Survey

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Survey

Document related concepts

Transcript

EI 209 Computer Organization Fall 2013 Chapter 3: Arithmetic for Computers Haojin Zhu (http://tdt.sjtu.edu.cn/~hjzhu/ ) [Adapted from Computer Organization and Design, 4th Edition, Patterson & Hennessy, © 2012, MK] EI 209 Chapter 3.1 CSE, 2013 Assignment III 3.6, 3.8, 3.11, 3.14 Due: Nov. 14 EI 209 Chapter 3.2 CSE, 2013 Review: MIPS (RISC) Design Principles Simplicity favors regularity Smaller is faster limited instruction set limited number of registers in register file limited number of addressing modes Make the common case fast fixed size instructions small number of instruction formats opcode always the first 6 bits arithmetic operands from the register file (load-store machine) allow instructions to contain immediate operands Good design demands good compromises three instruction formats EI 209 Chapter 3.3 CSE, 2013 Specifying Branch Destinations Use a register (like in lw and sw) added to the 16-bit offset which register? Instruction Address Register (the PC) - its use is automatically implied by instruction - PC gets updated (PC+4) during the fetch cycle so that it holds the address of the next instruction limits the branch distance to -215 to +215-1 (word) instructions from the (instruction after the) branch instruction, but most branches are local anyway from the low order 16 bits of the branch instruction 16 offset sign-extend 00 32 32 Add PC 32 EI 209 Chapter 3.4 32 4 32 Add 32 branch dst address 32 ? CSE, 2013 Other Control Flow Instructions MIPS also has an unconditional branch instruction or jump instruction: j label #go to label Instruction Format (J Format): 0x02 26-bit address from the low order 26 bits of the jump instruction 26 Why shift left by two bits? 00 32 4 PC EI 209 Chapter 3.5 32 CSE, 2013 Review: MIPS Addressing Modes Illustrated 1. Register addressing op rs rt rd funct Register word operand 2. Base (displacement) addressing op rs rt offset Memory word or byte operand base register 3. Immediate addressing op rs rt operand 4. PC-relative addressing op rs rt offset Memory branch destination instruction Program Counter (PC) 5. Pseudo-direct addressing op Memory jump address || jump destination instruction Program Counter (PC) EI 209 Chapter 3.6 CSE, 2013 Number Representations 32-bit signed numbers (2’s complement): 0000 0000 0000 0000 0000 0000 0000 0000two = 0ten 0000 0000 0000 0000 0000 0000 0000 0001two = + 1ten ... 0111 0111 1000 1000 ... MSB 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 0000 1111 1111 0000 0000 1110two 1111two 0000two 0001two = = = = + + – – maxint 2,147,483,646ten 2,147,483,647ten 2,147,483,648ten 2,147,483,647ten 1111 1111 1111 1111 1111 1111 1111 1110two = – 2ten 1111 1111 1111 1111 1111 1111 1111 1111two = – 1ten minint LSB Converting <32-bit values into 32-bit values copy the most significant bit (the sign bit) into the “empty” bits 0010 -> 0000 0010 1010 -> 1111 1010 sign extend EI 209 Chapter 3.7 versus zero extend (lb vs. lbu) CSE, 2013 MIPS Arithmetic Logic Unit (ALU) zero ovf Must support the Arithmetic/Logic operations of the ISA add, addi, addiu, addu 1 1 A 32 sub, subu ALU mult, multu, div, divu sqrt result 32 B 32 and, andi, nor, or, ori, xor, xori 4 m (operation) beq, bne, slt, slti, sltiu, sltu With special handling for sign extend – addi, addiu, slti, sltiu zero extend – andi, ori, xori overflow detection – add, addi, sub EI 209 Chapter 3.8 CSE, 2013 Dealing with Overflow Overflow occurs when