Download FINAL REVIEW - Normal Community High School Chemistry

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Oganesson wikipedia , lookup

Tennessine wikipedia , lookup

Periodic table wikipedia , lookup

History of molecular theory wikipedia , lookup

Extended periodic table wikipedia , lookup

Unbinilium wikipedia , lookup

Ununennium wikipedia , lookup

Transcript
Natural Science
Physical Science
Physics
Chemistry
Earth and Space Science
Geology
Astronomy
Meteorology
Life Science
Botany
Ecology
Oceanography
Natural science covers a very broad range of knowledge.
Wysession, Frank, Yancopoulos, Physical Science Concepts in Action, 2004, page 4
Zoology
Genetics
Basic Safety Rules
Use common sense.
No unauthorized experiments.
No horseplay.
Handle chemicals/glassware with respect.
Safety Features of the Lab
safety shower
fire blanket
fire extinguisher
eye wash
fume hood
circuit breaker switch
Government
Regulation
worker
OSHA
environment
EPA
The government
regulates chemicals
to protect the…
FDA
USDA
FAA
CPSC consumer
DANGER
Laboratory
Safety Rules
Chemical Exposure
acute exposure
a one-time
exposure
causes damage
chronic exposure
damage occurs
after repeated
exposure
Toxicity
Which is more toxic?
Chemical A: LD50 = 3.2 mg/kg
Chemical B: LD50 = 48 mg/kg
Chemical A is more toxic because less of it
proves fatal to half of a given population.
The Functions of Science
pure science
applied science
the search for
knowledge; facts
using knowledge
in a practical way
?
Pure Science
The search for facts about the natural
world.
- In science, we often try to establish a cause-effect
relationship.
- Driven by curiosity: the need to know, explore,
conquer something new.
Applied Science
The practical application of scientific
discoveries.
-Also known as
“technology”
- Used to improve our lives
Cell phones
Biodegradable garbage bags
Using the scientific method requires
that one be a good observer.
observation
uses the five
senses
inference
involves a judgment
or assumption
Data
Observations are also called data.
There are two types of data.
qualitative data
quantitative data
descriptions;
no numbers
measurements;
must have numbers
Parts of the Scientific Method
• Identify an unknown.
• Make a hypothesis
(a testable prediction).
• Experiment to test
the hypothesis.
• Draw a valid conclusion.
A Scientific Experiment
procedure
the order of events
in an experiment;
the “recipe”
variable
any factor that
could influence
the result
Experiments must be controlled; they
must have two set-ups that must differ
by only one variable.
The conclusion must be based on the data.
A Controlled Experiment?
Scientific Law vs.
Scientific Theory
A law states what happens.
Law of Gravity
A theory tries to explain why
or how something happens.
Theory of Gravity
Atomic Theory
Collision Theory of Reactions
Make observation
Scientific
Method
Ask question
Develop
hypothesis
Test hypothesis
with further
experiments
Test hypothesis
with an
experiment
Revise
hypothesis
Analyze data
and draw
conclusions
Hypothesis
IS
supported
Wysession, Frank, Yancopoulos,
Physical Science Concepts in Action, 2004, page 8
Hypothesis
is NOT
supported
Develop
theory
Phlogiston Theory
Phlogiston theory of burning
(a) When an object burns
it gives off a substance
called phlogiston.
(b) When the space surrounding
the burning object is filled with
phlogiston, the object will no
longer be able to burn.
Dorin, Demmin, Gabel, Chemistry The Study of Matter , 3rd Edition, 1990, page 4
(a)
(b)
phlogiston
phlogiston
Combustion Theory
Modern theory of burning
(c) When an object burns, it uses
up a substance (oxygen) in
the surrounding space.
(d)
When the space surrounding
the burning object has too little
oxygen in it, the object will no
longer be able to burn.
Dorin, Demmin, Gabel, Chemistry The Study of Matter , 3rd Edition, 1990, page 4
Antoine Lavoiser
(c)
(d)
oxygen
Laboratory
Equipment
transmutation
changing one substance into another

Philosopher‟s Stone
COPPER

GOLD
In ordinary chemical reactions, we cannot
transmute elements into different elements.
Alchemy
• After that 'chemistry' was
ruled by alchemy.
• They believed that that
could take any cheap
metals and turn them into
gold.
• Alchemists were almost
like magicians.
– elixirs, physical immortality
Alchemy (~500 – 1300 A.D.)
the quest for the
Philosopher‟s Stone
It was supposed to change cheap metals into gold.
Alchemical symbols for substances…
..
.
......
.
.....
GOLD
SILVER
COPPER
IRON
SAND
transmutation: changing one substance into another
In ordinary chemistry, we cannot transmute elements.
Contributions of alchemists: lab apparatus / procedures
how to make some alloys
properties of some elements
Government Regulation of Chemicals
…to protect the…
environment
EPA
consumer
Consumer Product
Safety Commission,
USDA, BATF, FDA
worker
OSHA
The Scope of Chemistry
-- petroleum products
gasoline, oil, diesel fuel, heating oil, asphalt
-- synthetic fibers
nylon, polyester, rayon, spandex
-- pharmaceuticals
medicines, cancer drugs, VIAGRA
1 in 10,000 new products gets FDA approval
-- bulk chemical manufacturing
#1 chemical = sulfuric acid (H2SO4)
All fields of endeavor are affected by chemistry.
Elements of a “good” line graph
• axes labeled,
with units
• use the
available space
• title
• neat
Volume (L)
Temp. v. Vol. for a Gas at Constant
Pressure
10
9
8
7
6
5
4
3
2
1
0
120
140
160
180
200
Temp. (K)
220
240
How to read a graph
•
•
•
•
Interpolate - read between
data points
What volume would the gas
occupy at a temperature of
150 K? 7 L
Extrapolate - read data
beyond data points
What volume would the gas
occupy at a temperature of
260 K? ~4 L
Which do you have more
confidence in? Why?
Volume (L)
•
(dependent variable)
Temp. v. Vol. for a Gas at Constant
Pressure
10
9
8
7
6
5
4
3
2
1
0
120
140
160
180
200
Temp. (K)
(independent variable)
220
240
Graphs
• Line Graph
– Used to show trends or continuous change
• Bar Graph
80
60
– Used to display information collected by counting
40
20
0
1st
2nd
3r d
4th
Qtr
Qtr
Qtr
Qtr
• Pie Graph
– Used to show how some fixed quantity is broken
down into parts
Bar Graph
Descriptive title
Chemistry Grades
Number of Students
70
Legend
60
50
A
B
C
D
40
30
20
10
0
1st Qtr
Axis labeled
(with units)
2nd Qtr
3rd Qtr
4th Qtr
How many cm are in 1.32 meters?
equality: 1 m = 100 cm
(or 0.01 m = 1 cm)
applicable conversion factors:
______
1m
100 cm
or
(
100 cm
______
1m
)
100 cm = 132 cm
X cm = 1.32 m ______
1m
We use the idea of unit cancellation
to decide upon which one of the two
conversion factors we choose.
How many feet is 39.37 inches?
equality: 1 ft = 12 in
applicable conversion factors:
______
1 ft
12 in
X ft = 39.37 in
or
______
12 in
1 ft
( )
____
1 ft
= 3.28 ft
12 in
Again, the units must cancel.
How many kilometers is
15,000 decimeters?
( )(
1m
X km = 15,000 dm ____
10 dm
)
1 km
______
= 1.5 km
1,000 m
How many seconds
is 4.38 days?
( )(
24 h
X s = 4.38 d ____
1d
)( )
60
min
_____
1h
60 s
____
1 min
= 378,432 s
If we are accounting for significant
figures, we would change this to…
3.78 x 105 s
Example Problem
Measured dimensions of a rectangle:
length (L) = 9.70 cm
width (W) = 4.25 cm
Find area of rectangle.
L
A=L.W
= (9.70 cm)(4.25 cm)
= 41.2
2.
cm cm
W
Convert 41.2 cm2 to mm2.
Recall that…
41.2 cm2 = 41.2 cm.cm
(
X mm2 = 41.2 cm.cm 10
mm
_____
1 cm
)(
1 cm
=
4,120 mm2
10
mm
_____
)
= 4,120 mm2
(
mm
_____
X mm2 = 41.2 cm2 10
1 cm
2
)
Measured dimensions of a rectangular solid:
Length = 15.2 cm
Width = 3.7 cm
Height = 8.6 cm
H
W
Find volume of solid.
L
V=L.W.H
= (15.2 cm)(3.7 cm)(8.6 cm)
3
= 480 cm
Convert to m3.
cm.cm.cm
(
)(
1m
X m3 = 480 cm32 _____
100 cm
1m
_____
)(
100 cm
)
1m
_____
=
100 cm
or
3
(
)
(
3
1m
X m3 = 480 cm3 _____
100 cm
0.000480 m3
=
or
X
m3
= 480
cm3
)
1m
_________
4.80 x 10-4 m3
=
1000000 cm3
Convert to m3...
Measured dimensions of a rectangular solid:
Length = 15.2 cm 0.152 m
Width = 3.7 cm 0.037 m
Height = 8.6 cm 0.086 m H
Find volume of solid.
W
L
V=L.W.H
= (0.152 m)(0.037 m)(0.086 m)
= 0.000480 m3
Form:
(# from 1 to 9.999) x 10exponent
800 = 8 x 10 x 10
= 8 x 102
2531 = 2.531 x 10 x 10 x 10
= 2.531 x 103
0.0014 = 1.4 / 10 / 10 / 10
= 1.4 x 10-3
Change to standard form.
000000187000000
.
.
1.87 x 10–5 = 0.0000187
3.7 x 108 = 370,000,000
7.88 x 101 = 78.8
2.164 x 10–2 = 0.02164
Change to scientific notation.
12,340 =
0.369 =
0.008 =
1,000,000,000 =
1.234 x 104
3.69 x 10–1
8 x 10–3
1 x 109
Using the Exponent Key
on a Calculator
EE
EXP
EE or EXP means “times 10 to the…”
23::
How
out 6.02
6.02 xx 10
1023
How to
to type out
6
0
.
2
EE
EE
2
3
Don’t do it like this…
6
WRONG!
0
.
yx
2
2
3
…or like this…
6
.
0
WRONG!
2
x
1
…or like this:
6
.
0
EE
2
3
TOO MUCH WORK.
0
2
x
1
0
yx
2
3
1.2 x 105
Example:
2.8 x 1013
Type this calculation in like this:
1
.
2
EE
5
2
.
8
EE
1
3
=
Calculator gives… 4.2857143 –09
or… 4.2857143 E–09
This is NOT written… 4.3–9
But instead is written… 4.3 x 10–9
or
4.3 E –9
7.5 x 10-6
- 8.7 x 10-4 = -6.525 x 10-9
report -6.5 x 10-9 (2 sig. figs.)
4.35 x 106 1.23 x 10-3
= 5.3505 x 103 or 5350.5
report 5.35 x 103 (3 sig. figs.)
5.76 x 10-16
9.86 x 10-4
= 5.84178499 x 10-13
report 5.84 x 10-13 (3 sig. figs.)
8.8 x 1011 3.3 x 1011
= 2.904 x 1023
report 2.9 x 1023 (2 sig. figs.)
6.022 x 1023
- 5.1 x 10-8 = -3.07122 x 1016
report -3.1 x 1016 (2 sig. figs.)
Scientific Notation
We often use very small and very large numbers in chemistry.
Scientific notation is a method to express these numbers in a
manageable fashion.
Thus 0.000 000 1 cm can be written 1 x 10-7 cm.
Lets see why…
Scientific notation expresses a number as the product of two
factors, the first falling between 1 and 10 and
the second being a power of 10.
Converting Numbers to
Scientific Notation
0.00002205
1
2
3
4
2.205 x
-5
10
5
In scientific notation, a number is separated into two parts.
The first part is a number between 1 and 10.
The second part is a power of ten.
How to Use a Scientific Calculator
Divide: (5.44 x 107) .. (8.1 x 104)
07
04
671.604938
5.44
8.100
54400000.
How to enter this on a calculator:
5.44
EE
7
..
8.1
EE
4
ENTER
8.1
EXP
4
=
OR
5.44
EXP
7
.
.
671.6049383
rounded to 6.7 x 102
Davis, Metcalfe, Williams, Castka, Modern Chemistry, 1999, page 52
chemical
any substance that takes part in,
or occurs as a result of,
a chemical reaction
All matter can be considered to be
chemicals or mixtures of chemicals.
chemical reaction
a rearrangement of atoms such that
“what you end up with”
products
differs from
“what you started with”
reactants
Combustion of a Hydrocarbon
carbon
methane + oxygen 
+ water
dioxide
CH4(g) + 2 O2(g)  CO2(g) + 2 H2O(g)

sodium + water  hydrogen +
sodium
hydroxide
2 Na(s) + 2 H2O(l)  H2(g) + 2 NaOH(aq)

Law of
Conservation of Mass
total mass = total mass
of reactants
of products
Rmass = Pmass
synthesis
taking small molecules and putting them
together, usually in many steps, to make
something more complex
The International System of Units
Quantity
Name
Length
Mass
Time
Amount of substance
Thermodynamic temperature
Electric current
Luminous intensity
meter
kilogram
second
mole
Kelvin
amperes
candela
Dorin, Demmin, Gabel, Chemistry The Study of Matter , 3rd Edition, 1990, page 16
Symbol
m
kg
s
mol
K
amps
cd
The Original Metric Reference
H2O
1 kg
= 1 liter
1/10,000,000 Earth
Volume
= 1 meter
Length
1/10 m
H2O
1/10 m
1/10 m
Mass
= 1 kilogram
Prefixes in the SI System
The Commonly Used Prefixes in the SI System
Prefix
Symbol
Meaning
Power of 10 for
Scientific Notation
_______________________________________________________________________
1,000,000
106
1,000
103
mega-
M
kilo-
k
deci-
d
0.1
10-1
centi-
c
0.01
10-2
milli-
m
0.001
10-3
0.000001
10-6
0.000000001
10-9
micro-
nano-
n
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 118
Instruments for Measuring Volume
Graduated
cylinder
Syringe
Buret
Pipet
Volumetric
flask
1024 g
1021 g
Quantities of
Mass
1018 g
1015 g
1012 g
Giga-
109 g
Mega-
106 g
Kilo-
103 g
base
100 g
milli-
10-3 g
micro-
10-6 g
nano-
10-9 g
pico-
10-12 g
femto-
10-15 g
atomo-
10-18 g
Ocean liner
Indian elephant
Average human
1.0 liter of water
Grain of table salt
10-21 g
10-24 g
Kelter, Carr, Scott, Chemistry A Wolrd of Choices 1999, page 25
Earth‟s atmosphere
to 2500 km
Typical protein
Uranium atom
Water molecule
SI-US Conversion Factors
Relationship
Conversion Factors
Length
2.54 cm = 1 in.
2.54 cm
1 in
and
1 m = 39.4 in.
39.4 in
1m
and
946 mL = 1 qt
946 mL
1 qt
and
1 qt
946 mL
1 L = 1.06 qt
1.06 qt
1L
and
1L
1.06 qt
and
1 lb
454 g
and
1 kg
2.20 lb
1 in
2.54 cm
1m
39.4 in.
Volume
Mass
454 g = 1 lb
1 kg = 2.20 lb
454 g
1 lb
2.20 lb
1 kg
Accuracy vs. Precision
Good accuracy
Good precision
Poor accuracy
Good precision
Poor accuracy
Poor precision
Systematic errors:
reduce accuracy
(instrument)
Random errors:
reduce precision
(person)
Accuracy Precision Resolution
time offset [arbitrary units]
3
not accurate, not precise
accurate, not precise
not accurate, precise
accurate and precise
accurate, low resolution
2
1
0
-1
-2
-3
subsequent samples
SI Prefixes
kilodecicentimilli-
1000
1/
10
1/
100
1/
1000
Also know…
1 mL = 1 cm3 and 1 L = 1 dm3
SI System for Measuring Length
The SI Units for Measuring Length
Unit
Symbol
Meter Equivalent
_______________________________________________________________________
1,000 m or 103 m
kilometer
km
meter
m
1
decimeter
dm
0.1 m or 10-1 m
centimeter
cm
0.01 m or 10-2 m
millimeter
mm
0.001 m or 10-3 m
micrometer
m
0.000001 m or 10-6 m
nanometer
nm
0.000000001 m or 10-9 m
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 118
m or 100 m
Practice Measuring
Timberlake, Chemistry 7th Edition, page 7
0
cm
1
2
3
4
5
4.5 cm
0
cm
1
2
3
4
5
4.54 cm
0
cm
1
2
3
4
5
3.0 cm
20
?
