Download in the reference period 1955-84 (RP), average monthly soil

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Institute of Hydrology
Slovak Academy of Sciences
Assessment of the soil water storage
with regard to prognosis of the climate change
at lowlands
Katarína Stehlová
6th ALPS-ADRIA SCIENTIFIC WORKSHOP
30 April - 5 May, 2007
Obervellach, Austria
Climate
change
• influence of
hydrological cycle
• increase of intense
precipitation
• increase of
thunderstorms and
local floods
•decrease of water
resources
•increase of
temperature
•increase of drought
and wild fire events...
Map of the locality of interest
Soil profile
in locality Bodiky
• 0-120 cm is loamy or
sandy loam,
• 120-150 cm is sandy
layer,
• under 150 is cm gravel.
Mathematical model GLOBAL
The model was created by Dr. Juraj Majercak and Dr. Viliam Novak from
Institute of Hydrology, Slovakia, Bratislava.
 This model belongs to the group of one-dimensional vertical models and on
basic Richards’s equation simulates the move of water in the system soil –
vegetation – atmosphere in isothermal condition with especial regard on the root
zone.
Initial moisture profile:
Hydro-physical parameters of the soil profile divided into five layers at locality Bodiky, where
s is saturated moisture, pk is field water capacity, r is residual moisture,  and n are
Genuchten’s parameters and C is saturated hydraulic conductivity
Soil layer
cm
0–35
36–90
91–100
101–150
0–150
s
cm .cm 
0,5474
0,5491
0,5425
0,5231
0,5396
3
-3
pk
3
-3
[cm .cm ]
0,3800
0,3500
0,3300
0,3700
0,3623
r
cm .cm 
0,0684
0,0552
0,0265
0,0484
0,0541
3
-3

cm 
0,04407
0,04920
0,09983
0,02314
0,04269
-1
n
-
1,29706
1,35140
1,17602
1,38266
1,33745
C
cm.d-1
193,27
38,90
39,73
14,44
66,82
Lower boundary condition:
time series of values of pressure head in the depth of 150 cm under soil
surface.
Upper boundary condition:
daily values of crop parameters (leaf area index [m2.m-2], roughness of
evaporating surface [m], albedo of surface [cm], root depth [cm] and relative
mean water content [%]),
climatic characteristics measured on the meteorological gauge station of
Slovak Hydro-Meteorological Institute in Gabcikovo (daily precipitation total
[mm.d-1], mean temperature [°C], sunshine duration [hours], vapor pressure
[hPa] and mean wind velocity [m.s-1]).
Climate characteristics for time horizon 2010 were modified by climate
scenarios:
 CCCM2000 (Canadian Centre for Climate Modelling and Analysis,
Victoria, British Columbia)
GISS98 (Goddard Institute for Space Studies, New York, U.S.A)
30.00
Reference period 1955-84
CCCM 2010
GISS 2010
25.00
Temperature [°C]
20.00
15.00
10.00
5.00
December
November
October
September
August
July
June
May
April
March
February
-5.00
January
0.00
-10.00
Mean long-term temperature calculated for reference period 1955-84 and for
horizon 2010 (CCCM2000, GISS98)
80.00
Reference period 1955-84
CCCM 2010
GISS 2010
Precipitation totals [mm]
70.00
60.00
50.00
40.00
30.00
20.00