the result of an operation cannot be represented in 32-bits, i.e., when the sign bit contains a value bit of the result and not the proper sign bit When adding operands with different signs or when subtracting operands with the same sign, overflow can never occur Operation Operand A Operand B Result indicating overflow A+B ≥0 ≥0 <0 A+B <0 <0 ≥0 A-B ≥0 <0 <0 A-B <0 ≥0 ≥0 MIPS signals overflow with an exception (aka interrupt) – an unscheduled procedure call where the EPC contains the address of the instruction that caused the exception EI 209 Chapter 3.9 CSE, 2013 Addition & Subtraction Just like in grade school (carry/borrow 1s) 0111 0111 0110 + 0110 - 0110 - 0101 1101 0001 Two's complement operations are easy do subtraction by negating and then adding 0111 - 0110 0001 0001 0111 + 1010 1 0001 Overflow (result too large for finite computer word) e.g., adding two n-bit numbers does not yield an n-bit number 0111 + 0001 1000 EI 209 Chapter 3.11 CSE, 2013 Building a 1-bit Binary Adder carry_in A 1 bit Full Adder B carry_out S A B carry_in carry_out S 0 0 0 0 0 0 0 1 0 1 0 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 S = A xor B xor carry_in carry_out = A&B | A&carry_in | B&carry_in (majority function) How can we use it to build a 32-bit adder? How can we modify it easily to build an adder/subtractor? EI 209 Chapter 3.12 CSE, 2013 Building 32-bit Adder c0=carry_in A0 B0 A1 B1 A2 S0 1-bit FA c2 S1 1-bit FA c3 S2 Just connect the carry-out of the least significant bit FA to the carry-in of the next least significant bit and connect . . . Ripple Carry Adder (RCA) advantage: simple logic, so small (low cost) disadvantage: slow and lots of glitching (so lots of energy consumption) ... B2 1-bit FA c1 c31 A31 B31 1-bit FA S31 c32=carry_out EI 209 Chapter 3.13 CSE, 2013 A 32-bit Ripple Carry Adder/Subtractor Remember 2’s complement is just complement all the bits control (0=add,1=sub) B0 B0 if control = 0 !B0 if control = 1 add a 1 in the least significant bit A 0111 B - 0110 0001 EI 209 Chapter 3.15 0111 + 1001 1 1 0001 c0=carry_in A0 1-bit FA c1 S0 A1 1-bit FA c2 S1 A2 1-bit FA c3 S2 B0 B1 B2 ... add/sub c31 A31 B31 1-bit FA S31 c32=carry_out CSE, 2013 Overflow Detection Logic Carry into MSB ! = Carry out of MSB For a N-bit ALU: Overflow = CarryIn [N-1] XOR CarryOut [N-1] CarryIn0 A0 1-bit ALU B0 CarryIn1 A1 CarryOut0 1-bit ALU B1 CarryIn2 A2 Result1 CarryOut1 1-bit ALU B2 Result0 X Y X XOR Y 0 0 1 1 0 1 0 1 0 1 1 0 why? Result2 CarryIn3 CarryOut2 A3 B3 1-bit ALU Result3 Overflow CarryOut3 EI 209 Chapter 3.16 CSE, 2013 Multiply Binary multiplication is just a bunch of right shifts and adds n multiplicand multiplier partial product array n can be formed in parallel and added in parallel for faster multiplication double precision product 2n EI 209 Chapter 3.17 CSE, 2013 Multiplication More complicated than addition Can be accomplished via shifting and adding 0010 (multiplicand) x_1011 (multiplier) 0010 0010 (partial product 0000 array) 0010 00010110 (product) In every step • multiplicand is shifted • next bit of multiplier is examined (also a shifting step) • if this bit is 1, shifted multiplicand is added to the product EI 209 Chapter 3.18 CSE, 2013 Multiplication Algorithm 1 In every step • multiplicand is shifted • next bit of multiplier is examined (also a shifting step) • if this bit is 1, shifted multiplicand is added to the product EI 209 Chapter 3.19 CSE, 2013 EI 209 Chapter 3.20 CSE, 2013 Comments on Multiplicand Algorithm 1 Performance Three basic steps for each