15
?1 mL
1.50
15.0
xmL
10
mL
10
The Importance of Units
Units must be carried into the
answer, unless they cancel.
5.2 kg (2.9 m) = 0.64 kg-m
(18 s)(1.3 s)
s2
4.8 kg (23 s)
(5.2 s)(37 s)
= 0.57 kg
s
Basic Algebra
Solve the following for x.
x+y=z
x and y are connected by
addition. Separate them
using subtraction. In general,
use opposing functions to
separate things.
x+y=z
–y –y
The +y and –y cancel on
the left,
leaving us with…
x=z–y
Basic Algebra
Solve for x.
x and 24 are connected by
subtraction. Separate
them using the opposite
function: addition.
x – 24 = 13
x – 24 = 13
+24 +24
The –24 and +24 cancel
on the left,
leaving us with…
x = 37
Basic Algebra
Solve for x.
x and k are connected by
multiplication. Separate
them using the opposite
function: division.
The two k‟s cancel on
the left,
leaving us with…
F=kx
()
()
__
1
__
1
F=kx
k
k
(or)
F=kx
k
k
__
F
x=
k
Basic Algebra
Solve for x.
x and 7 are connected by
multiplication. Separate
them using the opposite
function: division.
The two 7‟s cancel on
the right,
leaving us with…
8=7x
()
()
__
1
__
1
8=7x
7
7
(or)
8=7x
7
7
__
8
x=
7
Basic Algebra
Solve for x.
One way to solve this
is to cross-multiply.
Then, divide both
sides by TR.
The answer is…
___
BA = ___
TR
x
H
BAH = xTR
( )
( )
___
1 BAH = xTR ___
1
TR
TR
BAH
x = ___
TR
Solve for T2, where…
P
1V1
____
=
P1 = 1.08 atm
T1
P2 = 0.86 atm
____
1 PVT =
V1 = 3.22 L
1 1 2
P
V
1
1
V2 = 1.43 L
P2V2T1
T1 = 373 K
( )
P
2V2
____
T2
( )
____
1
P1V1
P2V2T1
______
T2 =
P1V1
(0.85
atm)(1.43 L)(373 K)
_____________________
T2 =
= 130 K
(1.08 atm)(3.22 L)
A General Procedure for
Solving Problems
• Read the problem carefully and make a list of
the “knowns” and the „unknowns”
• Look up all needed information
– Your lecture notes will have much, if not all, of the
needed information
• Work out a plan and, following your plan, obtain
an answer by carrying out the required math.
• Check over your work
– This is best done by estimating your answer
– Ask yourself: “Does the answer seem reasonable?”
Resources - Intro. to Chemistry
Worksheet - vocabulary
Worksheet - material safety data sheet (acetone)
Activity - checkbook activity
Worksheet - graphing
Worksheet - real life chemistry
Worksheet - conversion factors
Worksheet - scientific notation
Worksheet - metric article (questions)
Worksheet - significant digits
Worksheet - math review
Worksheet - math of chemistry
Worksheet - article on the metric system
Outline (general)
Energy and Matter
Unit 2
Physical and Chemical Properties
Examples of Physical Properties
Boiling point
Color
Slipperiness
Electrical conductivity
Melting point
Taste
Odor
Dissolves in water
Shininess (luster)
Softness
Ductility
Viscosity (resistance to flow)
Volatility
Hardness
Malleability
Density (mass / volume ratio)
Examples of Chemical Properties
Burns in air
Reacts with certain acids
Decomposes when heated
Explodes
Reacts with certain metals
Reacts with certain nonmetals
Tarnishes
Reacts with water
Is toxic
Ralph A. Burns, Fundamentals of Chemistry 1999, page 23
Chemical properties can ONLY be observed during a chemical reaction!
Three Possible Types of Bonds
Covalent
e.g. H2
+
-
Polar Covalent
+
-
Ionic
e.g. HCl
e.g. NaCl
Metallic Bonding
Cations
+
e1+
e1-
+
+
e1+
e1e1-
+
e1-
“electron sea”
+
e1-
+
+
+
e1-
e1-
e1+
Free electrons
e1-
e1-
+
e1-
+
e1-
e1-
+
e1-
Metallic bonding is the attraction between positive ions and
surrounding freely mobile electrons. Most metals contribute
more than one mobile electron per atom.
Bailar, Jr, Moeller, Kleinberg, Guss, Castellion, Metz, Chemistry, 1984, page 245
Shattering an Ionic Crystal; Bending a Metal
broken crystal
An ionic crystal
Force
+
+
+
+
-
+
+
+
+
-
+
+
+
+
-
+
+
+
+ + +
+ +
+ +
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
- +
- +
A metal
Force
+
+
-
- +
- +
- + -
+
+
+ +
+ +
+ +
+
+
+
+
-
+
+
+
+
-
+
+
+
+
-
+ +
+ + +
+ + +
+
+
+
+
+
+
+
+
+
+ - +
+
+
+
+
+
+
+
+
+
+
+
+
Electrostatic
forces
of repulsion
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ +
+ +
+
+
+
No electrostatic forces of repulsion –
metal is deformed (malleable)
Bailar, Jr, Moeller, Kleinberg, Guss, Castellion, Metz, Chemistry, 1984, page 248
Covalent vs. Ionic
Alike
Different
Share
electrons
Different
Transfer
electrons
Chemical
Bonds
(polar vs. nonpolar)
(ions formed)
+/-
Topic
Between
Two
Nonmetals
Covalent
Topic
Electrons
are
involved
Ionic
Between
Metal and
Nonmetal
Weak
Bonds
Strong
Bonds
(low melting point)
(high melting point)
Temperature Scales
Boiling point
of water
Fahrenheit
Celcius
Kelvin
212 oF
100 oC
373 K
180 oF
Freezing point
of water
32 oF
100 oC
0 oC
100 K
273 K
Notice that 1 kelvin degree = 1 degree Celcius
Heat versus Temperature
lower temperature
Fractions of particles
higher temperature
TOTAL
= Heat
Kinteic ENERGY
Kinetic energy
Temperature vs. Heat
Different
Alike
Measured
with a
Thermometer
Have
Kinetic
Energy
Topic
Average
Kinetic
Energy
oCelcius
(or Kelvin)
Temperature
Different
Measured
with a
Calorimeter
Topic
A Property
of
Matter
Heat
Total
Kinetic
Energy
Joules
(calories)
Conservation of Matter
Reactants
yield
Products
It appears that the brick is ~40x
more dense than the styrofoam.
Styrofoam
?
Brick
Which liquid has the highest density?
least dense
1
<
3
<
5
<
2
1
3
2
Coussement, DeSchepper, et al. , Brain Strains Power Puzzles 2002, page 16
5
4
<
4
most dense
Volume and Density
Relationship Between Volume and Density for Identical Masses of Common Substances
Substance
Cube of substance
(face shown actual size)
Mass
(g)
Volume
(cm3)
19
Density
(g.cm3)
Lithium
10
0.53
Water
10
10
1.0
Aluminum
10
3.7
2.7
Lead
10
0.58
11.4
Density
D = M
V
M
M = DxV
ass
D
ensity
V
olume
V = M
D
Consider Equal Volumes
Mass
Density =
Volume
Equal volumes…
…but unequal masses
The more massive object
(the gold cube) has the
GREATER
_________ density.
aluminum
Dorin, Demmin, Gabel, Chemistry The Study of Matter , 3rd Edition, 1990, page 71
gold
Consider Equal Masses
Equal masses…
…but unequal volumes.
aluminum
The object with the
larger volume
(aluminum cube) has
the smaller density.
Dorin, Demmin, Gabel, Chemistry The Study of Matter , 3rd Edition, 1990, page 71
gold
Specific Gravity
cork
0.25
0.9
aluminum
2.7
Jaffe, New World of Chemistry, 1955, page 66
ice
water 1.0
Tank of Water
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 143
Person Submerged in Water
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 143
Archimedes Principle
Thread
Vfinal = 98.5 cm3
- Vinitial = 44.5 cm3
Vfishing sinker = 54.0 cm3
98.5 cm3
44.5 cm3
Fishing sinker
Water
Before immersion
After immersion
Dissolving of Salt in Water
Na+
ions
Water molecules
Clions
NaCl(s) + H2O  Na+(aq) + Cl-(aq)
Some Properties of Solids, Liquids, and Gases
Property
Solid
Liquid
Gas
Shape
Has definite shape
Takes the shape of
the container
Takes the shape
of its container
Volume
Has a definite volume
Has a definite volume Fills the volume of
the container
Arrangement of
Particles
Fixed, very close
Random, close
Random, far apart
Interactions between
particles
Very strong
Strong
Essentially none
Energy Changes Accompanying Phase Changes
Gas
Energy of system
Vaporization
Condensation
Sublimation
Liquid
Melting
Freezing
Solid
Brown, LeMay, Bursten, Chemistry 2000, page 405
Deposition
Heating Curve for Water
Temperature (oC)
E
D
100
C
liquid
B
0
A
solid
Heat added
LeMay Jr, Beall, Robblee, Brower, Chemistry Connections to Our Changing World , 1996, page 487
gas
Heating Curve for Water
Temperature (oC)
vaporization
D
100
condensation
melting
C
liquid
B
0
A
solid
freezing
Heat added
LeMay Jr, Beall, Robblee, Brower, Chemistry Connections to Our Changing World , 1996, page 487
E
gas
MATTER
yes
MIXTURE
yes
Is the composition
uniform?
Homogeneous
Mixture
(solution)
PURE SUBSTANCE
no
Heterogeneous
Mixture
Colloids
no
Can it be physically
separated?
yes
Can it be chemically
decomposed?
Compound
Suspensions
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
no
Element
Pure Substances
Element
– composed of identical atoms
– EX: copper wire, aluminum foil
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
Pure Substances
Compound
– composed of 2 or more
elements in a fixed ratio
– properties differ from those of
individual elements
– EX: table salt (NaCl)
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
Pure Substances
Law of Definite Composition
– A given compound always contains the
same, fixed ratio of elements.
Law of Multiple Proportions
– Elements can combine in different ratios to
form different compounds.
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
Mixtures
Variable combination of 2 or more
pure substances.
Heterogeneous
Homogeneous
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
Mixtures
Solution
– homogeneous
– very small particles
– no Tyndall effect
Tyndall Effect
– particles don‟t settle
– EX: rubbing alcohol
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
Mixtures
Colloid
– heterogeneous
– medium-sized particles
– Tyndall effect
– particles don‟t settle
– EX: milk
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
Mixtures
Suspension
– heterogeneous
– large particles
– Tyndall effect
– particles settle
– EX: fresh-squeezed
lemonade
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
Classification of Matter
Materials
Homogeneous
Heterogeneous
Substance
Element
Compound
Homogeneous
mixture
Solution
Order / Disorder
Smoot, Smith, Price, Chemistry A Modern Course, 1990, page 43
Heterogeneous
mixture
Mixture
Classification of Matter
MATTER
(gas. Liquid,
solid, plasma)
Separated by
PURE
SUBSTANCES
MIXTURES
physical means into
Separated by
COMPOUNDS
ELEMENTS
chemical
means into
Kotz & Treichel, Chemistry & Chemical Reactivity, 3rd Edition , 1996, page 31
HOMOGENEOUS
MIXTURES
HETEROGENEOUS
MIXTURE
Elements, Compounds, and Mixtures
hydrogen
atoms
oxygen atoms
(a)
an element
(hydrogen)
(b)
a compound
(water)
hydrogen
atoms
Dorin, Demmin, Gabel, Chemistry The Study of Matter , 3rd Edition, 1990, page 68
(c)
a mixture
(hydrogen
and oxygen)
(d)
a mixture
(hydrogen
and oxygen)
Mixture vs. Compound
Different
Alike
Variable
Composition
Involve
substances
Topic
No bonds
between
components
Can be
separated by
physical means
Mixture
Different
Fixed
Composition
Topic
Contain
two or more
elements
Can be
separated
into
elements
Compound
Bonds
between
components
Can ONLY be
separated by
chemical means
Allotropes of Carbon
Graphite
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 27
Diamond
Buckminsterfullerene
Gold
Gold
Copper
Silver
24 karat gold
24/
24
atoms Au
18 karat gold
18/
24
atoms Au
14 karat gold
14/
24
atoms Au
An alloy is a mixture of metals.
• Brass = Copper + Zinc
• Solid brass
• homogeneous mixture
Copper
Zinc
Solid Brass
• Brass = Copper + Zinc
• Brass plated
• heterogeneous mixture
• Only brass on outside
Copper
Zinc
Brass Plated
Methods of Separating
Mixtures
•
•
•
•
•
•
•
Magnet
Filter
Decant
Evaporation
Centrifuge
Chromatography
Distillation
Mixture of
solid and
liquid
Filtration
separates
a liquid
from a
solid
Stirring
rod
Funnel
Filter paper
traps solid
Filtrate (liquid
component
of the mixture)
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 40
Chromatography
• Tie-dye t-shirt
• Black pen ink
• DNA testing
– Tomb of Unknown Soldiers
– Crime scene
– Paternity testing
Setup to heat a solution
Ring stand
Beaker
Wire gauze
Ring
Bunsen burner
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 42
A Distillation Apparatus
thermometer
liquid with a solid
dissolved in it
condenser
tube
distilling
flask
Dorin, Demmin, Gabel, Chemistry The Study of Matter , 3rd Edition, 1990, page 282
hose connected to
cold water faucet
receiving
flask
pure
liquid
The solution is boiled and
steam is driven off.
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 39
Salt remains after all water is
boiled off.
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 39
No chemical change occurs
when salt water is distilled.
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 40
Centrifugation
• Spin sample very rapidly:
denser materials go to
bottom (outside)
• Separate blood into serum
and plasma
– Serum (clear)
– Plasma (contains red blood
cells „RBCs‟)
AFTER
Before
Serum
Blood
RBC’s
• Check for anemia (lack of iron)
A
B
C
Water Molecules
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 8
The decomposition of two
water molecules.
Water
molecules
Diatomic
oxygen molecule
+
Diatomic
hydrogen molecules
Electric
current
2 H2O

O2
+
2 H2
Electrolysis
“electro” = electricity
“lysis” = to split
H2O(l)
water
*H1+
Water
Oxygen
gas forms
Hydrogen
gas forms
O2 (g) + 2 H2 (g)
oxygen
hydrogen
*Must add acid catalyst
to conduct electricity
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 32
Source of
direct current
Electrode
if molecules collide with enough
force to break them into atoms, a
ELEMENT
CHEMICAL REACTION
can take place
hydrogen molecule, H2
COMPOUND
MIXTURE
ELEMENT
oxygen molecule, O2
a mixture of
hydrogen and
oxygen molecules
water, H2O
Energy
A
C
B
Kinetic Energy – energy of motion
KE = ½ m v 2
mass
velocity (speed)
Potential Energy – stored energy
Batteries (chemical potential energy)
Spring in a watch (mechanical potential energy)
Water trapped above a dam (gravitational potential energy)
Kinetic Energy and Reaction
Rate
lower temperature
Fractions of particles
higher temperature
minimum energy
for reaction
Kinetic energy
Kinetic Energy and Reaction
Rate
lower temperature
Fractions of particles
higher temperature
minimum energy
for reaction
Kinetic energy
Decomposition of Nitrogen Triiodide
Decomposition of Nitrogen Triiodide
N2
NI3
2 NI3(s)
I2
N2(g) + 3 I2(g)
Exothermic Reaction
Reactants  Products + Energy
10 energy
=
8 energy
+ 2 energy
Energy of reactants
Energy
Energy of products
Reactants
- H
Products
Reaction Progress
Endothermic Reaction
Energy + Reactants  Products
Energy
Activation
Energy
Reactants
Products
+ H Endothermic
Reaction progress
Effect of Catalyst on Reaction Rate
WhatCatalyst
is a catalyst?
does it do
duringfor
a chemical
reaction?
lowers What
the activation
energy
the reaction.
No catalyst
Energy
activation energy
for catalyzed reaction
reactants
products
Reaction Progress
Energy Sources in the United States
100
91
Percent
80
71
70
60
50
40
40
20
58
50
21
9
26
20
5
10
3
21
26
16
10
0
1850
Wood
1900
Coal
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 307
1940
1980
Petroleum / natural gas
1990
2005
Hydro and nuclear
Energy Conversion
fan
electrical energy to
mechanical energy
light bulb
electrical energy to
light energy to
thermal and radiant energy
pencil sharpner
electrical energy to
mechanical energy
Timberlake, Chemistry 7th Edition, page 202
coffee maker
electrical energy to
thermal energy
Burning of a Match
Potential energy
System
Surroundings
(Reactants)
(PE)
Energy released to the surrounding as heat
(Products)
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 293
Conservation of Energy
in a Chemical Reaction
In this example, the energy
Endothermic
of the reactants
Reaction
and products increases,
while the energy of the surroundings decreases.
