freshwater
derFischaussatzeindenKalarne-Seen.
1961.Die Ergebnisse
CarlBloms,Lund.
I.
koskevakoe-jatutkimustoiminta.
parantamista
1961.Sisavesientuottoa
ja laadullista
Anonymous.
of
ResearchInstitute
saaliitvuonna1961[Fisheries
koekalastuksen
Koejarvienyleisluonneja
ofAgriculture]
Helsinki.
theMinistry
II.
koskevakoe-jatutkimustoiminta.
1963. Sisavesientuottoaja laadullistaparantamista
tutkimustoikalataloudellinen
Kalansaaliskoejarvistavuonna1962.Maataloushallituksen
of Agriculture,
of theMinistry
julkaisuja[FisheriesResearchInstitute
misto,monistettuja
Tech. Rep., Helsinki,Finland]25:1-20.
of
Attig,J. W. 1984.The Pleistocenegeologyof Vilas County,Wisconsin.Ph.D. diss. University
Madison.
Wisconsin,
in ordination:
with
experiments
Austin,M. P., and I. Noy-Meir.1971.The problemofnon-linearity
models.J.Ecol. 59:763-773.
two-gradient
NOLIT, Belgrade.
ofzoogeography.
andproblems
Banarescu,P. 1975.Principles
in lakes.Am.Nat. 108:473-489.
Barbour,C. D., andJ.H. Brown.1974.Fishspeciesdiversity
Press,Madison.
ofWisconsin
Becker,G. C. 1983.FishesofWisconsin.University
andCaribbean
byreeffisheson Australian
Bohnsack,J.A., andF. H. Talbot.1980.Species-packing
approach.Bull.Mar. Sci. 30:710-723.
reefs:an experimental
Bowers,M. A., and J. H. Brown.1982.Body size and coexistencein desertrodents:chanceor
structure?
Ecology63:391-400.
community
372
THE AMERICAN NATURALIST
to thezoogeography
ofNorthAmerican
fishes.Pages 1-16inC. H.
Briggs,J.C. 1986.Introduction
ofNorthAmerican
freshwater
fishes.Wiley,
HocuttandE. 0. Wiley,eds. Thezoogeography
New York.
thedivision
offoodandspaceamongspecieson
Brown,J.H., andB. A. Maurer.1989.Macroecology:
continents.
Science(Washington,
D.C.) 243:1145-1150.
ofthelowerOhio-upper
Mississippi
basin.Pages287Burr,B. M., andL. M. Page. 1986.Zoography
ofNorthAmerican
freshwater
324inC. H. HocuttandE. 0. Wiley,eds. Thezoogeography
fishes.Wiley,New York.
S. R., J.F. Kitchell,
J.R. Hodgson,P. A. Cochran,J.J.Elser,M. M. Elser,D. M. Lodge,
Carpenter,
D. Kretchmer,
X. He, andC. N. vonEnde. 1987.Regulation
oflakeprimary
productivity
by
foodweb structure.
Ecology68:1863-1876.
ofintraandinter-continental
birdspeciescounts.Am.
grassland
Cody,M. L. 1966.The consistency
Nat. 100:371-376.
andthestructure
ofbirdcommunities.
Princeton
University
Press,Prince1974.Competition
ton,N.J.
territoriality
amongthesylviidwarblers
ofEngland
1978.Habitatselectionand interspecific
and Sweden.Ecol. Monogr.48:351-396.
1983.Interspecific
andspeciesco-occurrence
competition
patterns
Connor,E. F., andD. Simberloff.
on islands:nullmodelsand theevaluationofevidence.Oikos41:455-465.
Am.Nat. 126:565gallwaspsarenotsaturated.
Cornell,H. V. 1985.Speciesassemblagesofcynipid
569.
andhostsize influence
cynipine
waspspeciesrichness.Ecology
1986.Oak speciesattributes
67:1582-1592.
fieldexperiments,
and naturalexperiments.
Diamond,J. 1986.Overview:laboratory
experiments,
ecology.Harper& Row,New
Pages 3-22 in J. Diamondand T. J. Case, eds. Community
York.
andfishspeciesdiversity
inlakes.Can. J.