bit It requires 100 clock cycles to multiply two 32-bit numbers If each step took a clock cycle, How to improve it? Motivation (Performing the operations in parallel): Putting multiplier and the product together Shift them together EI 209 Chapter 3.21 CSE, 2013 Refined Multiplicand Algorithm 2 multiplicand add 32-bit ALU product multiplier shift right Control • 32-bit ALU and multiplicand is untouched • the sum keeps shifting right • at every step, number of bits in product + multiplier = 64, hence, they share a single 64-bit register EI 209 Chapter 3.22 CSE, 2013 Add and Right Shift Multiplier Hardware 0110 =6 multiplicand add 32-bit ALU product shift right multiplier add add add add EI 209 Chapter 3.23 0000 0110 0011 0011 0001 0111 0011 0011 0001 0101 0101 0010 0010 1001 1001 1100 1100 1110 Control =5 = 30 CSE, 2013 Exercise Using 4-bit numbers to save space, multiply 2ten*3ten, or 0010two * 0011two EI 209 Chapter 3.24 CSE, 2013 Division Division is just a bunch of quotient digit guesses and left shifts and subtracts dividend = quotient x divisor + remainder n quotient n 0 0 0 dividend divisor 0 partial remainder array 0 0 remainder n EI 209 Chapter 3.25 CSE, 2013 Division Divisor 1000ten 1001ten | 1001010ten -1000 10 101 1010 -1000 10ten Quotient Dividend Remainder At every step, • shift divisor right and compare it with current dividend • if divisor is larger, shift 0 as the next bit of the quotient • if divisor is smaller, subtract to get new dividend and shift 1 as the next bit of the quotient EI 209 Chapter 3.26 CSE, 2013 First Version of Hardware for Division A comparison requires a subtract; the sign of the result is examined; if the result is negative, the divisor must be added back 27 EI 209 Chapter 3.27 CSE, 2013 Divide Algorithm Start 1. Subtract the Divisor register from the Remainder register, and place the result in the Remainder register. Remainder >=0 2a. Shift the Quotient register to the left setting the new rightmost bit to 1. Test Remainder Remainder < 0 2b. Restore the original value by adding the Divisor reg to the Remainder reg and place the sum in the Remainder reg. Also shift the Quotient register to the left, setting the new LSB to 0 3. Shift the Divisor register right1 bit. 33rd repetition? No: < 33repetitions Yes: 33repetitions Done EI 209 Chapter 3.28 CSE, 2013 Divide Example • Divide 7ten (0000 0111two) by 2ten (0010two) Iter 0 Step Quot Divisor Remainder Initial values 1 2 3 4 5 29 EI 209 Chapter 3.29 CSE, 2013 Divide Example • Divide 7ten (0000 0111two) by 2ten (0010two) Iter Step Quot Divisor Remainder 0 Initial values 0000 0010 0000 0000 0111 1 Rem = Rem – Div Rem < 0 +Div, shift 0 into Q Shift Div right 0000 0000 0000 0010 0000 0010 0000 0001 0000 1110 0111 0000 0111 0000 0111 2 Same steps as 1 0000 0000 0000 0001 0000 0001 0000 0000 1000 1111 0111 0000 0111 0000 0111 3 Same steps as 1 0000 0000 0100 0000 0111 4 Rem = Rem – Div Rem >= 0 shift 1 into Q Shift Div right 0000 0001 0001 0000 0100 0000 0100 0000 0010 0000 0011 0000 0011 0000 0011 5 Same steps as 4 0011 0000 0001 0000 0001 EI 209 Chapter 3.30 CSE, 2013 Efficient Division Shift Right Divisor 64 bits Shift Left Quotient 32 bits 64-bit ALU Remainder 64 bits Write Control 31 divisor subtract 32-bit ALU dividend remainder EI 209 Chapter 3.31 quotient shift left Control CSE, 2013 Left Shift and Subtract Division Hardware 0010 =2 divisor subtract 32-bit ALU dividend remainder sub sub sub sub EI 209 Chapter 3.32 0000 0000 1110 0000 0001 1111 0001 0011 0001 0010 0000 quotient shift