Reactant + Energy
Product
In every case, however, the total energy does not change.
Surroundings
Energy
Surroundings
System
System
Myers, Oldham, Tocci, Chemistry, 2004, page 41
Before
reaction
After
reaction
Conservation of Energy
in a Chemical Reaction
In this example, the energy
Exothermic
of the reactants
Reaction
and products decreases,
while the energy of the surroundings increases.
Reactant
Product + Energy
In every case, however, the total energy does not change.
Energy
Surroundings
Myers, Oldham, Tocci, Chemistry, 2004, page 41
System
Before
reaction
Surroundings
System
After
reaction
Heating Curves
140
120
Gas - KE
Temperature (oC)
100
80
Boiling - PE
60
40
20
0
-20
Liquid - KE
Melting - PE
-40
-60
-80
Solid - KE
-100
Time
Calculating Energy Changes Heating Curve for Water
140
120
H = mol x Hfus
H = mol x Hvap
Temperature (oC)
100
80
Heat = mass x t x Cp, gas
60
40
20
0
Heat = mass x t x Cp, liquid
-20
-40
-60
-80
Heat = mass x t x Cp, solid
-100
Time
Endothermic Reaction
Energy + Reactants  Products
Energy
Activation
Energy
Reactants
Products
+ H Endothermic
Reaction progress
Fission vs. Fusion
Different
Alike
Split
large atoms
U-235
Change
Nucleus
of
Atoms
Topic
Radioactive
waste
(long half-life)
Nuclear
Power
Plants
Fission
Different
Fuse small atoms
2H2 He
Topic
Create
Large Amounts
of Energy
E = mc2
Transmutation
of Elements
Occurs
Fusion
NO
Radioactive
waste
Very High
Temperatures
~5,000,000 oC
(SUN)
Nuclear Fission
First stage: 1 fission
Second stage: 2 fission
Third stage: 4 fission
Half-life of Radiation
Radioisotope remaining (%)
Initial amount
of radioisotope
100
After 1 half-life
After 2 half-lives
50
After 3 half-lives
t1/2
25
t1/2
12.5
t1/2
0
1
2
3
Number of half-lives
4
Resources - Matter and Energy
Objectives - matter and energy
Objectives - measurement
Objectives - phases of matter
Worksheet - vocabulary
Activity - chromatography
Worksheet - percentage composition
Outline - causes of change - calorimetry
Worksheet - properties
Worksheet - calorimetry problems 1
Worksheet - density problems
Worksheet - calorimetry problems 2
Activity - density blocks & Part 2
Worksheet - heat energy problems
Lab - golf ball lab
Worksheet - conversion factors
Worksheet - classifying matter
Worksheet - atoms, mass, and the mole
Article - buckeyball & questions (video)
activity - mole pattern
Article - buried in ice (questions)
Lab - beverage density (PowerPoint)
Outline (general)
Atomic Structure
Unit 3
Greek Model
“To understand the very large,
we must understand the very small.”
Democritus
• Greek philosopher
• Idea of „democracy‟
• Idea of „atomos‟
– Atomos = „indivisible‟
– „Atom‟ is derived
• No experiments to support
idea
• Continuous vs. discontinuous
theory of matter
Democritus’s model of atom
No protons, electrons, or neutrons
Solid and INDESTRUCTABLE
Four Element Theory
FIRE
• Plato was an atomist
• Thought all matter was
composed of 4 elements:
–
–
–
–
–
Earth (cool, heavy)
Water (wet)
Fire (hot)
Air (light)
Ether (close to heaven)
Hot
Dry
„MATTER‟
AIR
Wet
EARTH
Cold
WATER
Relation of the four elements and the four qualities
Blend these “elements” in different proportions to get all substances
Foundations of Atomic Theory
Law of Conservation of Mass
Mass is neither destroyed nor created during ordinary chemical
reactions.
Law of Definite Proportions
The fact that a chemical compound contains the same elements
in exactly the same proportions by mass regardless of the size
of the sample or source of the compound.
Law of Multiple Proportions
If two or more different compounds are composed of the
same two elements, then the ratio of the masses of the
second element combined with a certain mass of the first
elements is always a ratio of small whole numbers.
Conservation of Atoms
2 H2 + O 2
2 H 2O
John Dalton
H
H
H2
O
H
O2
+
H2
H
O
H 2O
O
H 2O
H
H
O
H
H
4 atoms hydrogen
2 atoms oxygen
Dorin, Demmin, Gabel, Chemistry The Study of Matter , 3rd Edition, 1990, page 204
4 atoms hydrogen
2 atoms oxygen
Dalton‟s Symbols
John Dalton
1808
Daltons‟ Models of Atoms
Carbon dioxide, CO2
Water, H2O
Methane, CH4
Dalton‟s Atomic Theory
1. All matter is made of tiny indivisible particles
called atoms.
2. Atoms of the same element are identical,
those of different atoms are different.
3. Atoms of different elements combine in whole
number ratios to form compounds
4. Chemical reactions involve the rearrangement
of atoms. No new atoms are created or
destroyed.
California WEB
Crookes Tube
William Crookes
Crookes tube
(Cathode ray tube)
Glow
Cathode
(-)
Anode
(+)
http://encarta.msn.com/media_461556463_761559903_-1_1/Crookes_Tube.html
Mask holder
Crooke‟s Tube
-
voltage
source
William Crookes
+
vacuum tube
metal disks
magnet
A Cathode Ray Tube
Source of
Electrical
Potential
Stream of negative
particles (electrons)
Metal Plate
Gas-filled
glass tube
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 58
Metal plate
A Cathode Ray Tube
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 58
The Effect of an Obstruction on
Cathode Rays
High
voltage
source of
high voltage
shadow
cathode
yellow-green
fluorescence
Dorin, Demmin, Gabel, Chemistry The Study of Matter , 3rd Edition, 1990, page 117
The Effect of an Electric Field on
Cathode Rays
source of
high voltage
High
voltage
cathode
negative
plate
_
+
anode
positive
plate
Dorin, Demmin, Gabel, Chemistry The Study of Matter , 3rd Edition, 1990, page 117
William Thomson
(Lord Kelvin)
• In 1910 proposed
the Plum Pudding
model
– Negative electrons
were embedded into
a positively charged
spherical cloud.
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 56
Spherical cloud of
Positive charge
Electrons
Rutherford‟s Apparatus
beam of alpha particles
radioactive
substance
fluorescent screen
circular - ZnS coated
gold foil
Dorin, Demmin, Gabel, Chemistry The Study of Matter , 3rd Edition, 1990, page 120
Geiger Counter
Ionization of fill gas
takes place along
track of radiation
(-)
(+)
Speaker gives
“click” for
each particle
Metal tube
(negatively
charged)
Window
+
e-
e+
+
+ ee-
Ionizing
radiation
path
Atoms or molecules
of fill gas
Wilbraham, Staley, Matta, Waterman, Chemistry, 2002, page 857
Central wire electrode
(positively charged)
Free e- are attracted to
(+) electrode, completing
the circuit and generating
a current. The Geiger
counter then translates
the current reading into a
measure of radioactivity.
Interpreting the Observed
Deflections
.
.
.
.
.
.
beam of
alpha
particles
.
.
.
.
.
undeflected
particles
.
.
.
.
.
gold foil
Dorin, Demmin, Gabel, Chemistry The Study of Matter , 3rd Edition, 1990, page 120
.
deflected particle
Explanation of Alpha-Scattering Results
Alpha particles
Nucleus
+
+
-
-
+
+
-
+
+
-
+
-
+
-
-
Plum-pudding atom
Nuclear atom
Thomson‟s model
Rutherford‟s model
Results of foil experiment if plumpudding had been correct.
Electrons scattered
throughout
-
+
-
positive
charges
+
+
+
+
-
-
+
+
+
-
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 57
-
Interpreting the Observed
Deflections
deflected particle
.
.
.
.
.
.
beam of
alpha
particles
.
.
.
.
.
.
.
.
.
.
gold foil
Dorin, Demmin, Gabel, Chemistry The Study of Matter , 3rd Edition, 1990, page 120
.
undeflected
particles
Bohr Atom
The Planetary Model of the Atom
Models of the Atom
"In science, a wrong theory can be valuable and better than no theory at all."
- Sir William L. Bragg
e
e
+
e
+
e
+
+
e
+e
+
e
e
+ e + e
Dalton‟s
Greek model
model
(400
(1803)
B.C.)
Thomson‟s plum-pudding
model (1897)
Bohr‟s model
(1913)
Dorin, Demmin, Gabel, Chemistry The Study of Matter , 3rd Edition, 1990, page 125
-
- +
Rutherford‟s model
(1909)
Charge-cloud model
(present)
Models of the Atom
e
e
+
e
-
+
e
+
+
e
+e
+e
e
+ e + e
Dalton‟s
model
Greek model
(1803)
(400 B.C.)
1803 John Dalton
pictures atoms as
tiny, indestructible
particles, with no
internal structure.
1800
-
Thomson‟s plum-pudding
model (1897)
- +
Rutherford‟s model
(1909)
1897 J.J. Thomson, a British
1911 New Zealander
scientist, discovers the electron,
leading to his "plum-pudding"
model. He pictures electrons
embedded in a sphere of
positive electric charge.
Ernest Rutherford states
that an atom has a dense,
positively charged nucleus.
Electrons move randomly in
the space around the nucleus.
1805 ..................... 1895
1900
1905
1910
1904 Hantaro Nagaoka, a
Japanese physicist, suggests
that an atom has a central
nucleus. Electrons move in
orbits like the rings around Saturn.
Dorin, Demmin, Gabel, Chemistry The Study of Matter , 3rd Edition, 1990, page 125
1915
Bohr‟s model
(1913)
1926 Erwin Schrodinger
1913 In Niels Bohr's
model, the electrons move
in spherical orbits at fixed
distances from the nucleus.
1920
1925
Charge-cloud model
(present)
1930
develops mathematical
equations to describe the
motion of electrons in
atoms. His work leads to
the electron cloud model.
1935
1940
1945
1924 Frenchman Louis
1932 James
de Broglie proposes that
moving particles like electrons
have some properties of waves.
Within a few years evidence is
collected to support his idea.
Chadwick, a British
physicist, confirms the
existence of neutrons,
which have no charge.
Atomic nuclei contain
neutrons and positively
charged protons.
An unsatisfactory model
for the hydrogen atom
According to classical physics, light
should be emitted as the electron
circles the nucleus. A loss of energy
would cause the electron to be drawn
closer to the nucleus and eventually
spiral into it.
Hill, Petrucci, General Chemistry An Integrated Approach 2nd Edition, page 294
Discovery of the Neutron
9
4
Be
+
4
2
He
12
6
C
+
1
0
n
James Chadwick bombarded beryllium-9 with alpha particles,
carbon-12 atoms were formed, and neutrons were emitted.
Dorin, Demmin, Gabel, Chemistry The Study of Matter 3rd Edition, page 764
17
Cl
35.453
• Assume you have only two atoms of chlorine.
• One atom has a mass of 35 amu (Cl-35)
• The other atom has a mass of 36 amu (Cl-36)
• What is the average mass of these two isotopes?
35.5 amu
• Looking at the average atomic mass printed on the
periodic table...approximately what percentage is Cl-35
and Cl-36?
55% Cl-35 and 45% Cl-36 is a good approximation
17
Cl
35.453
Using our estimated % abundance data
55% Cl-35 and 45% Cl-36
calculate an average atomic mass for chlorine.
Average Atomic Mass = (% abundance of isotope "A")(mass "A") + (% "B")(mass "B") + ...
AAM = (% abundance of isotope Cl-35)(mass Cl-35) + (% abundance of Cl-36)(mass Cl-36)
AAM = (0.55)(35 amu) + (0.45)(36 amu)
AAM = (19.25 amu) + (16.2 amu)
AAM = 35.45 amu
Particles in the Atom
Electrons
(-) charge
no mass
located outside the nucleus
1 amu
located inside the nucleus
1 amu
located inside the nucleus
Protons
(+) charge
Neutron
no charge
Structure of the Atom
There are two regions
The nucleus
• With protons and neutrons
– Positive charge
– Almost all the mass
Electron cloud
– Most of the volume of an atom
– The region where the electron can be found
Subatomic Particles
ATOM
ATOM
NUCLEUS
NUCLEUS
ELECTRONS
ELECTRONS
PROTONS
PROTONS
NEUTRONS
NEUTRONS
POSITIVE
Positive
CHARGE
Charge
NEUTRAL
Neutral
CHARGE
Charge
NEGATIVE
CHARGE
Negative Charge
equal in a
Atomic
Most Number
of the atom‟s mass.
neutral atom
equals the # of...
QUARKS
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
Symbols
Contain the symbol of the element, the mass
number and the atomic number
# protons
+ # neutrons
mass number
# protons
Mass
number
Atomic
number
X
Symbols
• Find the
– number of protons = 9 +
– number of neutrons = 10
– number of electrons = 9
– Atomic number = 9
– Mass number = 19
19
9
F
Symbols
Find the
– number of protons = 35
– number of neutrons = 45
– number of electrons = 35
– Atomic number = 35
– Mass number = 80
80
35
Br
Symbols
Find the
– number of protons
– number of neutrons
– number of electrons
– Atomic number
– Mass number
23
11
Na
Sodium atom
Symbols
Find the
– number of protons = 11
– number of neutrons = 12
– number of electrons = 10
– Atomic number = 11
– Mass number = 23
23
11
1+
Na
Sodium ion
Symbols
If an element has an atomic number of
23 and a mass number of 51 what is
the
– number of protons = 23
– number of neutrons = 28
– number of electrons = 23
– Complete symbol
51
23
V
Symbols
If an element has 60 protons and 84
neutrons what is the
– Atomic number = 60
= 144
– Mass number
– number of electrons = 60
– Complete symbol
144
60
Nd
Symbols
If a neutral atom of an element has 78
electrons and 117 neutrons what is the
– Atomic number = 78
– Mass number = 195
– number of protons = 78
– Complete symbol
195
78
Pt
Mass Number
• mass # = protons + neutrons
• always a whole number
Neutron
+
• NOT on the
Periodic Table!
Electrons
Nucleus
+
+
+
+
+
Nucleus
Carbon-12
Neutrons 6
Protons
6
Electrons 6
Proton
Isotopes
• Atoms of the same element with different
mass numbers.
• Nuclear symbol:
Mass #
Atomic #
12
6
• Hyphen notation: carbon-12
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
C
Isotopes
Neutron
+
Electrons
Nucleus
+
+
+
+
+
Nucleus
Proton
Proton
Nucleus
Carbon-12
Neutrons 6
Protons
6
Electrons 6
+
+
+
+
Neutron
Electrons
+
+
Carbon-14
Neutrons 8
Protons
6
Electrons 6
Nucleus
Measuring Atomic Mass
• Unit is the Atomic Mass Unit (amu)
• One twelfth the mass of a carbon-12 atom.
• Each isotope has its own atomic mass we need
the average from percent abundance.
(1 amu)
(1 amu)
(1 amu)
(1 amu)
carbon atom
(1 amu)
(1 amu)
(1 amu)
(1 amu)
(12 amu)
(1 amu)
(1 amu)
(1 amu)
(1 amu)
Atomic Mass
Magnesium has three isotopes.
78.99% magnesium 24 with
a mass of 23.9850 amu,
10.00% magnesium 25 with
a mass of 24.9858 amu, and
the rest magnesium 26 with
a mass of 25.9826 amu.
What is the atomic mass of
magnesium?
If not told otherwise,
the mass of the isotope is
the mass number in amu.
California WEB
Isotope
Percent
Abundance
Mass
Mg-24
78.99
23.9850
18.94575
Mg-25
10.00
24.9585
2.49585
Mg-26
11.01
25.9826
2.86068
24.304 amu
Atomic Mass
Calculate the atomic mass of copper if copper has two isotopes.
69.1% has a mass of 62.93 amu and the rest has a mass of
Percent
64.93 amu.
Isotope
Mass
Abundance
Cu-63
69.1
62.93
43.48463
Cu-65
30.9
64.93
20.06337
63.548
Average atomic mass (AAM) (% " A" )(mass " A" ) (% " B" )(mass " B" ) ...