10.00
December
November
October
September
August
July
June
May
April
March
February
January
0.00
Mean long-term precipitation totals calculated for reference period 1955-84 and
for horizon 2010 (CCCM2000, GISS98)
Results
30-years average monthly soil water storage [mm] in the reference period 1955-84 (RP), average
monthly soil water storage [mm] in according to climate scenarios CCCM2000 (C) and GISS98 (G)
for time horizon 2010
Layer
Month
0-30 cm
31-60 cm
61-90
91-150 cm
0-150 cm
RP
C
G
RP
C
G
RP
C
G
RP
C
G
RP
C
G
I
84.20
87.43
85.33
72.44
75.52
74.73
53.21
57.73
54.70
75.75
80.62
76.78
285.60
301.30
291.54
II
84.03
86.96
86.49
74.48
77.73
77.79
57.44
61.09
58.97
79.76
86.32
81.29
295.71
312.10
304.54
III
83.33
85.48
85.73
76.49
79.14
79.33
61.36
64.83
63.13
86.97
94.45
89.05
308.14
323.89
317.24
IV
80.94
82.95
83.84
72.23
75.19
76.61
60.25
63.09
61.03
90.37
97.20
92.42
303.79
318.42
313.91
V
77.19
79.30
80.31
65.48
69.03
70.15
54.47
57.38
56.55
90.25
96.29
91.86
287.39
301.99
298.88
VI
73.15
73.68
76.36
55.38
58.15
59.59
46.69
49.18
48.30
88.26
92.93
89.48
263.48
273.94
273.73
VII
74.12
72.10
76.78
52.10
52.85
56.25
40.09
41.95
41.64
81.93
85.30
82.66
248.24
252.20
257.34
VIII
72.67
67.48
74.38
49.21
47.95
52.76
36.13
37.23
38.04
74.14
76.53
74.11
232.15
229.19
239.28
IX
69.44
65.67
73.22
46.87
43.74
49.80
34.02
34.55
35.15
69.67
71.66
69.29
220.00
215.61
227.46
X
72.90
74.62
75.82
46.30
45.28
50.34
33.71
33.75
34.55
67.57
68.97
67.18
220.48
222.62
227.88
XI
80.93
84.85
82.63
55.79
58.57
59.60
35.58
36.97
36.90
66.90
68.11
66.66
239.20
248.50
245.79
XII
82.59
86.14
84.20
65.72
69.40
69.27
42.49
46.49
44.34
67.95
70.19
68.16
258.51
271.97
265.72
year
77.96
78.89
80.43
61.04
62.71
64.68
46.29
48.69
47.77
78.29
82.38
79.08
263.56
272.64
271.94
Month
I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
year
0-30 cm
C
G
0.32
0.11
0.29
0.25
0.22
0.24
0.20
0.29
0.21
0.31
0.05
0.32
-0.20
0.27
-0.52
0.17
-0.38
0.38
0.17
0.29
0.39
0.17
0.36
0.16
0.09
0.25
31-60 cm
C
G
0.31
0.23
0.32
0.33
0.26
0.28
0.30
0.44
0.35
0.47
0.28
0.42
0.07
0.41
-0.13
0.36
-0.31
0.29
-0.10
0.40
0.28
0.38
0.37
0.35
0.17
0.36
Layer
61-90
C
G
0.45
0.15
0.36
0.15
0.35
0.18
0.28
0.08
0.29
0.21
0.25
0.16
0.19
0.16
0.11
0.19
0.05
0.11
0.00
0.08
0.14
0.13
0.40
0.19
0.24
0.15
Month
Percentage differences of
long-term averages of soil
water storage [cm] modeled
according to climate
scenarios CCCM2000,
GISS98 for time horizon 2010
and values modeled for
reference period (1955-84)
I
II
III
IV
V
VI
VII
VIII
IX
X
XI
XII
year
91-150 cm
C
G
0.49
0.10
0.66
0.15
0.75
0.21
0.68
0.20
0.60
0.16
0.47
0.12
0.34
0.07
0.24
0.00
0.20
-0.04
0.14
-0.04
0.12
-0.02
0.22
0.02
0.41
0.08
0-30 cm
C
G
4
3
3
2
3
1
-3
-7
-5
2
5
4
1
1
3
3
4
4
4
4
2
5
4
2
2
3
Differences of long-term
averages of soil water storage
[cm] modeled according to
climate scenarios
CCCM2000, GISS98 for time
horizon 2010 and values
modeled for reference period
(1955-84)
0-150 cm
C
G
1.57
0.59
1.64
0.88