left Control 0110 =6 1100 1100 rem neg, so ‘ient bit = 0 1100 restore remainder 1000 1100 rem neg, so ‘ient bit = 0 1000 restore remainder 0000 rem pos, so ‘ient bit = 1 0001 0010 rem pos, so ‘ient bit = 1 0011 = 3 with 0 remainder CSE, 2013 Restoring Unsigned Integer Division s(0) = z the remainder shift left by 1 bit K=32, put divisor in the left 32 bit register for j = 1 to k if 2 s(j-1) - 2k d > 0 qk-j = 1 s(j) = 2 s(j-1) - 2k d else qk-j = 0 s(j) = 2 s(j-1) No need to restore the remainder in the case of R-D>0, Restore the remainder In the case of R-D<0, 33 EI 209 Chapter 3.33 CSE, 2013 Non-Restoring Unsigned Integer Division If in the last step, remainder –divisor >0, Perform subtraction why? s(1) = 2 z - 2k d for j = 2 to k if s(j-1) 0 qk-(j-1) = 1 s(j) = 2 s(j-1) - 2k d else qk-(j-1) = 0 s(j) = 2 s(j-1) + 2k d end for if s(k) 0 q0 = 1 else q0 = 0 If in the last step, remainder –divisor <0, Perform addition Correction step EI 209 Chapter 3.34 CSE, 2013 s(0) =z for j = 1 to k if 2 s(j-1) - 2k d > 0 qk-j = 1 s(j) = 2 s(j-1) - 2k d else qk-j = 0 s(j) = 2 s(j-1) Restoring Unsigned Integer Division s(1) = 2 z - 2k d for j = 2 to k if s(j-1) 0 qk-(j-1) = 1 equal s(j) = 2 s(j-1) - 2k d else qk-(j-1) = 0 Why? s(j) = 2 s(j-1) + 2k d end for if s(k) 0 q0 = 1 else q0 = 0 Correction step Non-Restoring Unsigned Integer Division 2x-y= 2(x-y)+y EI 209 Chapter 3.35 considering two consequent steps j-1 and j, in particular 2s(j-2) - 2k d <0 In the j-1 step, Restoring Algorithm computes qk-j = 0 s(j-1) = 2 s(j-2) In the subsequent j step, Restoring Algorithm computes 2 s(j-1) - 2k d == 2*2 s(j-2) - 2k d Non-Restoring Algorithm s(j-1) = 2 s(j-2) - 2k d In the subsequent j step, nonRestoring Algorithm computes 2 s(j-1) + 2k d = 2*2 s(j-2) - 2*2k d +2k d = 2*2 s(j-2) - 2k d CSE, 2013 Non-restoring algorithm set subtract_bit true 1: If subtract bit true: Subtract the Divisor register from the Remainder and place the result in the remainder register else Add the Divisor register to the Remainder and place the result in the remainder register 2:If Remainder >= 0 Shift the Quotient register to the left, setting rightmost bit to 1 else Set subtract bit to false 3: Shift the Divisor register right 1 bit if < 33rd rep goto 1 else Add Divisor register to remainder and place in Remainder register exit EI 209 Chapter 3.36 CSE, 2013 Example: Perform n + 1 iterations for n bits Remainder 0000 1011 Divisor 00110000 ----------------------------------Iteration 1: (subtract) Rem 1101 1011 Quotient 0 Divisor 0001 1000 ----------------------------------Iteration 2: (add) Rem 11110011 Q00 Divisor 0000 1100 ----------------------------------Iteration 3: (add) Rem 11111111 Q000 Divisor 0000 0110 EI 209 Chapter 3.37 ----------------------------------Iteration 4: (add) Rem 0000 0101 Q0001 Divisor 0000 0011 ----------------------------------Iteration 5: (subtract) Rem 0000 0010 Q 00011 Divisor 0000 0001 Since reminder is positive, done. Q = 0011 and Rem = 0010 CSE, 2013 Exercise Calculate A divided by B using restoring and non-restoring division. A=26, B=5 EI 209 Chapter 3.38 CSE, 2013 MIPS Divide Instruction Divide (div and divu) generates the reminder in hi and the quotient in lo div $s0, $s1 # lo = $s0 / $s1 # hi = $s0 mod $s1 0 16 17 0 0 0x1A Instructions mfhi rd and mflo rd are provided to move the quotient and reminder to (user accessible) registers in the register file As with multiply, divide ignores overflow so software must determine if the quotient is too large. Software must also check the divisor