A.A.M. (0.691)(62.93 amu) (0.309)(64.93 amu)
A.A.M. 43.48463 amu
20.06337 amu
A.A.M. 63.548 amu for Copper
29
Cu
63.548
Protons
Neutrons
Electrons
Mass
number
Cu-65
A
B
29
C
A.
B.
C.
Argon
D
E
F
40
D.
E.
F.
Ba2+
56
G
H
I
G.
H.
I.
Given the average atomic mass of an element is 118.21 amu and it has
three isotopes (“A”, “B”, and “C”):
isotope “A” has a mass of 117.93 amu and is 87.14% abundant
isotope “B” has a mass of 120.12 amu and is 12.36% abundant
Find the mass of isotope “C”.
Show work for credit.
Extra Credit: What is a cation?
Protons
Neutrons
Electrons
Mass
number
Cu-65
A = 29
B = 36
29
C = 65
Argon
D = 18 E = 22
F = 18
40
Ba2+
56
G = 81 H = 54 I = 137
Given the average atomic mass of an element is 118.21 amu and it has
three isotopes (“A”, “B”, and “C”):
isotope “A” has a mass of 117.93 amu and is 87.14% abundant
isotope “B” has a mass of 120.12 amu and is 12.36% abundant
Find the mass of isotope “C”.
Show work for credit.
119.7932 amu
Extra Credit: What is a cation?
A positively charged atom. An atom that has lost a(n) electron(s).
Maximum Capacities of Subshells
and Principal Shells
n
1
2
l
0
0
1
0
1
2
0
1
2
3
Subshell
designation
s
s
p
s
p
d
s
p
d
f
Orbitals in
subshell
1
1
3
1
3
5
1
3
5
7
Subshell
capacity
2
2
6
2
6
10
2
6
10 14
Principal shell
capacity
2
8
Hill, Petrucci, General Chemistry An Integrated Approach 1999, page 320
3
18
4
...n
32
...2n 2
Electron Configurations
Orbital Filling
Element
1s
2s
2px 2py 2pz
3s
Electron
Configuration
H
1s1
He
1s2
C
NOT CORRECT
1s22s1
Violates Hund‟s
Rule
1s22s22p2
N
1s22s22p3
O
1s22s22p4
F
1s22s22p5
Ne
1s22s22p6
Na
1s22s22p63s1
Li
Electron Configurations
Orbital Filling
Element
1s
2s
2px 2py 2pz
3s
Electron
Configuration
H
1s1
He
1s2
Li
1s22s1
C
1s22s22p2
N
1s22s22p3
O
1s22s22p4
F
1s22s22p5
Ne
1s22s22p6
Na
1s22s22p63s1
Filling Rules for Electron Orbitals
Aufbau Principle: Electrons are added one at a time to the lowest
energy orbitals available until all the electrons of the atom
have been accounted for.
Pauli Exclusion Principle: An orbital can hold a maximum of two electrons.
To occupy the same orbital, two electrons must spin in opposite
directions.
Hund‟s Rule: Electrons occupy equal-energy orbitals so that a maximum
number of unpaired electrons results.
*Aufbau is German for “building up”
Filling Rules for Electron Orbitals
Aufbau Principle: Electrons are added one at a time to the lowest
energy orbitals available until all the electrons of the atom
6s
6p
5d
4f
have been accounted for.
32
5s
5p
4d
18
Pauli Exclusion Principle: An orbital
can
hold
a
maximum
of
two
electrons.
4s
4p
3d
To occupy the same orbital, two electrons must spin in opposite
18
directions. Arbitrary
North
South
3s
3p
Energy Scale
8
-
-
2s
2p
Hund‟s Rule: Electrons occupy equal-energy
orbitals so that a maximum
number of unpaired electrons results.
8
1s
*Aufbau is German for “building up”
S
N
NUCLEUS
2
Maximum Number of Electrons
In Each Sublevel
Maximum Number of Electrons In Each Sublevel
Sublevel
Number of Orbitals
Maximum Number
of Electrons
s
1
2
p
3
6
d
5
10
f
7
14
LeMay Jr, Beall, Robblee, Brower, Chemistry Connections to Our Changing World , 1996, page 146
Order in which subshells are filled
with electrons
1s
2s
2p
3s
3p
3d
4s
4p
4d
4f
5s
5p
5d
5f
6s
6p
6d
7s
2
2
6
2
6
2
10
6
2
10
1s 2s 2p 3s 3p 4s 3d 4p 5s 4d …
4f
Sublevels
4d
Energy
6d
5f
7s
6p
5d
4f
6s
5p
4d
5s
4p
3d
4s
3p
6d
7s
6p
5d
6s
4f
n=3
5p
4p
3d
4s
3p
3s
4d
5s
4p
3d
4s
3p
3s
2p
2s
5f
Energy
n=4
2p
3s
2p
n=2
2s
2s
1s
1s
n=1
1s
4f
Sublevels
4d
s
p
s
d
p
s
n=4
f
d
p
Energy
s
n=3
4p
3d
4s
3p
3s
1s22s22p63s23p64s23d104p65s24d10…
2p
n=2
2s
n=1
1s
Arbitrary Energy Scale
Energy Level Diagram
6s
6p
5d
5s
5p
4d
4s
4p
3d
3s
3p
4f
Bohr Model
N
2s
2p
1s
Electron Configuration
NUCLEUS
H He Li C N Al Ar F
CLICK ON ELEMENT TO FILL IN CHARTS
Fe La
Arbitrary Energy Scale
Energy Level Diagram
6s
6p
5d
5s
5p
4d
4s
4p
3d
3s
3p
Hydrogen
4f
Bohr Model
N
2s
2p
1s
Electron Configuration
NUCLEUS
H He Li C N Al Ar F
CLICK ON ELEMENT TO FILL IN CHARTS
Fe La
H = 1s1
Arbitrary Energy Scale
Energy Level Diagram
6s
6p
5d
5s
5p
4d
4s
4p
3d
3s
3p
Helium
4f
Bohr Model
N
2s
2p
1s
Electron Configuration
NUCLEUS
H He Li C N Al Ar F
CLICK ON ELEMENT TO FILL IN CHARTS
Fe La
He = 1s2
Arbitrary Energy Scale
Energy Level Diagram
6s
6p
5d
5s
5p
4d
4s
4p
3d
3s
3p
Lithium
4f
Bohr Model
N
2s
2p
1s
Electron Configuration
NUCLEUS
H He Li C N Al Ar F
CLICK ON ELEMENT TO FILL IN CHARTS
Fe La
Li = 1s22s1
Arbitrary Energy Scale
Energy Level Diagram
6s
6p
5d
5s
5p
4d
4s
4p
3d
3s
3p
Carbon
4f
Bohr Model
N
2s
2p
1s
Electron Configuration
NUCLEUS
H He Li C N Al Ar F
CLICK ON ELEMENT TO FILL IN CHARTS
Fe La
C = 1s22s22p2
Arbitrary Energy Scale
Energy Level Diagram
6s
6p
5d
5s
5p
4d
4s
4p
3d
3s
3p
Nitrogen
4f
Bohr Model
N
Hund’s Rule “maximum
number of unpaired
orbitals”.
2s
2p
1s
Electron Configuration
NUCLEUS
H He Li C N Al Ar F
CLICK ON ELEMENT TO FILL IN CHARTS
Fe La
N = 1s22s22p3
Arbitrary Energy Scale
Energy Level Diagram
6s
6p
5d
5s
5p
4d
4s
4p
3d
3s
3p
Fluorine
4f
Bohr Model
N
2s
2p
1s
Electron Configuration
NUCLEUS
H He Li C N Al Ar F
CLICK ON ELEMENT TO FILL IN CHARTS
Fe La
F = 1s22s22p5
Arbitrary Energy Scale
Energy Level Diagram
6s
6p
5d
5s
5p
4d
4s
4p
3d
3s
3p
Aluminum
4f
Bohr Model
N
2s
2p
1s
Electron Configuration
NUCLEUS
H He Li C N Al Ar F
CLICK ON ELEMENT TO FILL IN CHARTS
Fe La
Al = 1s22s22p63s23p1
Arbitrary Energy Scale
Energy Level Diagram
6s
6p
5d
5s
5p
4d
4s
4p
3d
3s
3p
Argon
4f
Bohr Model
N
2s
2p
1s
Electron Configuration
NUCLEUS
H He Li C N Al Ar F
CLICK ON ELEMENT TO FILL IN CHARTS
Fe La
Ar = 1s22s22p63s23p6
Arbitrary Energy Scale
Energy Level Diagram
6s
6p
5d
5s
5p
4d
4s
4p
3d
3s
3p
Iron
4f
Bohr Model
N
2s
2p
1s
Electron Configuration
Fe = 1s22s22p63s23p64s23d6
NUCLEUS
H He Li C N Al Ar F
CLICK ON ELEMENT TO FILL IN CHARTS
Fe La
Arbitrary Energy Scale
Energy Level Diagram
6s
6p
5d
5s
5p
4d
4s
4p
3d
3s
3p
4f
Lanthanum
Bohr Model
N
2s
2p
1s
Electron Configuration
NUCLEUS
H He Li C N Al Ar F
CLICK ON ELEMENT TO FILL IN CHARTS
La = 1s22s22p63s23p64s23d10
Fe La 4s23d104p65s24d105p66s25d1
Shorthand Configuration
A neon's electron configuration (1s22s22p6)
B
third energy level
[Ne] 3s1
C
D
one electron in the s orbital
orbital shape
Na = [1s22s22p6] 3s1
electron configuration
Shorthand Configuration
Element symbol
Electron configuration
Ca
[Ar] 4s2
V
[Ar] 4s2 3d3
F
[He] 2s2 2p5
Ag
[Kr] 5s2 4d9
I
[Kr] 5s2 4d10 5p5
Xe
[Kr] 5s2 4d10 5p6
Fe
Sg
22p64s
[He] 2s[Ar]
3s223d
3p664s23d6
[Rn] 7s2 5f14 6d4
General Rules
6d
Aufbau Principle
7s
6p
5d
– Electrons fill the
lowest energy
orbitals first.
6s
4d
3p
5f
7s
6p
5d
6s
5p
5s
4p
4s
6d
4f
5p
Energy
– “Lazy Tenant
Rule”
5f
4d
5s
3d
4p
3d
4s
3p
3s
3s
2p
2p
2s
2s
1s
1s
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
4f
General Rules
• Hund‟s Rule
– Within a sublevel, place one electron
per orbital before pairing them.
– “Empty Bus Seat Rule”
WRONG
RIGHT
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
8
O
Notation
15.9994
• Orbital Diagram
O
8e-
1s
2s
• Electron Configuration
2
2
4
1s 2s 2p
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
2p
16
Notation
S
32.066
• Longhand Configuration
S 16e- 1s2 2s2 2p6 3s2 3p4
Core Electrons
Valence Electrons
• Shorthand Configuration
S
16e
2
4
[Ne] 3s 3p
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
Periodic Patterns
s
1
2
3
4
5
6
7
p
1s
2s
f
2p
3s
d (n-1)
3p
4s
3d
4p
5s
4d
5p
6s
5d
6p
7s
6d
7p
6
(n-2) 7
4f
5f
1s
Periodic Patterns
• Example - Hydrogen
1
2
3
4
5
6
7
1
1s
1st Period
1st column
of s-block
s-block
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
Periodic Patterns
• Shorthand Configuration
– Core electrons:
• Go up one row and over to the Noble Gas.
– Valence electrons:
• On the next row, fill in the # of e- in each sublevel.
1
2
3
4
5
6
7
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
32
Periodic Patterns
• Example - Germanium
1
2
3
4
5
6
7
[Ar]
2
4s
10
3d
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
2
4p
Ge
72.61
Electron Filling in Periodic Table
s
s
p
1
2
d
3
4
K
4s1
Ca
4s2
Sc
3d1
Ti
3d2
4f
Energy
n=4
n=3
V
3d3
Cr
3d54
Mn
3d5
Fe
3d6
Co
3d7
Ni
3d8
Cu
9
3d
3d10
Cr
Cu
4s13d5
4s13d10
Zn
3d10
Ga
4p1
Ge
4p2
As
4p3
Se
4p4
Br
4p5
Kr
4p6
4d
4p
3d
4s
3p
3s
Cr
4s13d5
4s
3d
2p
n=2
2s
n=1
Cu
1s
4s13d10
4s
3d
Stability
• Ion Formation
– Atoms gain or lose electrons to become more
stable.
– Isoelectronic with the Noble Gases.
1
2
3
4
5
6
7
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
Stability
• Ion Electron Configuration
– Write the e- config for the closest Noble Gas
– EX: Oxygen ion
O2-
10e-
O2-
Ne
[He] 2s2 2p6
Courtesy Christy Johannesson www.nisd.net/communicationsarts/pages/chem
28
Orbital Diagrams for Nickel
1s
2
2s
2
6
2p
3s
2
6
3p
2
4s
3d
8
Excited State
1s 2 2s 2
2p 6
3s 2
3p6
4s1
3d 9
Pauli Exclusion
1s
2s
2p
3s
3p
4s
3d
Hund‟s Rule
1s
2s
2p
3s
3p
4s
3d
Ni
58.6934
28
Orbital Diagrams for Nickel
1s
2
2s
2
6
2p
3s
2
6
3p
2
4s
3d
8
Excited State
1s 2 2s 2
2p 6
3s
2
3p6
4s1
3d 9
VIOLATES Pauli Exclusion
1s
2s
2p
3s
3p
4s
3d
VIOLATES Hund‟s Rule
1s
2s
2p
3s
3p
4s
3d
Ni
58.6934
Write out the complete electron configuration for the following:
1) An atom of nitrogen
2) An atom of silver
POP
QUIZ
3) An atom of uranium (shorthand)
Fill in the orbital boxes for an atom of nickel (Ni)
1s
2s
2p
3s
3p
4s
3d
Which rule states no two electrons can spin the same direction in a single orbital?
Extra credit: Draw a Bohr model of a Ti4+ cation.
Ti4+ is isoelectronic to Argon.
Answer Key
Write out the complete electron configuration for the following:
1) An atom of nitrogen 1s22s22p3
1s22s22p63s23p64s23d104p65s24d9
2) An atom of silver
3) An atom of uranium (shorthand)
[Rn]7s26d15f3
Fill in the orbital boxes for an atom of nickel (Ni)
1s
2s
2p
3s
3p
4s
3d
Which rule states no two electrons can spin the same direction in a single orbital?
Pauli exclusion principle
Extra credit: Draw a Bohr model of a Ti4+ cation.