Eadie,J.M., andA. Keast. 1984.Resourceheterogeneity
Zool. 62:1689-1695.
andK. L. Teather.1986.Lakes andriversas islands:
Eadie,J.M., T. A. Hurly,R. D. Montgomerie,
in thefishfaunasofOntario.Environ.Biol. Fishes15:81-89.
species-arearelationships
and P. Sampson.1983.Factoranalysis.Pages480-499in W. J. Dixon,ed.
Frane,J.,R. Jennrich,
ofCalifornia
BMDP biomedicalcomputer
University
Press,Berkeley.
programs.
oflizardcommunities
inChileandCalifornia.
Ecology
Fuentes,E. R. 1976.Ecologicalconvergence
57:3-17.
ecology.Cambridge
University
Press,
Gauch,H. G., Jr.1982.Multivariate
analysisin community
Cambridge.
of respiratory
and hydrostatic
functions
of the swimbladder
in the
Gee, J. H. 1981.Coordination
Umbralimi.J. Exp. Biol. 92:37-52.
centralmudminnow,
lakeinsouthern
S. 1979.Biomassoftench,perch,cruciancarpandpikeina small,eutrophic
Hamrin,
19:57-67.
Sweden.Jyvaskylan
YliopistonBiologianLaitoksenTiedonantoja
Oikos
thecoreand satellitespecieshypothesis.
Hanski,I. 1982.Dynamicsofregionaldistribution:
38:210-221.
ofthecomposition
andabundanceofmotilemacroinvertebrate
Heck,K. L. 1979.Somedeterminants
turtle
meadows.J.Biogeogr.
speciesintropicalandtemperate
grass(Thalassiatestudinum)
6:183-197.
to multivariate
analysisin biology.Bull. Soc. R. Bot. Belg. 121:
Hermy,M. 1988.An introduction
128-133.
ordination
analysis,an improved
Hill,M. O., and H. G. Gauch. 1980.Detrendedcorrespondence
technique.Vegetatio42:47-58.
of helminth
communities.
Pages 203-208in M. J. Howell,ed.
Holmes,J. C. 1986.The structure
of theSixthInternational
Congressof Parasitology.
Parasitology-quovadit?Proceedings
Australian
Academyof Science,Canberra.
of cruciancarp [Carassius
Holopainen,I. J., and H. Hyvarinen.1985.Ecologyand physiology
in winter.Int. Ver. Theor.
carassius(L.)] in smallFinnishpondswithanoxicconditions
Angew.Limnol.Verh.22:2566-2570.
INTERCONTINENTAL FISH-ASSEMBLAGE COMPARISON
373
ofcruciancarp[CarayHolopainen,I. J.,and A. K. Pitkanen.1985.Populationsize and structure
sius carassius (L.)] in two small,naturalpondsin easternFinland.Ann.Zool. Fenn. 22:
397-406.
andA. K. Pitkanen.
1988.Habitatuse,dielactivity,
I. J.,W. M. Tonn,C. A. Paszkowski,
Holopainen,
pond.Int.Ver.Theor.Angew.Limnol.Verh.
ofcruciancarpin a manipulated
andgrowth
23:1743-1750.
Pages95-111in L. A. NielsenandD. L. Johnson,
Hubert,W. A. 1983.Passivecapturetechniques.
eds. Fisheriestechniques.AmericanFisheriesSociety,Bethesda,Md.
Vol. 1. Wiley,New York.
G. E. 1957.A treatiseon limnology.
Hutchinson,
ofcruciancarp[CarasH., I. J.Holopainen,andJ.Piironen.1985.Anaerobicwintering
Hyvarinen,
of glycogenreservesin nature.Comp.Biochem.
silus carassiius (L.)]. I. Annualdynamics
Physiol.A, Comp.Physiol.82:797-803.
analysis.Pages519-537in W. J.Dixon,
R., and P. Sampson.1983.Stepwisediscriminant
Jennrich,
ofCalifornia
Press,Berkeley.
University
programs.
ed. BMDP biomedicalcomputer
Johnson,A. W. 1973. Historicalview of the conceptof ecosystemconvergence.Pages 3-7 in
New York.
Springer,
typeecosystems.
F. di CostriandH. A. Mooney,eds. Mediterranean
Duxbury,NorthScituate,Mass.
statistics.