to avoid division by 0. EI 209 Chapter 3.39 CSE, 2013 Lecture 1 EI 209 Chapter 3.40 CSE, 2013 Goals for Floating Point Standard arithmetic for reals for all computers Like two’s complement Keep as much precision as possible in formats Help programmer with errors in real arithmetic +∞, -∞, Not-A-Number (NaN), exponent overflow, exponent underflow Keep encoding that is somewhat compatible with two’s complement E.g., 0 in Fl. Pt. is 0 in two’s complement Make it possible to sort without needing to do floating point comparison EI 209 Chapter 3.42 CSE, 2013 Scientific Notation (e.g., Base 10) Normalized scientific notation (aka standard form or exponential notation): r x Ei, E is exponent (usually 10), i is a positive or negative integer, r is a real number ≥ 1.0, < 10 Normalized => No leading 0s 61 is 6.10 x 102, 0.000061 is 6.10 x10-5 EI 209 Chapter 3.43 CSE, 2013 Scientific Notation (e.g., Base 10) (r x ei) x (s x ej) = (r x s) x ei+j (1.999 x 102) x (5.5 x 103) = (1.999 x 5.5) x 105 = 10.9945 x 105 = 1.09945 x 106 (r x ei) / (s x ej) = (r / s) x ei-j (1.999 x 102) / (5.5 x 103) = 0.3634545… x 10-1 = 3.634545… x 10-2 For addition/subtraction, you first must align: (1.999 x 102) + (5.5 x 103) = (.1999 x 103) + (5.5 x 103) = 5.6999 x 103 EI 209 Chapter 3.44 CSE, 2013 Floating Point: Representing Very Small Numbers Zero: Bit pattern of all 0s is encoding for 0.000 But 0 in exponent should mean most negative exponent (want 0 to be next to smallest real) Can’t use two’s complement (1000 0000two) Bias notation: subtract bias from exponent Single precision uses bias of 127; DP uses 1023 0 uses 0000 0000two => 0-127 = ∞, NaN uses 1111 1111two => 255-127 = +128 -127; Smallest SP real can represent: 1.00…00 x 2-126 Largest SP real can represent: 1.11…11 x 2+127 EI 209 Chapter 3.45 CSE, 2013 Bias Notation (+127) How it is interpreted How it is encoded ∞, NaN Getting closer to zero Zero EI 209 Chapter 3.46 CSE, 2013 What About Real Numbers in Base 2? x Ei, E where exponent is (2), i is a positive or negative integer, r is a real number ≥ 1.0, < 2 r Computers version of normalized scientific notation called Floating Point notation EI 209 Chapter 3.47 CSE, 2013 Floating Point Numbers 32-bit word has 232 patterns, so must be approximation of real numbers ≥ 1.0, < 2 IEEE 754 Floating Point Standard: 1 bit for sign (s) of floating point number 8 bits for exponent (E) 23 bits for fraction (F) (get 1 extra bit of precision if leading 1 is implicit) (-1)s x (1 + F) x 2E Can represent from 2.0 x 10-38 to 2.0 x 1038 EI 209 Chapter 3.48 CSE, 2013 Floating Point Numbers What about bigger or smaller numbers? IEEE 754 Floating Point Standard: Double Precision (64 bits) 1 bit for sign (s) of floating point number 11 bits for exponent (E) 52 bits for fraction (F) (get 1 extra bit of precision if leading 1 is implicit) (-1)s x (1 + F) x 2E Can represent from 2.0 x 10-308 to 2.0 x 10308 32 bit format called Single Precision EI 209 Chapter 3.49 CSE, 2013 Representing Big (and Small) Numbers What if we want to encode the approx. age of the earth? 