Ti4+ is isoelectronic to Argon.
n=
22+
n
Electron Configurations of First 18 Elements:
Hydrogen
Helium
1H
2He
Lithium
Beryllium
Boron
Carbon
Nitrogen
Oxygen
Fluorine
Neon
3Li
4Be
5B
6C
7N
8O
9F
10Ne
Sodium
Magnesium
Aluminum
Silicon
Phosphorous
Sulfur
Chlorine
Argon
11Na
12Mg
13Al
14Si
15P
16S
17Cl
18Ar
Electron Dot Diagrams
Group
1A
2A
3A
4A
5A
6A
7A
H
8A
He
Li
Be
B
C
N
O
F
Ne
Na
Mg
Al
Si
P
S
Cl
Ar
K
Ca
Ga
Ge
As
Se
Br
Kr
s1
s2
s2p1
s2p2
s2p3
s2p4
= valence electron
s2p5
s2p6
Metals and Nonmetals
1
2
3
H
He
1
2
Li
Be
B
C
3
4
5
Na Mg
11
4
K
19
5
7
Ca Sc
O
F
Ne
6
7
8
9
10
Al
Si
P
S
Cl
Ar
13
14
15
16
17
18
Ti
V
Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br
Kr
23
24
35
36
I
Xe
53
54
20
21
22
Rb Sr
Y
Zr Nb Mo Tc Ru Rh Pd Ag Cd
In
39
40
41
42
49
Hf
Ta
W
72
73
74
37
6
12
N
38
Cs Ba
55
56
Fr
Ra
87
88
Nonmetals
25
26
27
28
29
30
METALS
43
44
Re Os
75
76
47
45
46
Ir
Pt Au Hg
Tl
77
78
81
79
48
31
80
32
33
34
Sn Sb Te
50
51
Pb Bi
82
83
52
Po At Rn
84
85
86
Rf Db Sg Bh Hs Mt
104
105
106
107
108
Metalloids
109
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
57
58
59
Ac Th Pa
89
90
91
60
U
92
61
62
63
64
65
66
Np Pu Am Cm Bk Cf
93
94
95
96
97
98
67
68
69
70
71
Es Fm Md No Lr
99
100
101
102
103
Metals, Nonmetals, & Metalloids
1
Nonmetals
2
3
4
5
Metals
6
7
Metalloids
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 349
Isotopes of Magnesium
12e-
12e12p+
12n0
Atomic symbol
24
12
Mg
12p+
13n0
25
12
Mg
12e12p+
14n0
26
12
Mg
Number of protons
12
12
12
Number of electrons
12
12
12
Mass number
24
25
26
Number of neutrons
12
13
14
Mg-24
Mg-25
Mg-26
Isotope Notation
Timberlake, Chemistry 7th Edition, page 64
Isotopes of Hydrogen
Protium
1
p+
Deuterium
1 e-
1
H
1
(ordinary hydrogen)
H-1
Ralph A. Burns, Fundamentals of Chemistry 1999, page 100
1 p+
1n
2
H
1
(heavy hydrogen)
H-2
Tritium
1 e-
1 p+
2n
3
1
1 e-
H
(radioactive hydrogen)
H-3
Isotopes of Three Common Elements
Mass
Element
Carbon
Chlorine
Silicon
Symbol
Mass (amu)
Fractional
Abundance
Number
12
6
C
12
12 (exactly)
99.89%
13
6
C
13
13.003
1.11%
35
17
Cl
35
34.969
75.53%
37
17
Cl
37
36.966
24.47%
28
29
30
27.977
28.976
29.974
28
14
29
14
Si
Si
30
Si
14
LeMay Jr, Beall, Robblee, Brower, Chemistry Connections to Our Changing World , 1996, page 110
92.21%
4.70%
3.09%
Average
Atomic
Mass
12.01
35.45
28.09
Atomic Structure
• ATOMS
– Differ by number of protons
• IONS
– Differ by number of electrons
• ISOTOPES
– Differ by number of neutrons
Formation of Cation
sodium atom
Na
sodium ion
Na+
ee-
e-
e-
e-
e-
ee-
e-
11p+
ee-
loss of
one valence
electron
e-
e-
11p+
e-
e-
ee-
e-
e-
ee-
Formation of Anion
chlorine atom
Cl
e-
egain of
one valence
electron
ee-
e-
e-
chloride ion
Cl1e-
eee-
e-
e-
e-
e-
ee-
e-
17p+
17p+
e-
e-
e-
e-
ee-
e-
e-
ee-
ee-
e-
e-
eee-
e-
e-
Formation of Ionic Bond
chloride ion
Cl1-
sodium ion
Na+
e-
e-
ee-
e-
e-
e-
e-
e-
ee-
e-
11p+
e-
e-
e-
e-
e-
e-
17p+
e-
ee-
e-
e-
e-
ee-
e-
e-
Ionic Bonding
NaCl
n=3
-
n=2
n=3
-
-
-
-
-
-
-
Na
[Ne]3s1
-
-
-
+
-
-
-
-
-
-
-
-
-
Cl
[Ne]3s23p5
-
-
-
Na+
[Ne]
-
-
-
Cl[Ne]3s23p6
Transfer of electrons to achieve a stable octet (8 electrons in valence shell).
Covalent Bonding
n=2
-
-
-
-
n=1
-
-
-
-
+
-
-
-
-
-
-
-
-
-
-
-
-
-
O
[He]2s22p4
-
O
[He]2s22p4
O2
Sharing of electrons to achieve a stable octet (8 electrons in valence shell).
Review - Development of Atom Model
e
e
+
e
e
+
+
e
+e
+e
e
+ e + e
Dalton‟s
model
Greek model
(1803)
(400 B.C.)
-
+
Thomson‟s plum-pudding
model (1897)
-
- +
Rutherford‟s model
(1909)
Bohr‟s model
(1913)
Charge-cloud model
(present)
Neils Bohr
•planetary model of atom
•electrons in fixed "orbit"
•energy level = ring on atom
J.J. Thomson
Democratus (Greek)
•cathode ray tube experiment
•bowling ball
•discovered electrons and protons
•no experiments
_
•mental model
•term "atomos" = indivisible
Ernest Rutherford
•discontinuos theory of matter
•gold foil experiment
+
•atom mostly empty space
•nucleus (small & (+) charge)
William Thomson (Lord Kelvin)
•alpha particles (+) charged
•proposed "plum-pudding" model
•Geiger counter to detect radiation
•ZnS coated screen
John Dalton
•bowling ball
•based on experimental evidence
•law of conservation of mass - Lavoisier
•law of definite proportions - Proust
•law of multiple proportions
•NO protons, NO electrons, NO neutrons
•Atom should collapse
Quantum-Mechanical Model
Developed by many scientists:
Albert Einstein
Erwin Schrodinger (math)
Louis DeBroglie (wave nature)
Werner Heisenberg (probability)
Max Planck (quanta)
•s, p, d, f-orbitals
•based on probability
•Heisenberg Uncertainty principle
•quantum mechanics (math)
Cl2
a molecule of chlorine
e-
Cl1-
a chloride ion
Cl
an atom of chlorine
2Cl
NaCl
(an anion)
two atoms of chlorine
a compound of sodium chloride
27
Co
58.9332
Co-60
ISOTOPES
Co-59
a) element symbol
b) mass of isotope
59
2+
Co
27
p+ =
27
n0 =
33
e- =
27
p+ =
27
n0 =
32
e- =
27
p+ =
27
n0 =
32
e- =
25
Isotopes have different number of...
neutrons
Ions have different number of...
electrons
1
Nonmetals
2
3
M
M
N + 3e-
e-
M+
+
2e- + M2+
N3-
4
Metals form CATIONS
5
Metals
6
Nonmetals form ANIONS
7
Metalloids
16
Orbital Diagram for Sulfide Ion
S
32.066
sulfur atom
1s
2
2s
2
6
2p
3s
2
4
3p
4s
3d
S = 1s22s22p63s23p4
sulfide ion
(gain 2 electrons)
1s
2
2s
2
S + 2e-
2p
6
3s
S2-
2
6
3p
4s
3d
S2- = 1s22s22p63s23p6
argon atom
1s
2s
2p
3s
3p
4s
Ar = 1s22s22p63s23p6
3d
Resources - Atomic Structure
Objectives
Worksheet - vocabulary
Worksheet - development of atomic theory
Worksheet - atomic number and mass number
Worksheet - ions and subatomic particles
Lab - isotopes
Worksheet - orbital diagrams
Worksheet - electron configuration
Worksheet - light problems
Worksheet - half-life
Outline (general)
Aliens Activity
Nautilus shell has a repeating pattern.
Look carefully at the drawings of the „aliens‟.
Organize all the aliens into a meaningful pattern.
Prelab
Aliens Lab
Cards
Periodic Table
Alkaline earth metals
H
1
2
3
4
5
6
7
8A
He
Alkali metals
1A
Transition metals
3A 4A 5A 6A 7A
B C N O F
1
2A
Boron group
Li
Be
Nonmetals
3
4
Na
Mg
11
12
K
Ca
19
20
21
22
Rb
Sr
Y
Zr Nb Mo Tc Ru Rh Pd Ag Cd
In
37
38
39
40
41
42
49
Cs
Ba
Hf
Ta
W
55
56
72
73
74
Fr
Ra
87
88
Noble gases
5
Al
8B
3B 4B 5B 6B 7B
1B 2B
Sc Ti V Cr Mn Fe Co Ni Cu Zn
23
24
25
26
43
27
44
Re Os
75
76
28
29
30
47
13
45
46
48
Ir
Pt Au Hg
Tl
77
78
81
79
80
7
8
9
10
Si
P
S
Cl
Ar
14
15
16
17
18
As Se Br
Kr
33
32
Sn Sb
50
51
Pb Bi
82
83
34
35
36
Te
I
Xe
52
53
54
At
Rn
85
86
Po
84
Rf Db Sg Bh Hs Mt
104
105
106
107
108
109
Lanthanoid Series
6
C
Br Liquid
H
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
57
Solid
58
59
60
61
62
63
64
65
66
67
68
69
70
71
Actinoid Series
7
Ac Th Pa
U
Np Pu Am Cm Bk Cf
Es Fm Md No Lr
Gas
89
90
91
92
93
94
95
96
97
98
99
Ne
6
Ga Ge
31
2
100
101
102
103
Döbereiner‟s Triads
Johann Döbereiner
~1817
Name
Atomic
Mass
Name
Atomic
Mass
Name
Atomic
Mass
Calcium
Barium
40
137
Chlorine
Iodine
35.5
127
Sulfur
Tellurium
32
127.5
Average
88.5
Average
81.3
Average
79.8
Strontium
87.6
Bromine
79.9
Selenium
79.0
Döbereiner discovered groups of three related elements which he termed a triad.
Smoot, Price, Smith, Chemistry A Modern Course 1987, page 161
Newland‟s Law of Octaves
John Newlands
~1863
Newland‟s Law of Octaves
1
2
3
4
5
6
7
Li
Na
K
Be
Mg
B
Al
C
Si
N
P
O
S
F
Cl
Smoot, Price, Smith, Chemistry A Modern Course 1987, page 161
Mendeleev‟s Periodic Table
Group I
II
III
IV
V
VI
VII
VIII
F = 19
Period
1
H=1
2
Li = 7
Be= 9.4
B = 11
C = 12
N = 14
O = 16
F = 19
3
Na = 23
Mg = 24
Al = 27.3
Si = 28
P = 31
S = 32
C = 35.5
4
K = 39
Ca = 40
? = 44
Ti = 48
V = 51
Cr = 52
Mn = 55
5
Cu = 63
Zn = 65
? = 68
? = 72
As = 75
Se = 78
Br = 80
6
Rb = 85
Sr = 87
? Yt = 88
Zr = 90
Nb = 94
Mo = 96
? = 100
7
Ag = 108
Cd = 112
In = 113
Sn = 118
Sb = 122
Te = 125
J = 127
8
Cs = 133
Ba = 137
?Di = 138
?Ce = 140
?Er = 178
?La = 180
Ta = 182
W = 184
Tl = 204
Pb = 207
Bi = 208
Fe =56, Co = 59,
Ni = 59
Ru= 104, Rh = 104,
Pd = 106
9
10
11
12
Au = 199
Hg = 200
Th = 231
U = 240
Os = 195, Ir = 197,
Pt = 198
Elements Properties are Predicted
Property
Mendeleev‟s Predictions in 1871
Observed Properties
Scandium (Discovered in 1877)
Molar Mass
Oxide formula
Density of oxide
Solubility of oxide
44 g
M2O3
3.5 g / ml
Dissolves in acids
43.7 g
Sc2O3
3.86 g / ml
Dissolves in acids
Gallium (Discovered in 1875)
Molar mass
Density of metal
Melting temperature
Oxide formula
Solubility of oxide
68 g
6.0 g / ml
Low
M2O3
Dissolves in ammonia solution
69.4 g
5.96 g / ml
30 0C
Ga2O3
Dissolves in ammonia
Germanium (Discovered in 1886)
Molar mass
Density of metal
Color of metal
Melting temperature
Oxide formula
Density of oxide
Chloride formula
Density of chloride
Boiling temperature
of chloride
72 g
5.5 g / ml
Dark gray
High
MO2
4.7 g / ml
MCl4
1.9 g / ml
Below 100 oC
O‟Connor Davis, MacNab, McClellan, CHEMISTRY Experiments and Principles 1982, page 119,
71.9 g
5.47 g / ml
Grayish, white
900 0C
GeO2
4.70 g / ml
GeCl4
1.89 g / ml
86 0C
Modern Periodic Table
• Henry G.J. Moseley
• Determined the atomic
numbers of elements
from their X-ray spectra
(1914)
• Arranged elements by
increasing atomic number
• Killed in WW I at age 28
(Battle of Gallipoli in Turkey)
1887 - 1915
1
2
3
Hydrogen
Halogens
Alkali metals
Noble Gases
Alkaline Earth Metals
Other Nonmetals
Coinage Metals
Lanthanides
H
Other Transition Elements
Actinides
1
Metalloids
(B, Si, Ge, As, Sb, Te, At)
Other metals
Be
B
C
N
O
F
Ne
3
4
5
6
7
8
9
10
Al
Si
P
S
Cl
Ar
13
14
15
16
17
18
Na Mg
K
19
5
7
12
Ca Sc
Ti
V
Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br
Kr
23
24
35
36
I
Xe
53
54
20
21
22
Rb Sr
Y
Zr Nb Mo Tc Ru Rh Pd Ag Cd
In
39
40
41
42
49
Hf
Ta
W
72
73
74
37
6
2
Li
11
4
He
38
Cs Ba
55
56
Fr
Ra
87
88
25
43
26
44
Re Os
75
76
27
28
29
47
30
45
46
Ir
Pt Au Hg
Tl
77
78
81
79
48
31
80
32
33
34
Sn Sb Te
50
51
Pb Bi
82
83
52
Po At Rn
84
85
86
Rf Db Sg Bh Hs Mt
104
105
106
107
108
109
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
57
58
59
Ac Th Pa
89
90
91
60
U
92
61
62
63
64
65
66
Np Pu Am Cm Bk Cf
93
94
95
96
97
98
67
68
69
70
71
Es Fm Md No Lr
99
100
101
102
103
Metals and Nonmetals
1
2
3
H
He
1
2
Li
Be
B
C
3
4
5
Na Mg
11
4
K
19
5
7
Ca Sc
O
F
Ne
6
7
8
9
10
Al
Si
P
S
Cl
Ar
13
14
15
16
17
18
Ti
V
Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br
Kr
23
24
35
36
I
Xe
53
54
20
21
22
Rb Sr
Y
Zr Nb Mo Tc Ru Rh Pd Ag Cd
In
39
40
41
42
49
Hf
Ta
W
72
73
74
37
6
12
N
38
Cs Ba
55
56
Fr
Ra
87
88
Nonmetals
25
26
27
28
29
30
METALS
43
44
Re Os
75
76
47
45
46
Ir
Pt Au Hg
Tl
77
78
81
79
48
31
80
32
33
34
Sn Sb Te
50
51
Pb Bi
82
83
52
Po At Rn
84
85
86
Rf Db Sg Bh Hs Mt
104
105
106
107
108
Metalloids
109
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
57
58
59
Ac Th Pa
89
90
91
60
U
92
61
62
63
64
65
66
Np Pu Am Cm Bk Cf
93
94
95
96
97
98
67
68
69
70
71
Es Fm Md No Lr
99
100
101
102
103
Properties of Metals, Nonmetals,
and Metalloids
METALS
malleable, lustrous, ductile, good conductors of heat
and electricity
NONMETALS
gases or brittle solids at room temperature, poor
conductors of heat and electricity (insulators)
METALLOIDS (Semi-metals)
dull, brittle, semi-conductors (used in computer chips)
Symbols are Useful
The use of symbols is not unique to chemistry.
Symbols can be quite helpful - when you know what they mean.
Arithmetic
+ - x
Money
Music
¢ $
♪♫ ♪♫ :
Chemistry
Fe + CuSO4
?
mp
A Swedish chemist who invented modern chemical symbols.
Discovered the elements silicon, selenium, cerium, and thorium.
Jons Jakob Berzelius
(1799 - 1848)
Names and Symbols of
Selected Elements
Name*
Symbol
Name*
Symbol
Aluminum
Argon
Barium
Boron
Bromine
Cadmium
Calcium
Carbon
Chlorine
Cobalt
Copper (cuprum)
Fluorine
Gold (aurum)
Helium
Hydrogen
Iodine
Iron (ferrum)
Al
Ar
Ba
B
Br
Cd
Ca
C
Cl
Co
Cu
F
Au
He
H
I
Fe
Lead (plumbum)
Lithium
Magnesium
Mercury (hydrargyrum)
Neon
Nickel
Nitrogen
Oxygen
Phosphorus
Potassium (kalium)
Silicon
Silver (argentum)
Sodium (natrum)
Strontium
Sulfur
Tin (stannum)
Zinc
Pb
Li
Mg
Hg
Ne
Ni
N
O
P
K
Si
Ag
Na
Sr
S
Sn
Zn
*Names given in parentheses are ancient Latin or Greek words from which the symbols are derived.