1.57
0.91
1.46
1.01
1.46
1.15
1.05
1.02
0.40
0.91
-0.30
0.71
-0.44
0.75
0.21
0.74
0.93
0.66
1.35
0.72
0.91
0.84
31-60 cm
C
G
4
4
3
4
5
5
1
-3
-7
-2
5
6
3
Layer
61-90
C
3
4
4
6
7
8
8
7
6
9
7
5
6
G
8
6
6
5
5
5
5
3
2
0
4
9
5
3
3
3
1
4
3
4
5
3
2
4
4
3
91-150 cm
C
G
6
1
8
2
9
2
8
2
7
2
5
1
4
1
3
0
3
-1
2
-1
2
0
3
0
5
1
0-150 cm
C
G
5
6
5
5
5
4
2
-1
-2
1
4
5
3
2
3
3
3
4
4
4
3
3
3
3
3
3
CCCM (1996-2025)
Linear (CCCM (1996-2025))
0
Legend:
GISS (1996-2025)
Linear (GISS (1996-2025))
2024
2022
March, layer 0-30 cm
2020
2024
2022
2020
140
2018
2016
2014
2012
2010
2024
2022
2020
2018
2016
2014
2012
2010
2008
2006
2004
2002
2000
140
2018
40
2016
60
2014
year
2012
80
2008
year
2010
100
2008
0
2006
20
2006
40
2004
60
2004
80
2002
February, layer 0-30 cm
2002
120
2000
0
2000
20
1998
40
1998
60
1996
80
soil water storage [mm]
100
1996
100
soil water storage [mm]
2024
2022
2020
January, layer 0-30 cm
1998
120
soil water storage [mm]
2024
2022
2020
2018
2016
2014
2012
2010
2008
2006
2004
2002
2000
1998
1996
soil water storage [mm]
120
1996
2024
2022
2020
140
2018
2016
2014
2012
2010
2008
2006
2004
2002
2000
1998
1996
soil water storage [mm]
140
2018
2016
2014
2012
2010
2008
2006
2004
2002
2000
1998
1996
soil water storage [mm]
140
120
April, layer 0-30 cm
100
80
60
40
20
0
year
120
May, layer 0-30 cm
100
80
60
40
20
0
140
year
120
June, layer 0-30 cm
100
80
60
40
20
20
0
year
year
Mean monthly values of soil water storage in
January to June for horizon 2010 (scenarios
CCCM2000 and GISS98), in layer 0-30 cm
CCCM (1996-2025)
Linear (CCCM (1996-2025))
year
Legend:
GISS (1996-2025)
Linear (GISS (1996-2025))
2024
0
2022
20
140
2020
40
2024
2022
2020
2018
2016
2014
2012
2010
2024
2022
2020
2018
2016
2014
2012
2010
2008
2006
2004
2002
2000
140
2018
60
140
2016
80
2014
year
2012
100
2008
year
2010
September, layer 0-30 cm
2008
0
2006
20
2006
40
2004
60
2004
80
2002
August, layer 0-30 cm
2002
120
2000
0
2000
20
1998
40
1998
60
1996
80
soil water storage [mm]
100
1996
100
soil water storage [mm]
2024
2022
2020
July, layer 0-30 cm
1998
120
soil water storage [mm]
2024
2022
2020
2018
2016
2014
2012
2010
2008
2006
2004
2002
2000
1998
1996
soil water storage [mm]
120
1996
2024
2022
2020
2018
2016
2014
2012
2010
2008
2006
2004
2002
2000
1998
1996
soil water storage [mm]
140
2018
140
2016
2014
2012
2010
2008
2006
2004
2002
2000
1998
1996
soil water storage [mm]
140
120
October, layer 0-30 cm
100
80
60
40
20
0
year
120
November, layer 0-30 cm
100
80
60
40
20
0
year
120
December, layer 0-30 cm
100
80
60
40
20
0
year
Mean monthly values of soil water storage in
July to December for horizon 2010 (scenarios
CCCM2000 and GISS98), in layer 0-30 cm
CCCM (1996-2025)
Linear (CCCM (1996-2025))
year
Legend:
GISS (1996-2025)
Linear (GISS (1996-2025))
2024
2022
600
2024
2022
2020
600
2018
2016
2014
2012
2010
2008
2006
February, layer 0-150 cm
2020
0
2024
2022
2020
2018
2016
2014
2012
2010
2008
2006
2004
2002
2000
600
2018
100
2016
200
2014
year
2012
300
2004