4,600,000,000 or 4.6 x 109 or the weight in kg of one a.m.u. (atomic mass unit) 0.0000000000000000000000000166 or 1.6 x 10-27 There is no way we can encode either of the above in a 32-bit integer. Floating point representation (-1)sign x F x 2E Still have to fit everything in 32 bits (single precision) s E (exponent) 1 bit 8 bits F (fraction) 23 bits The base (2, not 10) is hardwired in the design of the FPALU More bits in the fraction (F) or the exponent (E) is a trade-off between precision (accuracy of the number) and range (size of the number) EI 209 Chapter 3.50 CSE, 2013 Exception Events in Floating Point Overflow (floating point) happens when a positive exponent becomes too large to fit in the exponent field Underflow (floating point) happens when a negative exponent becomes too large to fit in the exponent field -∞ +∞ - largestE -smallestF + largestE -largestF - largestE +smallestF + largestE +largestF One way to reduce the chance of underflow or overflow is to offer another format that has a larger exponent field Double precision – takes two MIPS words s E (exponent) 1 bit F (fraction) 11 bits 20 bits F (fraction continued) 32 bits EI 209 Chapter 3.51 CSE, 2013 “Father” of the Floating point standard IEEE Standard 754 for Binary FloatingPoint Arithmetic. 1989 ACM Turing Award Winner! Prof. Kahan www.cs.berkeley.edu/~wkahan/ …/ieee754status/754story.html EI 209 Chapter 3.52 CSE, 2013 IEEE 754 FP Standard Most (all?) computers these days conform to the IEEE 754 floating point standard (-1)sign x (1+F) x 2E-bias Formats for both single and double precision F is stored in normalized format where the msb in F is 1 (so there is no need to store it!) – called the hidden bit To simplify sorting FP numbers, E comes before F in the word and E is represented in excess (biased) notation where the bias is -127 (-1023 for double precision) so the most negative is 00000001 = 21-127 = 2-126 and the most positive is 11111110 = 2254-127 = 2+127 Examples (in normalized format) Smallest+: 0 00000001 1.00000000000000000000000 = 1 x 21-127 Zero: 0 00000000 00000000000000000000000 = true 0 Largest+: 0 11111110 1.11111111111111111111111 = 2-2-23 x 2254-127 1.02 x 2-1 = 0 01111110 1.00000000000000000000000 0.7510 x 24 = 0 10000010 1.10000000000000000000000 EI 209 Chapter 3.54 CSE, 2013 Ex: Converting Binary FP to Decimal BEE00000H is the hex. Rep. Of an IEEE 754 SP FP number 10111 1101 110 0000 0000 0000 0000 0000 (-1)S x (1 + Significand) x 2(Exponent-127) °Sign: 1 => negative °Exponent: • 0111 1101two = 125ten • Bias adjustment: 125 - 127 = -2 °Significand: 1 + 1x2-1+ 1x2-2 + 0x2-3 + 0x2-4 + 0x2-5 +... =1+2-1 +2-2 = 1+0.5 +0.25 = 1.75 °Represents: -1.75tenx2-2 = -0.4375 (= -4.375x10-1 ) EI 209 Chapter 3.55 CSE, 2013 Ex: Converting Decimal to FP -1.275 x 101 1. Denormalize: -12. 75 2. Convert integer part: 12 = 8 + 4 = 11002 3. Convert fractional part: .75 = .5 + .25 = .112 4. Put parts together and normalize: 1100.11 = 1.10011 x 23 5. Convert exponent: 127 + 3 = 128 + 2 = 1000 00102 11000 0010 100 1100 0000 0000 0000 0000 The Hex rep. is C14C0000H EI 209 Chapter 3.56 CSE, 2013 Representation for 0 How to represent 0? exponent: all zeros significand: all zeros What about sign? Both cases valid. +0: 0 00000000 00000000000000000000000 -0: 1 00000000 00000000000000000000000 EI 209 Chapter 3.57 CSE, 2013 Representation for +∞/-∞ ∞ ：infinity How to represent +∞/-∞? • Exponent : all ones (11111111B = 255) • Significand: all zeros +∞ : 0 11111111 00000000000000000000000 -∞ : 1 11111111 00000000000000000000000 Operations 5 / 0 = +∞, 5+(+∞) = +∞, 5 - (+∞) = -∞, EI 209 Chapter 3.58 -5 / 0 = -∞ (+∞)+(+∞) = +∞ (-∞) - (+∞) = -∞ etc CSE, 2013 Representation for “Not a Number” Sqrt (- 4.0) = ? 