Origin of the Names of Elements
Title
Pre-chemical Names
Names from celestial bodies
Names from mythology / superstition
Names from minerals / ores,
other than geographical names
Names from colors
Names from properties other than color
Geographical names from the domicile or
workplace of the discoverer(s)
Geographical names from minerals / ores
Constructed names
Names from persons
Ringnes, Journal of Chemical Education, Sept. 1989, page 731
Number of Elements
10
8
10
13
9
8
13
10
16
10
The Periodic Table
Alkaline
earth metals
1
Noble
gases
Halogens
18
H
He
2
13
14
15
16
17
Li
Be
B
C
N
O
F
Ne
3
4
5
6
7
8
9
10
Al
Si
P
S
Cl
Ar
13
14
15
16
17
18
1
3
Na Mg
Alkali metals
11
K
19
4
5
6
7
8
9
Transition metals
10
11
12
12
Ca Sc
Ti
V
Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br
Kr
23
24
35
36
I
Xe
53
54
20
21
22
Rb Sr
Y
Zr Nb Mo Tc Ru Rh Pd Ag Cd
In
39
40
41
42
49
Hf
Ta
W
72
73
74
37
38
Cs Ba
55
56
Fr
Ra
87
88
Lanthanides
25
43
26
44
Re Os
75
76
27
28
29
47
30
45
46
Ir
Pt Au Hg
Tl
77
78
81
79
48
31
80
Rf Db Sg Bh Hs Mt Uun Uuu Uub
104
La
57
Actinides
2
Ac
89
105
106
107
108
109
110
111
112
32
33
34
Sn Sb Te
50
51
Pb Bi
82
83
52
Po At Rn
84
85
86
Uuq
Uuh
Uuo
113
116
118
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
58
59
60
Th Pa
U
90
92
91
61
62
63
64
65
66
Np Pu Am Cm Bk Cf
93
94
95
96
97
98
67
68
69
70
71
Es Fm Md No Lr
99
100
101
102
103
Orbitals Being Filled
1
Periods
1
1s
8
Groups
2
3
4
5
2
2s
2p
3
3s
3p
4
4s
3d
4p
5
5s
4d
5p
6
6s
La
5d
6p
7
7s
Ac
6d
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 345
6
7 1s
4f
Lanthanide series
5f
Actinide series
Electron Filling in Periodic Table
s
p
1
2
3
d
4
5
6
7
f
s
Electron Filling in Periodic Table
metallic character increases
nonmetallic character increases
metallic character increases
nonmetallic character increases
Periodic Table
s
1
s
H
p
H
He
1
2
1
2
3
Li
Be
B
C
N
O
F
Ne
3
4
5
6
7
8
9
10
Al
Si
P
S
Cl
Ar
13
14
15
16
17
18
Na Mg
11
4
K
19
5
7
12
Ca Sc
Ti
V
Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br
Kr
23
24
35
36
I
Xe
53
54
20
21
22
Rb Sr
Y
Zr Nb Mo Tc Ru Rh Pd Ag Cd
In
39
40
41
42
49
Hf
Ta
W
72
73
74
37
6
d
38
Cs Ba
55
56
Fr
Ra
87
88
25
43
26
44
Re Os
75
76
27
28
29
30
47
48
31
45
46
Ir
Pt Au Hg
Tl
77
78
81
79
80
32
33
34
Sn Sb Te
50
51
Pb Bi
82
83
52
Po At Rn
84
85
86
Rf Db Sg Bh Hs Mt
104
105
106
107
108
109
f
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
57
58
59
Ac Th Pa
89
90
91
60
U
92
61
62
63
64
65
66
Np Pu Am Cm Bk Cf
93
94
95
96
97
98
67
68
69
70
71
Es Fm Md No Lr
99
100
101
102
103
Melting Points
1
H
Mg
-259.2
2
3
4
Li
Be
180.5
1283
650
K
Ca Sc
Rb Sr
38.8
6
> 3000
98
850
770
710
B
oC
2000 - 3000
oC
Al
660
Ti
V
C
N
O
F
Y
1500 1852 2487 2610 2127 2427 1966 1550
920
Ta
P
1423 44.2
420 29.78 960
Zr Nb Mo Tc Ru Rh Pd Ag Cd
Hf
Si
S
119
Ne
W
Re Os
Ir
961
In
Ar
-101 -189.6
Kr
817 217.4 -7.2 -157.2
Sn Sb Te
I
Xe
321 156.2 231.9 630.5 450 113.6 -111.9
Pt Au Hg
Tl
Pb Bi
Po At Rn
2222 2997 3380 3180 2727 2454 1769 1063 -38.9 303.6 327.4 271.3 254
Ralph A. Burns, Fundamentals of Chemistry , 1999, page 1999
Cl
Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br
1423 1677 1917 1900 1244 1539 1495 1455 1083
Cs Ba La
28.6
-269.7
2027 4100 -210.1 -218.8 -219.6 -248.6
Na Mg
63.2
5
650
He
Symbol
Melting point oC
-71
Densities of
Elements
1
2
3
4
H
He
0.071
0.126
Li
Be
B
C
N
O
0.53
1.8
2.5
2.26
0.81
1.14
Na Mg
Al
Si
P
S
0.97
2.70
2.4 1.82w 2.07 1.557 1.402
K
0.86
5
Ca Sc
Ti
V
1.55
4.5
5.96
Rb Sr
(2.5)
2.6
I
Xe
4.93
3.06
7.86
8.9
8.90
8.92
7.14
5.91
5.36
5,7
4.7
6.4
8.4
10.2
8.6
7.3
7.3
Cs Ba La
Hf
Ta
W
Pt Au Hg
Tl
Pb Bi
1.90
13.1
16.6
19.3
8.0 – 11.9 g/cm3
Mg
1.74
Ar
3.119
7.4
5.51
6.7
Cl
7.1
Sn Sb Te
3.5
1.11 1.204
Kr
In
2.6
Y
Ne
Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br
Zr Nb Mo Tc Ru Rh Pd Ag Cd
1.53
6
1.74
F
11.5
12.5
Re Os
12.5
Ir
12.0
10.5
21.4 22.48 22.4 21.45 19.3 13.55 11.85 11.34
12.0 – 17.9 g/cm3
6.7
9.8
6.1
Po At Rn
9.4
> 18.0 g/cm3
Symbol
Density in g/cm3C, for gases, in g/L
---
4.4
1
H
H
He
1
2
1
2
3
Li
Be
B
C
N
O
F
Ne
3
4
5
6
7
8
9
10
Al
Si
P
S
Cl
Ar
13
14
15
16
17
18
Na Mg
11
4
K
19
5
7
Ca Sc
Ti
V
Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br
Kr
23
24
35
36
I
Xe
53
54
20
21
22
Rb Sr
Y
Zr Nb Mo Tc Ru Rh Pd Ag Cd
In
39
40
41
42
49
Hf
Ta
W
72
73
74
37
6
12
38
Cs Ba
55
56
Fr
Ra
87
88
25
43
26
44
Re Os
75
76
27
28
29
47
30
45
46
Ir
Pt Au Hg
Tl
77
78
81
79
48
31
80
32
33
34
Sn Sb Te
50
51
Pb Bi
82
83
52
Po At Rn
84
85
86
Rf Db Sg Bh Hs Mt
104
105
106
107
108
109
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
57
58
59
Ac Th Pa
89
90
91
60
U
92
61
62
63
64
65
66
Np Pu Am Cm Bk Cf
93
94
95
96
97
98
67
68
69
70
71
Es Fm Md No Lr
99
100
101
102
103
e
Ir O N Mn
77
1
8
7
25
H
H
He
1
2
1
2
3
Li
Be
B
C
N
O
F
Ne
3
4
5
6
7
8
9
10
Al
Si
P
S
Cl
Ar
13
14
15
16
17
18
Na Mg
11
4
K
19
5
7
Ca Sc
Ti
V
Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br
Kr
23
24
35
36
I
Xe
53
54
20
21
22
Rb Sr
Y
Zr Nb Mo Tc Ru Rh Pd Ag Cd
In
39
40
41
42
49
Hf
Ta
W
72
73
74
37
6
12
38
Cs Ba
55
56
Fr
Ra
87
88
25
43
26
44
Re Os
75
76
27
28
29
47
30
45
46
Ir
Pt Au Hg
Tl
77
78
81
79
48
31
80
32
33
34
Sn Sb Te
50
51
Pb Bi
82
83
52
Po At Rn
84
85
86
Rf Db Sg Bh Hs Mt
104
105
106
107
108
109
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
57
58
59
Ac Th Pa
89
90
91
60
U
92
61
62
63
64
65
66
Np Pu Am Cm Bk Cf
93
94
95
96
97
98
67
68
69
70
71
Es Fm Md No Lr
99
100
101
102
103
Electron Filling in Periodic Table
s
s
1
H
p
H
He
1s1
1s2
1s1
2
3
4
5
6
7
Li
Be
B
C
N
O
F
Ne
2s1
2s2
2p1
2p2
2p3
2p4
2p5
2p6
Al
Si
P
S
Cl
Ar
3p1
3p2
3p3
3p4
3p5
3p6
Na Mg
d
3s1
3s2
K
Ca Sc
Ti
V
Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br
Kr
4s1
4s2
3d1
3d2
3d3
3d5
3d10
4p1
4p2
4p5
4p6
Rb Sr
Y
Zr Nb Mo Tc Ru Rh Pd Ag Cd
In
Sn Sb Te
I
Xe
5s1
4d1
4d2
4d4
4d5
4d6
4d7
4d8
4d10
4p1
5p1
5p2
5p5
5p6
Cs Ba
Hf
Ta
W
Re Os
Ir
Pt Au Hg
Tl
Pb Bi
Po At Rn
6s1
6s2
5d2
5d3
5d4
5d5
5d7
5d9
6p1
6p2
6p4
Fr
Ra
Rf Db Sg Bh Hs Mt
7s1
7s2
6d2
5s2
6d3
6d4
3d5
6d5
3d6
5d6
6d6
3d7
3d8
3d10
4d10
5d10
5d10
4p3
5p3
6p3
4p4
5p4
6p5
6p6
6d7
f
La Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
5d1
4f2
4f3
4f4
Ac Th Pa
U
6d1
5f3
6d2
5f2
4f5
4f6
4f7
4f7
4f9
4f10
Np Pu Am Cm Bk Cf
5f4
5f6
5f7
5f7
5f8
5f10
4f11
4f12
4f13
4f14
4f114
Es Fm Md No Lr
5f11
5f14
5f13
5f14
5f14
Electronegativities
1A
1
Period
2
3
4
5
6
7
8A
H
2.1
2A
3A
4A
5A
6A
7A
Li
Be
B
C
N
O
F
1.0
1.5
2.0
2.5
3.0
3.5
4.0
Al
Si
P
S
Cl
1.5
1.8
2.1
2.5
3.0
Na Mg
1.2
3B
4B
5B
6B
K
Ca Sc
Ti
V
Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br
0.8
1.0
1.3
1.5
1.6
1.6
1.7
1.6
1.8
Rb Sr
Y
Zr Nb Mo Tc Ru Rh Pd Ag Cd
In
Sn Sb Te
0.8
1.2
1.4
1.6
1.8
1.9
2.2
2.2
2.2
1.7
1.7
1.8
Cs Ba La
Hf
Ta
W
Re Os
Ir
Pt Au Hg
Tl
Pb Bi
Po At
0.7
0.9
1.3
1.5
1.7
1.9
2.2
2.2
1.8
1.8
2.0
Fr
Ra Ac
0.7
0.9
1.0
1.1
1.1
8B
7B
1.5
1.8
2.2
1.8
1B
2B
0.9
1.8
1.9
1.9
2.4
1.9
2.0
1.9
1.9
2.4
2.1
Lanthanides: 1.1 - 1.3
Actinides: 1.3 - 1.5
Hill, Petrucci, General Chemistry An Integrated Approach 2nd Edition, page 373
Below 1.0
2.0 - 2.4
1.0 - 1.4
2.5 - 2.9
1.5 - 1.9
3.0 - 4.0
2.8
I
2.5
2.2
Diatomic Molecules
Hydrogen (H2)
atomic radius = 37 pm
Distance
between
nuclei
Nucleus
Chlorine (Cl2)
atomic radius = 99 pm
Fluorine (F2)
atomic radius = 64 pm
Bromine (Br2)
atomic radius = 114 pm
Atomic
radius
Oxygen (O2)
atomic radius = 66 pm
Nitrogen (N2)
atomic radius = 71 pm
HOBrFINCl twins
Iodine (I2)
atomic radius = 138 pm
H2 O2 Br2 F2 I2 N2 Cl2
Atomic Radii
IA
IIA
IIIA
IVA
VA
VIA
VIIA
Li
Be
B
C
N
O
F
1.52
1.11
0.88
0.77
0.70
0.66
0.64
Na
Mg
Al
Si
P
S
Cl
1.86
1.60
1.43
1.17
1.10
1.04
0.99
K
Ca
Ga
Ge
As
Se
Br
2.31
1.97
1.22
1.22
1.21
1.17
1.14
Rb
Sr
In
Sn
Sb
Te
I
2.44
2.15
1.62
1.40
1.41
1.37
1.33
Cs
Ba
Tl
Pb
Bi
2.62
2.17
1.71
1.75
1.46
= 1 Angstrom
Atomic Radii of Representative Elements (nm)
1A
2A
3A
4A
5A
6A
7A
Li
Be
B
C
N
O
F
0.1.52
0.111
0.088
0.077
0.070
0.066
0.064
Na
Mg
Si
P
S
Cl
0.186
0.160
0.143
0.117
0.110
0.104
0.099
Ca
Ga
Ge
As
Se
Br
0.197
0.122
0.122
0.121
0.117
0.114
Rb
Sr
In
Sn
Sb
Te
I
0.244
0.215
0.162
0.140
0.141
0.137
0.133
Cs
Ba
Tl
Pb
Bi
Po
0.262
0.217
0.171
0.175
0.146
0.140
K
0.231
Al
LeMay Jr, Beall, Robblee, Brower, Chemistry Connections to Our Changing World , 1996, page 175
At
0.140
Shielding Effect
Valence
(screening effect)
+
nucleus
-
Kernel electrons block
the attractive force of
the nucleus from the
valence electrons
-
Electron
Shield
“kernel”
electrons
Electrons
Shielding Effect and
Effective Nuclear Charge
12
Mg
24.305
attractions
repulsions
+
_
_
_
Mg = [Ne]3s2
Hill, Petrucci, General Chemistry An Integrated Approach 2nd Edition, page 336
Atomic Radius of Atoms
Be
B
C
N
O
F
Na
Mg
Al
Si
P
S
Cl
K
Ca
Ga
Ge
As
Se
Br
Rb
Sr
In
Sn
Sb
Te
I
Cs
Ba
Tl
Pb
Bi
Attraction and Repulsion of
Electrical Charges
+
-
Particles with unlike charges
attract one another.
-
-
+
Particles with like charges
repel one another.