year
2010
400
2008
March, layer 0-150 cm
2006
0
2004
100
2002
200
2002
300
2000
400
2000
0
1998
100
1998
200
1996
300
soil water storage [mm]
400
1996
500
soil water storage [mm]
2024
2022
2020
January, layer 0-150 cm
1998
500
soil water storage [mm]
2024
2022
2020
2018
2016
2014
2012
2010
2008
2006
2004
2002
2000
1998
1996
soil water storage [mm]
500
1996
2024
2022
2020
600
2018
2016
2014
2012
2010
2008
2006
2004
2002
2000
1998
1996
soil water storage [mm]
600
2018
2016
2014
2012
2010
2008
2006
2004
2002
2000
1998
1996
soil water storage [mm]
600
500
April, layer 0-150 cm
400
300
200
100
0
year
500
May, layer 0-150 cm
400
300
200
100
0
year
500
June, layer 0-150 cm
400
300
200
100
0
year
Mean monthly values of soil water storage in
January to June for horizon 2010 (scenarios
CCCM2000 and GISS98), in layer 0-150 cm
CCCM (1996-2025)
Linear (CCCM (1996-2025))
year
Legend:
GISS (1996-2025)
Linear (GISS (1996-2025))
2024
2022
600
2020
0
2024
2022
2020
2018
2016
2014
2012
2010
2008
2024
2022
2020
2018
2016
2014
2012
2010
2008
2006
2004
2002
2000
600
2018
100
600
2016
200
2014
year
2012
300
2006
year
2010
400
2008
September, layer 0-150 cm
2006
0
2004
100
2004
200
2002
300
2002
400
2000
August, layer 0-150 cm
2000
0
1998
100
1998
200
1996
300
soil water storage [mm]
400
1996
500
soil water storage [mm]
2024
2022
2020
July, layer 0-150 cm
1998
500
soil water storage [mm]
2024
2022
2020
2018
2016
2014
2012
2010
2008
2006
2004
2002
2000
1998
1996
soil water storage [mm]
500
1996
2024
2022
2020
2018
2016
2014
2012
2010
2008
2006
2004
2002
2000
1998
1996
soil water storage [mm]
600
2018
600
2016
2014
2012
2010
2008
2006
2004
2002
2000
1998
1996
soil water storage [mm]
600
500
October, layer 0-150 cm
400
300
200
100
0
year
500
November, layer 0-150 cm
400
300
200
100
0
year
500
December, layer 0-150 cm
400
300
200
100
0
year
Mean monthly values of soil water storage in
July to December for horizon 2010 (scenarios
CCCM2000 and GISS98), in layer 0-150 cm
Conclusion
The amounts of soil water content available for vegetation is one of the most
necessary conditions for good vegetation grow.
For the average monthly climatic values in accordance with scenario CCCM
gave the model GLOBAL nearly in all months of counted time horizon 2010
lower values of soil water storage then for values adapted by scenario GISS.
The decrease of soil water storage is prognosticated especially in the end of
vegetation period.
The mean monthly values (CCCM) in layers 0-30 cm, 31-60 cm and in whole
soil profile 0-150 cm dropped about 1-7 % in comparison to reference period
values. The values of soil water storage calculated by model GLOBAL with
climatic values in accordance with scenario GISS decreased only about 1 % in
comparison to reference period values.
Since the upper layer 0-30 cm is most influenced by meteorological
components, the soil water storage decrease in this layer is the most noticeable.
Thank you for your attention...
Related documents