0/0 = ? Called Not a Number (NaN) - “非数” How to represent NaN Exponent = 255 Significand: nonzero NaNs can help with debugging Operations sqrt (-4.0) = NaN op (NaN,x) = NaN +∞- (+∞) = NaN etc. EI 209 Chapter 3.59 0/0 = NaN +∞+(-∞) = NaN ∞/∞ = NaN CSE, 2013 Representation for Denorms(非规格化数) What have we defined so far? (for SP) Exponent Significand Object 0 0 +/-0 0 nonzero Denorms 1-254 anything implicit leading 1 Norms 255 0 +/- infinity 255 nonzero NaN EI 209 Chapter 3.60 Used to represent Denormalized numbers CSE, 2013 Group Discussion 1: Questions about IEEE 754 Four students form a group and discuss the following question. What about following type converting: will it output true? if ( i == (int) ((float) i) ) { printf (“true”); } if ( f == (float) ((int) f) ) { printf (“true”); } EI 209 Chapter 3.61 CSE, 2013 Question II about IEEE 754 How about FP add associative? (X+Y)+Z=X+(Y+Z) x = – 1.5 x 1038, y = 1.5 x 1038, z = 1.0 (x+y)+z = (–1.5x1038+1.5x1038 ) +1.0 = 1.0 x+(y+z) = –1.5x1038+ (1.5x1038+1.0) = 0.0 EI 209 Chapter 3.62 CSE, 2013 IEEE 754 FP Standard Encoding Special encodings are used to represent unusual events ± infinity for division by zero NAN (not a number) for the results of invalid operations such as 0/0 True zero is the bit string all zero Single Precision E (8) F (23) 0000 0000 0 0000 0000 nonzero 0111 1111 to anything +127,-126 1111 1111 +0 1111 1111 nonzero EI 209 Chapter 3.63 Double Precision Object Represented E (11) F (52) 0000 … 0000 0 true zero (0) 0000 … 0000 nonzero ± denormalized number 0111 …1111 to anything ± floating point +1023,-1022 number 1111 … 1111 -0 ± infinity 1111 … 1111 nonzero not a number (NaN) CSE, 2013 Support for Accurate Arithmetic IEEE 754 FP rounding modes Always round up (toward +∞) Always round down (toward -∞) Truncate Round to nearest even (when the Guard || Round || Sticky are 100) – always creates a 0 in the least significant (kept) bit of F Rounding (except for truncation) requires the hardware to include extra F bits during calculations Guard bit – used to provide one F bit when shifting left to normalize a result (e.g., when normalizing F after division or subtraction) Round bit – used to improve rounding accuracy Sticky bit – used to support Round to nearest even; is set to a 1 whenever a 1 bit shifts (right) through it (e.g., when aligning F during addition/subtraction) F = 1 . xxxxxxxxxxxxxxxxxxxxxxx G R S EI 209 Chapter 3.64 CSE, 2013 Floating Point Addition Addition (and subtraction) (F1 2E1) + (F2 2E2) = F3 2E3 Step 0: Restore the hidden bit in F1 and in F2 Step 1: Align fractions by right shifting F2 by E1 - E2 positions (assuming E1 E2) keeping track of (three of) the bits shifted out in G R and S Step 2: Add the resulting F2 to F1 to form F3 Step 3: Normalize F3 (so it is in the form 1.XXXXX …) - If F1 and F2 have the same sign F3 [1,4) 1 bit right shift F3 and increment E3 (check for overflow) - If F1 and F2 have different signs F3 may require many left shifts each time decrementing E3 (check for underflow) Step 4: Round F3 and possibly normalize F3 again Step 5: Rehide the most significant bit of F3 before storing the result EI 209 Chapter 3.65 CSE, 2013 Floating Point Addition Example Add (0.5 = 1.0000 2-1) + (-0.4375 = -1.1100 2-2) Hidden bits restored in the representation above Shift significand with the smaller exponent (1.1100) right until its exponent matches the larger exponent (so once) Step 0: Step 1: Step 2: Step 3: Normalize the sum, checking for exponent over/underflow 0.001 x 2-1 = 0.010 x 2-2 = .. = 1.000 x 2-4 Step 4: The sum is already rounded, so we’re done Step 5: Rehide the hidden bit before storing EI 209 Chapter 3.67 Add significands 1.0000 + (-0.111) = 1.0000 – 0.111 = 0.001 CSE, 2013 Exercise Given A=2.6125×101, B=4.150390625×10-1, Calculate