+
Coulombic Attraction
A
1+
1-
D
B
C
2+
2+
2-
4-
3-
Coulombic Attraction
2-
1) Charge
opposites attract
like repels
2) Distance
Atomic
Ionic Radii
Radii
IA
IIA
IIIA
IVA
Li1+
Li
VA
VIA
Be2+
Be
B
C
NN3-
OO2-
F1F
1.52
0.60
1.11
0.31
0.88
0.77
0.70
1.71
0.66
1.40
0.64
1.36
1+
Na
Na
Mg2+
Mg
Al3+
Al
Si
P
1.43
0.50
1.17
1.10
1.04
1.84
0.99
1.81
2SS
VIIA
1ClCl
1.86
0.95
1.60
0.65
K
K1+
Ca
Ca2+
Ga3+
Ge
As
Se2Se
Br1Br
2.31
1.33
1.97
0.99
1.22
0.62
1.22
1.21
1.17
1.98
1.14
1.85
Rb
Rb1+
Sr
Sr2+
In3+
In
Sn
Sb
2.44
1.48
2.15
1.13
1.62
0.81
1.40
1.41
Tl3+
Tl
Pb
Bi
1.71
0.95
1.75
1.46
Cs
Cs1+
Ba
Ba2+
2.62
1.69
2.17
1.35
2TeTe
1.37
2.21
II11.33
2.16
= 1 Angstrom
Atomic Radii
IA
IIA
IIIA
IVA
VA
VIA
VIIA
Li
Be
B
C
N
O
F
1.52
1.11
0.88
0.77
0.70
0.66
0.64
Na
Mg
Al
Si
P
S
Cl
1.86
1.60
1.43
1.17
1.10
1.04
0.99
K
Ca
Ga
Ge
As
Se
Br
2.31
1.97
1.22
1.22
1.21
1.17
1.14
Rb
Sr
In
Sn
Sb
Te
I
2.44
2.15
1.62
1.40
1.41
1.37
1.33
Cs
Ba
Tl
Pb
Bi
2.62
2.17
1.71
1.75
1.46
= 1 Angstrom
Ionic Radii
IA
IIA
Li1+
Be2+
0.60
0.31
Na1+
Mg2+
0.95
0.65
K1+
Ca2+
1.33
0.99
IIIA
Sr2+
1.48
1.13
VA
VIA
VIIA
N3-
O2-
F1-
1.71
1.40
1.36
S2-
Cl1-
1.84
1.81
Ga3+
Se2-
Br1-
0.62
1.98
1.85
Al3+
0.50
In3+
Rb1+
IVA
0.81
Te22.21
I12.16
Tl3+
Cs1+
Ba2+
1.69
1.35
0.95
= 1 Angstrom
Trends in Atomic and Ionic Size
Metals
Nonmetals
Group 1
Group 13
Group 17
e
e
Li+
Li
152
F
64
60
e
e
Na+
Na
95
e
e
136
e
Al3+
Al
143
F-
50
Cl
Cl-
99
186
181
e
e
K+
Br
K
227
133
Cations are smaller than parent atoms
114
Br195
Anions are larger than parent atoms
e
Li+
Li
152
60
e
e
Li+
e
Li
Li +
e
Lithium ion
152
Lithium atom
152
Lithium atom
60
IA
Atomic
Radii
Li
1.52
Na
1.86
IVA
Be
B
C
0.88
0.77
Al
Si
1.60
1.43
1.17
Ca
1.97
Ga
Ge
1.22
Sr
1.11
Mg
VA
VIA
VIIA
N
O
F
0.70
P
0.66
S
0.64
Cl
1.04
0.99
As
Se
Br
1.22
1.21
1.17
1.14
In
Sn
Sb
Te
2.15
1.62
1.40
1.41
I
1.33
Ba
Tl
Pb
Bi
2.62
2.17
1.71
1.75
1.46
Li1+
Be2+
2.31
Rb
2.44
Cs
0.60
Na1+
0.31
0.95
0.65
K1+
Cations: smaller
than parent atoms
IIIA
1.10
K
Ionic
Radii
IIA
Mg2+
Ca2+
N31.71
Al3+
0.50
Ga3+
1.33
Rb1+
0.99
Sr2+
0.62
1.48
Cs1+
1.13
Ba2+
0.81
Tl3+
1.69
1.35
0.95
In3+
1.37
O21.40
F11.36
S21.84
Cl11.81
Se2-
Br1-
1.98
1.85
Te2-
I1-
2.21
2.16
= 1 Angstrom
Anions: LARGER
than parent atoms
The Octet Rule and Common Ions
-
-
8+
-
-
-
-
Oxygen atom
O
2
1s 2s22p4
+2e-
-
-
-
- 9+
- -
- - 10+
- -
- - 11+
- -
Fluorine atom
F
2
1s 2s22p5
Neon atom
Ne
2
1s 2s22p6
Sodium atom
Na
2
1s 2s22p63s1
+1e-
-1e-
-
- - 12+
- Magnesium atom
Mg
2
1s 2s22p63s2
-2e-
8+
-
- 9+
- -
- - 11+
- -
- - 12+
- -
Oxygen ion
O21s22s22p6
Fluorine ion
F11s22s22p6
Sodium ion
Na1+
1s22s22p6
Magnesium ion
Mg2+
1s22s22p6
-
Isoelectronic Species
Isoelectronic - all species have the same number of electrons.
p=8
n=8
e = 10
p=9
n=9
e = 10
p = 10
n = 10
e = 10
p = 11
n = 11
e = 10
p = 12
n = 12
e = 10
8+
-
- 9+
- -
- - 10+
- -
- - 11+
- -
- - 12+
- -
Oxygen ion
O21s22s22p6
Fluorine ion
F11s22s22p6
Neon atom
Ne
2
1s 2s22p6
Sodium ion
Na1+
1s22s22p6
Magnesium ion
Mg2+
1s22s22p6
-
-
Can you come up with another isoelectronic series of five elements?
Ionization Energy
Hungry for Tater Tots?
Mr. C at 7 years old.
OUCH!!
Ionization Energies
18
Group 1
1
Period
2
3
H
6
7
13
14
15
16
17
B
C
N
O
F
2
Li
Be
520
900
801
Na Mg
Al
Si
578
787
738
12
S
Cl
Ar
590
633
659
651
906
579
762
Rb Sr
Y
Zr Nb Mo Tc Ru Rh Pd Ag Cd
In
Sn Sb Te
403
600
640
652
684
702
868
558
709
Cs Ba La
Hf
Ta
W
Re Os
Pt Au Hg
Tl
Pb Bi
Po At Rn
376
503
659
761
770
760
868
589
716
812
Fr
Ra Ac Rf Db Sg Bh Hs Mt Ds Uuu Uub Uut Uuq Uup
--
509
538
490
--
Lanthanide series
--
1012 1000 1251 1521
Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br
653
--
717
--
762
710
839
--
760
720
Ir
878
--
737
804
--
746
731
890
--
1007
--
--
--
947
834
703
941
869
Kr
1140 1351
I
Xe
1008 1170
--
1038
Uuo
--
--
Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm Yb Lu
534
Actinide series
11
P
V
550
10
1086 1402 1314 1681 2081
Ti
7
9
Ne
Ca Sc
K
3
8
2372
5
738
6
First Ionization Energy
(kJ/mol)
4
419
5
He
Symbol
1312
496
4
Mg
527
Th Pa
587
570
533
U
598
536
545
547
592
566
573
581
589
597
603
523
Np Pu Am Cm Bk Cf
Es Fm Md No Lr
600
619
585
578
581
601
608
627
635
642
--
First Ionization Energies
(in kilojoules per mole)
H
He
1312.1
2372.5
Li
Be
B
C
N
O
F
Ne
520.3
899.5
800.7
1086.5
1402.4
1314.0
1681.1
2080.8
Na
Mg
Al
Si
P
S
Cl
Ar
495.9
737.8
577.6
786.5
1011.8
999.7
1251.2
1520.6
K
Ca
Ga
Ge
As
Se
Br
Kr
418.9
589.9
578.6
761.2
946.5
940.7
1142.7
1350.8
Rb
Sr
In
Sn
Sb
Te
I
Xe
402.9
549.2
558.2
708.4
833.8
869.0
1008.7
1170.3
Smoot, Price, Smith, Chemistry A Modern Course 1987, page 188
First Ionization Energies
(kJ/mol)
s
p
H
He
1312.1
2372.5
Li
Be
B
C
N
O
F
Ne
520.3
899.5
800.7
1086.5
1402.4
1314.0
1681.1
2080.8
Na
Mg
Al
Si
P
S
Cl
Ar
495.9
737.8
577.6
786.5
1011.8
999.7
1251.2
1520.6
K
Ca
Ga
Ge
As
Se
Br
Kr
418.9
589.9
578.6
761.2
946.5
940.7
1142.7
1350.8
Rb
Sr
In
Sn
Sb
Te
I
Xe
402.9
549.2
558.2
708.4
833.8
869.0
1008.7
1170.3
Smoot, Price, Smith, Chemistry A Modern Course 1987, page 188
First Ionization Energies
Metal
Metalloid
Nonmetal
(kJ/mol)
s
p
H
He
1312.1
2372.5
Li
Be
B
C
N
O
F
Ne
520.3
899.5
800.7
1086.5
1402.4
1314.0
1681.1
2080.8
Na
Mg
Al
Si
P
S
Cl
Ar
495.9
737.8
577.6
786.5
1011.8
999.7
1251.2
1520.6
K
Ca
Ga
Ge
As
Se
Br
Kr
418.9
589.9
578.6
761.2
946.5
940.7
1142.7
1350.8
Rb
Sr
In
Sn
Sb
Te
I
Xe
402.9
549.2
558.2
708.4
833.8
869.0
1008.7
1170.3
Smoot, Price, Smith, Chemistry A Modern Course 1987, page 188
5s
5p
4d
18
4s
He
4p
3d
18
Ne
Ar
3s
3p
8
First Ionization energy
2s
Kr
2p
8
H
1s
2
NUCLEUS
Li
Na
K
Rb
Atomic number
First Ionization
Energy Plot
5s
5p
4d
18
4s
4p
3d
18
3s
3p
8
2500
2s
He
2p
First ionization energy (kJ/mol)
8
Ne
2000
1s
F
1500
N
1000
C
Be
O
B
0
Na
5
Br
P
Mg
Li
Kr
NUCLEUS
Cl
H
500
2
Ar
10
Zn
S
Si
Al
Fe Ni
Ti
Cr
Ca
Co Cu
Mn
Sc V
As
Ge
Se
Sr
Ga
K
15
Rb
20
Atomic number
25
30
35
40
Ionization Energies
Energy
electron
gas
liquid
solid
metal
1st ionization
energy
M(g) + I.E.
gas phase
M1+(g) + e1-
ionization
energy
2nd ionization
energy
M1+(g) + I.E.
M2+(g) + e1-
3rd ionization
energy
M2+(g) + I.E.
M3+(g) + e1-
Ionization Energies (kJ/mol)
2nd
3rd
4th
Element
1st
H
1312.1
He
2372.5
5250.7
Li
520.3
7298.5
11815.6
Be
899.5
1752.2
14849.5
21007.6
B
800.7
2427.2
3660.0
25027.0
32828.3
C
1086.5
2352.8
4620.7
6223.0
37832.4
47279.4
Al
577.6
1816.7
2744.8
11577.5
14831.0
18377.9
Smoot, Price, Smith, Chemistry A Modern Course 1987, page 190
5th
6th
Ionization Energies (kJ/mol)
Element
1st
2nd
3rd
4th
5th
6th
Na
498
4560
6910
9540
13,400
16,600
Mg
736
1445
7730
10,600
13,600
18,000
Al
577
1815
2740
11,600
15,000
18,310
Si
787
1575
3220
4350
16,100
19,800
P
1063
1890
2905
4950
6270
21,200
S
1000
2260
3375
4565
6950
8490
Cl
1255
2295
3850
5160
6560
9360
Ar
1519
2665
3945
5770
7320
8780
Herron, Frank, Sarquis, Sarquis, Cchrader, Kulka, Chemistry 1996, Heath, page
Shaded area on table denotes core electrons.
Ionization Energies (kJ/mol)
Element
1st
2nd
3rd
4th
5th
6th
Na
498
4560
6910
9540
13,400
16,600
Mg
736
1445
7730
10,600
13,600
18,000
Al
577
1815
2740
11,600
15,000
18,310
Si
787
1575
3220
4350
16,100
19,800
P
1063
1890
2905
4950
6270
21,200
S
1000
2260
3375
4565
6950
8490
Cl
1255
2295
3850
5160
6560
9360
Ar
1519
2665
3945
5770
7320
8780
Herron, Frank, Sarquis, Sarquis, Cchrader, Kulka, Chemistry 1996, Heath, page
Shaded area on table denotes core electrons.
Multiple Ionization Energies
Al1+
Al
1st Ionization
energy
2nd Ionization
energy
Al2+
Al3+
3rd Ionization
energy
The second, third, and fourth ionization energies of aluminum are higher
than the first because the inner electrons are more tightly held by the nucleus.
Smoot, Price, Smith, Chemistry A Modern Course 1987, page 190
?
Factors Affecting Ionization Energy
Nuclear Charge
The larger the nuclear charge, the greater the ionization energy.
Shielding effect
The greater the shielding effect, the less the ionization energy.
Radius
The greater the distance between the nucleus and the outer
electrons of an atom, the less the ionization energy.
Sublevel
An electron from a full or half-full sublevel requires additional
energy to be removed.
Smoot, Price, Smith, Chemistry A Modern Course 1987, page 189
Electron Affinity
• The energy change associated with
adding an electron to a gaseous atom.
• Easiest to add to group 17.
• Gets them to full energy level.
• Increase from left to right atoms become
smaller, with greater nuclear charge.
• Decrease as we go down a group.
Ionic Size
• Cations form by losing electrons.
• Cations are smaller that the atom they
come from.
• Metals form cations.
• Cations of representative elements have
noble gas configuration.
Ionic size
• Anions form by gaining electrons.
• Anions are bigger that the atom they come
from.
• Nonmetals form anions.
• Anions of representative elements have
noble gas configuration.
Formation of Cation
sodium atom
Na
sodium ion
Na+
ee-
e-
e-
e-
e-
ee-
e-
11p+
ee-
loss of
one valence
electron
e-
e-
11p+
e-
e-
ee-
e-
e-
ee-
Formation of Anion
chlorine atom
Cl
e-
egain of
one valence
electron
ee-
e-
e-
chloride ion
Cl1e-
eee-
e-
e-
e-
e-
ee-
e-
17p+
17p+
e-
e-
e-
e-
ee-
e-
e-
e-
e-
e-
ee-
e-
eeee-
e-
Formation of Ionic Bond
chloride ion
Cl1-
sodium ion
Na+
e-
e-
ee-
e-
e-
e-
e-
e-
ee-
e-
11p+
e-
e-
e-
e-
e-
e-
17p+
e-
ee-
e-
e-
e-
ee-
e-
e-
Nuclear charge increases
Shielding increases
Atomic radius increases
Ionic size increases
Ionization energy decreases
Electronegativity decreases
Summary of Periodic Trends
Shielding is constant
Atomic radius decreases
Ionization energy increases
Electronegativity increases
Nuclear charge increases
1A
0
2A
Ionic size (cations)
decreases
3A 4A 5A 6A 7A
Ionic size (anions)
decreases
Modern Atomic Structure
Sublevel designation
n=4
4s
4p
n=3
n=2
3s
4d
3p
2s
An orbital for a hydrogen
atom. The intensity of the
dots shows that the electron
spends more time closer to
the nucleus.
4f
3d
2p
1s
n=1
The first four principal energy
levels in the hydrogen atom.
Each level is assigned a
principal quantum number n.
Hein, Arena, Foundations of College Chemistry, 2000, page 202
The types of orbitals in each
of the first four principal
energy levels.
Resources - Periodic Table
Objectives
Worksheet - vocabulary
Activity - aliens cards: A B key
Activity - coloring periodic table
Worksheet - periodic table paragraph
Worksheet - ionization energies
Lab - periodic trends database
Project - element brochure example timeline
Worksheet - periodic table textbook questions
BINGO - element's symbols study sheet
Outline (general)
Binary Compounds
Binary compounds that contain a metal of fixed oxidation number
(group 1, group 2, Al, Zn, Ag, etc.), and a non-metal.
To name these compounds, give the name of metal followed by the
name of the non-metal, with the ending replaced by the suffix –ide.
Examples:
NaCl
sodium chloride
(Na1+ Cl1-)
CaS
calcium sulfide
(Ca2+
AlI3
aluminum iodide
(Al3+ 3 I1-)
S2-)
Cations and Anions
Common Simple Cations and Anions
Cation
H 1+
Li 1+
Na 1+
K 1+
Cs 1+
Be 2+
Mg 2+
Al 3+
Ag 1+
Name
hydrogen
lithium
sodium
potassium
cesium
beryllium
magnesium
aluminum
silver
Anion
H 1F 1Cl 1Br 1I 1O 2S 2-
Name*
hydride
fluoride
chloride
bromide
iodide
oxide
sulfide
*The root is given in color.
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 86
Criss-Cross Rule
Aluminum
Chloride
Example: Aluminum
Chloride
Step 1:
write out name with space
Step 2:
Al
3+
Cl
1-
write symbols & charge of elements
Step 3:
Al 1
Cl 3
criss-cross charges as subsrcipts
Step 4:
combine as formula unit
(“1” is never shown)
AlCl 3
Criss-Cross Rule
Example: Aluminum Chloride
Step 1:
Aluminum
Chloride
Step 2:
Al3+
Cl1-
Step 3:
Al 1
Cl 3
Step 4:
AlCl 3
Criss-Cross Rule
Example: Aluminum Oxide
Step 1:
Aluminum
Oxide
Step 2:
Al3+
O2-
Step 3:
Al 2
O3
Step 4:
Al2O3
Criss-Cross Rule
Example: Magnesium Oxide
Step 1:
Magnesium
Step 2:
Mg2+
O2-
Step 3:
Mg 2
O2
Step 4:
Step 5:
Mg2O2
MgO
Oxide
Naming Binary Compounds
Formula
Name
BaO
barium oxide
____________________
NaBr
2 ________________
sodium bromide
1
3
MgI2
magnesium iodide
____________________
4
KCl
potassium chloride
____________________
SrF2
5 ________________
strontium fluoride
CsF
6 ________________
cesium fluoride
K1+
e-
e-
potassium atom
1BrBr
bromine atom
K
Br
e-
bromine atom
potassium atom
K1+
bromide ion
potassium
potassium
ion
bromide
potassium ion
Br1-
bromide ion
KBr
Br1-
K1+
Mg2+
O2Br1-
magnesium bromide
MgBr2
K1+
potassium oxide
K2O
K1+
Br1-
Al3+
N3PO43Pb4+
K1+
O2K1+
?