R. R. 1973.Elementary
Johnson,
ofthelakewatersofnortheastern
Juday,C., E. A. Birge,andV. W. Meloche.1938.Mineralcontent
Wisconsin.Trans.Wis. Acad. Sci. ArtsLett.31:223-276.
intheapplication
ofclassification
andordination
Kent,M., andJ.Ballard.1988.Trendsandproblems
methodsin plantecology.Vegetatio78:109-124.
Koli,L., ed. 1984.Suomenelaimet3. Weilin& G6os, Helsinki.
andvacantniches:
communities,
non-convergent
populations,
Lawton,J.H. 1984.Non-competitive
L. G. Abele,and
ofbracken.Pages 67-100in D. R. Strong,D. Simberloff,
theherbivores
conceptualissuesand theevidence.Princeton
A. B. Thistle,eds. Ecologicalcommunities:
N.J.
Press,Princeton,
University
and competition
in folivorous
insects.
patterns
Lawton,J. H., and D. R. Strong.1981.Community
Am.Nat. 118:317-338.
Legendre,L., and P. Legendre.1983.Numericalecology.Elsevier,Amsterdam.
R. H. 1972.Geographical
ecology.Harper& Row,New York.
MacArthur,
ofislandbiogeography.
Princeton
University
R. H., andE. 0. Wilson.1967.The theory
MacArthur,
N.J.
Press,Princeton,
Magnuson,J. J. 1976.Managingwithexotics-a gameof chance.Trans.Am. Fish. Soc. 105:1-9.
different
J.J.,J.W. Keller,A. L. Beckel,andG. W. Gallepp.1983.Breathing
gasmixtures
Magnuson,
forsurvivalundertheice ofa facultative
fish.Science
air-breathing
fromair:an adaptation
D.C.) 220:312-314.
(Washington,
Magnuson,J.J.,C. A. Paszkowski,F. J.Rahel,and W. M. Tonn.In press.Fishecologyin severe
Wisconsin.In J. W. Gibbonsand R. R.
of smallisolatedlakes in northern
environments
fromnatural,managed,and
wetlandsand wildlife:
perspectives
Scharitz,eds. Freshwater
Service,
degradedecosystems.Dep. EnergySymp.Ser. NationalTechnicalInformation
D.C.
Washington,
in fishtaxocenesof northtemperate
streams.Can. J. Fish.
Mahon,R. 1984.Divergentstructure
Aquat.Sci. 41:330-350.
reviewoftheclimateofFinland.Vol. 78. No. 13.
ofFinland.1984.Monthly
Institute
Meteorological
Helsinki.
instreamfishesof
andcommunity
structure
patterns
Moyle,P. B., andB. Herbold.1987.Life-history
witheasternNorthAmericaandEurope.Pages25-32
NorthAmerica:comparisons
western
and evolutionary
ecologyof North
in W. J. Matthewsand D. C. Heins,eds. Community
ofOklahomaPress,Norman.
Americanstreamfishes.University
fishesofBritainand Europe.Collins,London.
Muus,B. J.,and P. Dahlstr0m.1978.Freshwater
offreshwater
fishin Finland.
0. 1903.Somebiologicalreasonsforthepresentdistribution
Nordqvist,
Fennia20(8):1-29.
Science(Washington,
D.C.) 235:226-227.
Orians,G. H. 1987.Ecologicalcomparisons.
at thecommunity
level.Pages431-458in
evolution
Orians,G. H., andR. T. Paine.1983.Convergent
Mass.
D. J. Futuymaand M. Slatkin,eds. Coevolution.Sinauer,Sunderland,
374
THE AMERICAN NATURALIST
recentadvancesin numericalmethods.Can. J. Bot.
organization:
Orl6ci,L. 1988. Community
66:2626-2633.
ofacidwateronaquaticlife.Pages 143-161
L. N., H. M. Seip,andA. Tollan.1981.Effects
Overrein,
on forestand fish.Final rep. 2d ed. SNSF (Sur Nedb0rs
in Acid precipitation-effects
virkining
p?aSkogog Fisk)Project,Oslo.