the sum of A and B by hand, assuming A and B are stored by the following format, Assume 1 guard, 1 round bit, and 1 sticky bit, and round to the nearest even. Show all the steps. Sign 1 bit Exponent 5 bits Fraction 10 bits S E F EI 209 Chapter 3.68 CSE, 2013 Solution: a. 2.6125×101 + 4.150390625×10–1 2.6125×101 = 26.125 = 11010.001 = 1.1010001000×24 4.150390625×10–1 = .4150390625 = .011010100111 =1.1010100111×2–2 Shift binary point 6 to the left to align exponents, GR 1.1010001000 00 +.0000011010 10 0111 (Guard = 1, Round = 0, Sticky = 1) -------------------1.1010100010 10 In this case the extra bits (G,R,S) are more than half of the least significant bit (0). Thus, the value is rounded up. 1.1010100011 × 24 = 11010.100011 × 20 = 26.546875 = 2.6546875 × 101 EI 209 Chapter 3.69 CSE, 2013 Floating Point Multiplication Multiplication (F1 2E1) x (F2 2E2) = F3 2E3 Step 0: Restore the hidden bit in F1 and in F2 Step 1: Add the two (biased) exponents and subtract the bias from the sum, so E1 + E2 – 127 = E3 also determine the sign of the product (which depends on the sign of the operands (most significant bits)) Step 2: Multiply F1 by F2 to form a double precision F3 Step 3: Normalize F3 (so it is in the form 1.XXXXX …) - Since F1 and F2 come in normalized F3 [1,4) 1 bit right shift F3 and increment E3 - Check for overflow/underflow Step 4: Round F3 and possibly normalize F3 again Step 5: Rehide the most significant bit of F3 before storing the result EI 209 Chapter 3.70 CSE, 2013 Floating Point Multiplication Example Multiply (0.5 = 1.0000 2-1) x (-0.4375 = -1.1100 2-2) Step 0: Hidden bits restored in the representation above Step 1: Add the exponents (not in bias would be -1 + (-2) = -3 and in bias would be (-1+127) + (-2+127) – 127 = (-1 -2) + (127+127-127) = -3 + 127 = 124 Step 2: Multiply the significands 1.0000 x 1.110 = 1.110000 Step 3: Normalized the product, checking for exp over/underflow 1.110000 x 2-3 is already normalized Step 4: The product is already rounded, so we’re done Step 5: Rehide the hidden bit before storing EI 209 Chapter 3.72 CSE, 2013 MIPS Floating Point Instructions MIPS has a separate Floating Point Register File ($f0, $f1, …, $f31) (whose registers are used in pairs for double precision values) with special instructions to load to and store from them lwcl $f1,54($s2) #$f1 = Memory[$s2+54] swcl $f1,58($s4) #Memory[$s4+58] = $f1 And supports IEEE 754 single add.s $f2,$f4,$f6 #$f2 = $f4 + $f6 and double precision operations add.d $f2,$f4,$f6 #$f2||$f3 = $f4||$f5 + $f6||$f7 similarly for sub.s, sub.d, mul.s, mul.d, div.s, div.d EI 209 Chapter 3.73 CSE, 2013 MIPS Floating Point Instructions, Con’t And floating point single precision comparison operations c.x.s $f2,$f4 #if($f2 < $f4) cond=1; else cond=0 where x may be eq, neq, lt, le, gt, ge and double precision comparison operations c.x.d $f2,$f4 #$f2||$f3 < $f4||$f5 cond=1; else cond=0 And floating point branch operations bclt 25 #if(cond==1) go to PC+4+25 bclf 25 #if(cond==0) go to PC+4+25 EI 209 Chapter 3.74 CSE, 2013 Frequency of Common MIPS Instructions Only included those with >3% and >1% SPECint SPECfp SPECint SPECfp addu 5.2% 3.5% add.d 0.0% 10.6% addiu 9.0% 7.2% sub.d 0.0% 4.9% or 4.0% 1.2% mul.d 0.0% 15.0% sll 4.4% 1.9% add.s 0.0% 1.5% lui 3.3% 0.5% sub.s 0.0% 1.8% lw 18.6% 5.8% mul.s 0.0% 2.4% sw 7.6% 2.0% l.d 0.0% 17.5% lbu 3.7% 0.1% s.d 0.0% 4.9% beq 8.6% 2.2% l.s 0.0% 4.2% bne 8.4% 1.4% s.s 0.0% 1.1% slt 9.9% 2.3% lhu 1.3% 0.0% slti 3.1% 0.3% sltu 3.4% 0.8% EI 209 Chapter 3.75 CSE, 2013