C. A., W. M. Tonn,andI. J.Holopainen.1989.Anexperimental
studyofbodysize and
Paszkowski,
in cruciancarp,Carassius carassius. Environ.Biol. Fishes24:275-286.
foodsize relations
ofa
on dynamics
and size structure
competition
Persson,L. 1983.Effectsofintra-andinterspecific
Oikos41:126-132.
perchPerca fluviatilisand a roachRutilus rutiluspopulation.
on resourceutilization
in perch(Perca
competition
1986.Effectsof reducedinterspecific
fluviatilis).Ecology67:355-364.
interactions
ofhabitatandseasononcompetitive
betweenroach(Rutilusrutilus)
1987.Effects
andperch(Perca fluviatilis).Oecologia(Berl.)73:170-177.
1988.Predator
andprimary
S. F. Hamrin,andL. Johansson.
regulation
Persson,L., G. Andersson,
of temperate
lake ecosystems.Pages 45-65 in
alongtheproductivity
gradient
production
in lakecommunities.
ed. Complexinteractions
New York.
S. R. Carpenter,
Springer,
Annu.Rev. Ecol. Syst.4:53-74.
oflizardcommunities.
Pianka,E. R. 1973.The structure
ofecologicaldata.Wiley,New York.
Pielou,E. C. 1984.The interpretation
in anoxiatoleranceof cruciancarp
Piironen,
J.,and I. J. Holopainen.1986.A noteon seasonality
Ann.Zool. Fenn.23:335-338.
[Carassius carassius (L.)] in thelaboratory.
ofcruciancarp(Carassius carassius (L.))
andreproductive
potential
1988.Lengthstructure
in somesmallforestponds.Ann.Zool. Fenn.25:203-208.
populations
fishassemblages
gradient.
Ecology
alonga boglakesuccessional
Rahel,F. J.1984.Factorsstructuring
65:1276-1289.
influences
on fishspeciescomposition
ofnorthern
Wisconsin
lakeswith
1986.Biogeographic
forlakeacidification
studies.Can. J.Fish.Aquat.Sci. 43:124-134.
applications
in growthof perch(Perca fluviatilisL.) in two smallforestlakes.
Rask, M. 1983. Differences
101:139-144.
Hydrobiologia
oflowpH on perch,PercafluviatilisL. III. Theperchpopulation
1984.The effect
ina small,
humicforestlake. Ann.Zool. Fenn.21:15-22.
acidic,extremely
ofpike,perchandwhitefish
intwosmall
Rask,M., andL. Arvola.1985.Thebiomassandproduction
Finland.Ann.Zool. Fenn.22:129-136.
lakesin southern
1985.Rotenonkasittleyn
vaikutuksista
pienen
Rask,M., L. Arvola,K. Salonen,and M. Pursiainen.
92:12-15.
eliostoon.Suom.Kalastuslehti
metsajarven
and interpretation
ofbiologicalstatistics
offishpopulations.
Bull.
Ricker,W. E. 1975.Computation
Fish.Res. BoardCan. 191:1-382.
relativerolesof local and regionalprocesses.Science
diversity:
Ricklefs,R. E. 1987.Community
D.C.) 235:167-171.
(Washington,
approachto thestudyof aviancommunity
Ricklefs,R. E., and J. Travis. 1980.A morphological
Auk97:321-338.
organization.
survivaloffourpreyin thepresenceofnorthern
pike.Can. J.
Robinson,C. L. K. 1989.Laboratory
Zool. 67:418-420.
ofenvironmental
factorsandpiscivory
in
Robinson,C. L. K., and W. M. Tonn.1989.The influence
fishassemblagesofsmallAlbertalakes.Can. J.Fish.Aquat.Sci. 46:81-89.
structuring
andconvergence
offinch
communities.
D. 1986.Testsforsimilarity
Ecology67:1073-1085.
Schluter,
becomespluralistic.
Schoener,T. W. 1986a.Overview:kindsof ecologicalcommunities-ecology
ecology.Harper& Row,New
Pages467-479in J.DiamondandT. J.Case, eds. Community
York.
versusarthropod
do systematic
communities:
differences
in
1986b.Patternsin terrestrial
exist?Pages 556-586in J. Diamondand T. J. Case, eds. Community
ecology.
regularity
Harper& Row,New York.
ofvertebrates
on someverysmallislands.I.
Schoener,T. W., and A. Schoener.1983.Distribution
Occurrence
sequencesofindividual
species.J.Anim.Ecol. 52:209-235.
CondonLectures,OregonStateSystemof Higher
Simpson,G. G. 1953.Evolutionand geography.
Education,Eugene,Oreg.
INTERCONTINENTAL
FISH-ASSEMBLAGE
COMPARISON
375
ofBrierCreek,MarshallCounty,
fishcommunities
Smith,C. L., andC. R. Powell.1971.Thesummer
Oklahoma.Am.Mus. Novit.2458:1-30.
of somepondsin Finland.Ann.Zool. Fenn.
of theperchpopulations
Sumari,0. 1971.Structure
8:406-421.
incoregonid
ofintrogression
evolution.
Pages33-59inC. C. Lindsey
Svardson,G. 1970.Significance
fishes.University
ofManitobaPress,Winnipeg.
andC. S. Woods,eds. Biologyofcoregonid
of Scandinavian
lakes. Inst.
populationdominancein fishcommunities
1976.Interspecific
Res. Drottningholm
Rep. 55:144-171.
Freshwater
ofbirdcommunities
in theWestIndies.Am.Nat.
J.W., andJ.Faaborg.1980.Saturation
Terborgh,
116:178-195.
oflargeoligotrophic
glaciallakesin Europe(about
Toivonen,J. 1972.The fishfaunaandlimnology
1800A.D.). J.Fish.Res. BoardCan. 29:629-637.
andL. Peippo.1964.Rotenonmyrkytysten
avullasaatujatietojaeraiden
Toivonen,J.,P. Tuunainen,
Suom.Kalastuslehti
71:156-164.
tekijoista.
ja niihinvaikuttavista
lampienkalakannoista
offishcommunities
innorthern
in theassemblyanddiversity
Wisconsin
Tonn,W. M. 1980.Patterns
ofWisconsin,
Madison.
lakes.Master'sthesis.University
in Umbra-Perca
fishassemblagesofnorthern
Wisconsin
lakes.
1985.Densitycompensation
Ecology66:415-429.
a conceptualapproach.Trans.Am. Fish. Soc.
1990.Climatechangeand fishcommunities:
119:337-352.
in thespeciescomposition
and richnessof fish
Tonn,W. M., and J. J. Magnuson.1982.Patterns
Wisconsinlakes.Ecology63:1149-1166.
assemblagesin northern
andtheorganization
of
winterkill,
predation,
Tonn,W. M., andC. A. Paszkowski.1986.Size-limited
fishassemblages.Can. J. Fish.Aquat.Sci. 43:194-202.
Umbra-Perca
(Umbralimi)andyellowperch(Percaflavescen,)
1987.Habitatuse ofthecentralmudminnow
in Umbra-Perca
andtheabioticenvironpredation,
assemblages:therolesofcompetition,
ment.Can. J.Zool. 65:862-870.
analysisin fishery
management:
Tonn,W. M., J.J.Magnuson,andA. M. Forbes.1983.Community
withnorthern
Wisconsin
lakes.Trans.Am. Fish. Soc. 112:368-377.
an application
andI. J.Holopainen.1989.Responsesofcruciancarppopulations
to
Tonn,W. M., C. A. Paszkowski,
differential
pond.Can. J.Zool. 67:2841-2849.
predation
pressurein a manipulated
P. 1970.Relationsbetweenthebenthicfaunaand two speciesof troutin some small
Tuunainen,
Finnishlakestreatedwithrotenone.Ann.Zool. Fenn.7:67-120.
of theUnitedStates.No. 20. NationalClimatic
of Commerce.1984.Climatology
U.S. Department
Data Center,Asheville,N.C.
bythreeesocids:theroleofpreybehaviorand
Wahl,D. H., andR. A. Stein.1988.Selectivepredation
Trans.Am. Fish. Soc. 117:142-151.
morphology.
Australian
ecosystemsto thoseelsewhere.BioScience38:549-556.
Westoby,M. 1988.Comparing
ofspeciesdiversity.
Taxon21:213-251.
R. H. 1972.Evolutionandmeasurement
Whittaker,
D. 1978.ClustanIC user'smanual.University
College,London.
Wishart,
in relation
to thespecific
successionsoflakeichthyocoenoses
Zhakov,L. A. 1974.The composition
offishes.
J.Ichthyol.
offaunistic
features
Vopr.Ikhtiol.)14:208-218.
(Engl.transl.,
complexes