Ca2+
S2-
Br1-
OH1-
Mg2+
Cu2+
Br1-
NH41+
NO31-
OH1-
Chemical Bonding Activity
Na1+
OH1-
N3-
Pb4+
Al3+
N3N3-
M1+
(metal)
(metal)
M2+
(metal)
M1+
(metal)
N3-
Pb4+
N2(nonmetal)
Pb4+
N3-
Ca2+
OH1Mg2+
?
Pb4+
N3-
Pb3N4
OH1-
lead (IV) nitride
or
plumbic nitride
Pb4+
N3-
Key
http://www.unit5.org/christjs/4bondingact.doc
4.
1.
5.
N3-
K1+
Br1-
Pb4+
N3-
Al3+
KBr
N3-
2.
K1+
AlN
O2K1+
6.
OH1OH1-
Br1-
Cu(OH)2
Mg2+
Br1MgBr2
N3-
Cu2+
K2O
3.
Pb4+
7.
NH41+
Pb4+
N3-
NO31-
NH4NO3
Pb3N4
Key
8.
9.
10.
NH41+
Ca2+
O2PO4
NH41+
3-
PO43-
Al3+
NH41+
Ca2+
O2(NH4)3PO4
PO43Ca2+
Ca3(PO4)2
11.
Al3+
Fe2+
O2-
O2-
FeO
Al2O3
13.
14.
Key
S2-
Pb2+
12.
O2-
S2-
Pb4+
PbS
Fe3+
S215.
O2-
Cu2+
O2-
S2-
CuO
Fe3+
O2-
Pb4+
16.
Cu1+
O2-
S2Cu1+
Fe2O3
Pb
PbS
2S
24
3
Cu2O
Binary Compounds
Containing a Metal of Variable Oxidation Number
To name these compounds, give the name of the metal (Type II
cations) followed by Roman numerals in parentheses to indicate
the oxidation number of the metal, followed by the name of the
nonmetal, with its ending replaced by the suffix –ide.
Examples
Stock System
Traditional (OLD) System
FeCl2
FeCl3
Iron (II) chloride
Iron (III) chloride
Ferrous chloride
Ferric chloride
SnO
SnO2
Tin (II) oxide
Tin (IV) oxide
Stannous oxide
Stannic oxide
(“ic” ending = higher oxidation state;
“ous” is lower oxidation state)
Type II Cations
Common Type II Cations
Ion
Stock System
Fe 3+
Fe 2+
Cu 2+
Cu 1+
Co 3+
Co 2+
Sn 4+
Sn 2+
Pb 4+
Pb 2+
Hg 2+
Hg2 2+
iron (III)
iron (II)
copper (II)
copper (I)
cobalt (III)
cobalt (II)
tin (IV)
tin (II)
lead (IV)
lead (II)
mercury (II)
mercury (I)
Traditional System
ferric
ferrous
cupric
cuprous
cobaltic
cobaltous
stannic
stannous
plumbic
plumbous
mercuric
mercurous
*Mercury (I) ions are always bound together in pairs to form Hg2 2+
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 90
Naming Binary Compounds
Formula
Name
1
Hg2O
mercury (I) oxide
____________________
2
HgO
mercury (II) oxide
____________________
CuF2
3 ________________
copper (II) fluoride
Cu2S
4 ________________
copper (I) sulfide
5
Cr2O3
PbO2
6 ________________
chromium (III) oxide
____________________
lead (IV) oxide
Binary Compounds
Containing Two Nonmetals
To name these compounds, give the name of the less electronegative
element first with the Greek prefix indicating the number of atoms of that
element present, followed by the name of the more electronegative nonmetal with the Greek prefix indicating the number of atoms of that element
present and with its ending replaced by the suffix –ide.
Prefixes you should know:
Mono
Di
Tri
Tetra
Penta
Hexa
Hepta
Octa
Nona
Deca
1
2
3
4
5
6
7
8
9
10
Binary Compounds
Containing Two Nonmetals (Type III Compounds)
As2S3
1. ________________
diarsenic trisulfide
SO2
2. ________________
sulfur dioxide
P2O5
diphosphorus pentoxide
____________________
CO2
4. ________________
carbon dioxide
3.
5.
N2O5
dinitrogen pentoxide
____________________
6.
H2O
dihydrogen monoxide
____________________
Binary Molecular Compounds
N2O
N2O3
N2O5
dinitrogen monoxide
dinitrogen trioxide
dinitrogen pentoxide
ICl
ICl3
iodine monochloride
iodine trichloride
SO2
SO3
sulfur dioxide
sulfur trioxide
Ternary Compounds
Ternary compounds are those containing three different elements.
(NaNO3, NH4Cl, etc.). The naming of ternary compounds involves the
memorization of several positive and negative polyatomic ions, (two or
more atoms per ion), and adding these names to the element with which
they combine.
i.e., Sodium ion, Na1+ added to the nitrate ion, NO31-,
to give the compound, NaNO3, sodium nitrate.
Binary rules for indicating the oxidation number of metals and for indicating
the numbers of atoms present are followed. The polyatomic ions that should
be learned are listed in a separate handout.
Ternary Compounds
NaNO2
sodium nitrite
KClO3
potassium chlorate
Ca3(PO4)2
calcium phosphate
Fe(OH)3
iron (III) hydroxide
NaHCO3
sodium bicarbonate
„sodium hydrogen carbonate‟
Calcium hydroxide
ide
Ca2+
OH1-
CaOH2
Ca - O
H
H
vs.
Ca(OH)2
HO - Ca - OH
Common Polyatomic Ions
Names of Common Polyatomic Ions
Ion
Name
Ion
Name
NH4 1+
NO2 1NO3 1SO3 2SO4 2HSO4 1-
ammonium
nitrite
nitrate
sulfite
sulfate
hydrogen sulfate
(“bisulfate” is a widely
used common name)
hydroxide
cyanide
phosphate
hydrogen phosphate
dihydrogen phosphate
CO3 2HCO3 1-
carbonate
hydrogen carbonate
(“bicarbonate” is a widely
used common name)
hypochlorite
chlorite
chlorate
perchlorate
acetate
permanganate
dichromate
chromate
peroxide
OH 1CN 1PO4 3HPO4 2H2PO4 1-
Zumdahl, Zumdahl, DeCoste, World of Chemistry 2002, page 100
ClO 1ClO2 1ClO3 1ClO4 1C2H3O2 2MnO4 1Cr2O7 2CrO4 2O2 2-
Print Version
Ternary Compounds
Ca3(PO4) 2
1. ________________
calcium phosphate
(NH4)2CO3
2. ________________
ammonium carbonate
Al2(SO4)3
3. ________________
aluminum sulfate
4.
Na2SO4
sodium sulfate
____________________
5.
LiCN
lithium cyanide
____________________
6.
Ba(ClO3)2
Cu(OH)2
7. ________________
barium chlorate
____________________
copper (II) hydroxide
Magnesium Phosphate
Step 1:
Magnesium
Step 2:
Mg2+
PO43-
Step 3:
Mg 3
(PO4) 2
Step 4:
Phosphate
Mg3(PO4)2
Phosphate
(PO
PO43)31P
4O
5+ = 335+
@ 2- = 8113@
?

Fluorine and oxygen are highly electronegative and will attract
electrons very strongly. Generally, phosphorus will be 3- oxidation
state - however, when combining with oxygen, phosphorus will lose
five electrons and take on a 5+ oxidation charge.
Polyatomic Ions - Memorize
Eight “-ATE‟s”
PO43SO4
……………
2- ……………
CO32ClO3
NO3
…………..
1- …………..
1- ………..….
phosphate
phosphATE
Exceptions:
sulfate
sulfATE
carbonate
carbonATE
chlorate
chlorATE
nitrate
nitrATE
NH41+
…………… ammonium
OH1-
……………
hydroxide
CN1-
…………..
cyanide
Polyatomic Ion:
a group of atoms that stay together and have a single, overall charge.
BrO41-
Perbromate ion
CO42ClO41IO41-
NO41PO53SO521 more oxygen
BrO31-
BrO1-
Bromate ion
BrO21-
Bromite ion
CO32-
CO22-
CO2-
ClO31-
ClO21-
ClO1-
IO31-
IO21-
IO1-
NO31-
NO21-
NO1-
PO43-
PO33-
PO23-
SO42-
SO32-
SO22-
“normal”
1 less oxygen
Carbonate ion
Chlorate ion
Iodate ion
Nitrate ion
Phosphate ion
Sulfate ion
Hypobromite ion
2 less oxygen
Polyatomic Ion:
a group of atoms that stay together and have a single, overall charge.
BrO41-
Perbromate ion
CO42ClO41IO41-
NO41PO53SO521 more oxygen
BrO31-
BrO1-
Bromate ion
BrO21-
Bromite ion
CO32-
CO22-
CO2-
ClO31-
ClO21-
ClO1-
IO31-
IO21-
IO1-
NO31-
NO21-
NO1-
PO43-
PO33-
PO23-
SO42-
SO32-
SO22-
“normal”
1 less oxygen
Carbonate ion
Chlorate ion
Iodate ion
Nitrate ion
Phosphate ion
Sulfate ion
Hypobromite ion
2 less oxygen
variable Ir2+,3+,4+,6+
Ir F
2(Cr
3 2O 7) 3
iridium (III) dichromate
fluoride
Ca S
(OH)2
calcium hydroxide
sulfide
Ti S
(CrO
2
4) 2
titanium (IV) chromate
sulfide
variable Ti3+,4+
Pt Cl
(CH
2 3COO)2
platinum (II) acetate
chloride
variable Pt2+,4+
BaBr
(BrO
2 3) 2
barium bromate
bromide
fixed
Ba2+
Sr 3P
SO
2 4
strontium sulfate
phosphide
fixed
Sr2+
KF
CN
potassium cyanide
fluoride
fixed
K1+
Zn I(NO
2
2) 2
zinc nitrite
iodide
fixed
Zn2+
Mn Cl
(ClO
4 3) 4
manganese (IV) chlorate
chloride variable Mn2,3,4,6,7+
Au PO
2O34
gold (III) phosphate
oxide
Na NO
3P 3
sodium nitrate
phosphide
fixed
Ca2+
variable Au1+,3+
fixed
Na1+
variable Ir2+,3+,4+,6+
Ir F3
iridium (III) fluoride
Ca S
calcium sulfide
Ti S2
titanium (IV) sulfide
variable Ti3+,4+
Pt Cl2
platinum (II) chloride
variable Pt2+,4+
BaBr2
barium bromide
fixed
Ba2+
Sr 3P2
strontium phosphide
fixed
Sr2+
KF
potassium fluoride
fixed
K1+
Zn I2
zinc iodide
fixed
Zn2+
Mn Cl4
manganese (IV) chloride variable Mn2,3,4,6,7+
Au 2O3
gold (III) oxide
Na 3P
sodium phosphide
fixed
Ca2+
variable Au1+,3+
fixed
Na1+
variable Ir2+,3+,4+,6+
Ir 2(Cr2O7)3
iridium (III) dichromate
Ca (OH)2
calcium hydroxide
Ti (CrO4)2
titanium (IV) chromate
variable Ti3+,4+
Pt (CH3COO)2
platinum (II) acetate
variable Pt2+,4+
Ba(BrO3)2
barium bromate
fixed
Ba2+
Sr 3SO4
strontium sulfate
fixed
Sr2+
KCN
potassium cyanide
fixed
K1+
Zn (NO2)2
zinc nitrite
fixed
Zn2+
Mn (ClO3)4
manganese (IV) chlorate variable Mn2,3,4,6,7+
Au PO4
gold (III) phosphate
Na NO3
sodium nitrate
fixed
Ca2+
variable Au1+,3+
fixed
Na1+
Write the compound formed by the following ions:
1) Al3+ S22) Mg2+
PO43-
When a formula is given…write the proper name.
When a name is given…write the proper formula.
3) BaO
4) lithium bromide
5) Ni2S3
6) triphosphorus heptoxide
7) N2O5
8) molybdenum (VI) nitride
Write the total number of atoms that make up each compound.
9) trinitrotoluene (TNT)… CH3C6H2(NO2)3
10) phosphoric acid H3PO4
Extra credit: What is the formula for plumbic iodide? (Hint: lead is Pb2+ or Pb4+)
Write the compound formed by the following ions:
1) Al3+ S22) Mg2+
PO43-
When a formula is given…write the proper name.
When a name is given…write the proper formula.
3) BaO
4) lithium bromide
5) Ni2S3
POP
QUIZ
6) triphosphorus heptoxide
7) N2O5
8) molybdenum (VI) nitride
Write the total number of atoms that make up each compound.
9) trinitrotoluene (TNT)… CH3C6H2(NO2)3
10) phosphoric acid H3PO4
Extra credit: What is the formula for plumbic iodide? (Hint: lead is Pb2+ or Pb4+)
Answer Key
Write the compound formed by the following ions:
1) Al3+ S22) Mg2+
Al2S3
Mg3(PO4)2
PO43-
When a formula is given…write the proper name.
When a name is given…write the proper formula.
3) BaO
barium oxide
LiBr
4) lithium bromide
nickel (III) sulfide
5) Ni2S3
P3O7
6) triphosphorus heptoxide
7) N2O5
dinitrogen pentoxide
8) molybdenum (VI) nitride
MoN2
Write the total number of atoms that make up each compound.
9) trinitrotoluene (TNT)… CH3C6H2(NO2)3
10) phosphoric acid H3PO4
21
8
Extra credit: What is the formula for plumbic iodide? (Hint: lead is Pb2+ or Pb4+)
PbI4
Binary Hydrogen Compounds
of Nonmetals When Dissolved in Water
(These compounds are commonly called acids.)
The prefix hydro- is used to represent hydrogen, followed by the name
of the nonmetal with its ending replaced by the suffix –ic and the word
Acid added.
Examples:
*HCl
Hydrochloric acid
HBr
Hydrobromic acid
*The name of this compound would be hydrogen chloride if it was NOT dissolved in water.
Naming Ternary Compounds
from Oxyacids
The following table lists the most common families of oxy acids.
one more
oxygen atom
HClO4
perchloric acid
most
“common”
HClO3
chloric acid
H2SO4
sulfuric acid
H3PO4
phosphoric acid
HNO3
nitric acid
one less
oxygen
HClO2
chlorous acid
H2SO3
sulfurous acid
H3PO3
phosphorous acid
HNO2
nitrous acid
two less
oxygen
HClO
hypochlorous acid
H3PO2
hypophosphorous acid
(HNO)2
hyponitrous acid
Suffixes have meaning
“-ide”
binary compound
sodium chloride (NaCl)
“-ite” or “-ate”
sulfite (SO32-)
sulfate (SO42-)
“-ol”
polyatomic compound
“-ate” means one more oxygen
than “-ite”
alcohol
methyl alcohol (methanol)
“-ose”
sugar
sucrose
“-ase”
sucrase
enzyme
Empirical Formula
Quantitative analysis shows that a compound contains 32.38% sodium,
22.65% sulfur, and 44.99% oxygen.
sodium sulfate
Find the empirical formula of this compound.
32.38% Na
32.38 g Na
1 mol Na
23 g Na
= 1.408 mol Na / 0.708 mol = 2 Na
22.65% S
22.65 g S
1mol S
32 g S
= 0.708 mol S / 0.708 mol
=1S
44.99% O
44.99 g O
1mol O
16 g O
= 2.812 mol O / 0.708 mol
=4O
Step 1) %  g
Step 2) g  mol
Step 3) mol
mol
Na2SO4
Empirical Formula
A sample weighing 250.0 g is analyzed and found to contain the following:
27.38 g
27.38%
1.19%
1.19
g
14.29%
14.29
g
57.14%
57.14
g
Na
sodium
H
hydrogen
C
carbon
O
oxygen
Assume sample is 100 g.
Determine the empirical formula of this compound.
Step 1) convert %  gram
Step 2) gram  moles
x mol Na 27.38 g Na 1mol Na
23 g Na
x mol H 1.19 g H 1mol H
1g H
x mol C 14.29 g C 1mol C
12 g C
x mol O 57.14 g O 1mol O
16 g O
Step 3) mol / mol
1.1904 mol Na / 1.19 mol = 1 Na
1.19 mol H / 1.19 mol = 1 H
1.1908 mol C / 1.19 mol = 1 C
3.5712 mol O / 1.19 mol = 3 O
NaHCO3
Empirical & Molecular Formula
(contains only hydrogen + carbon)
(~17% hydrogen)
A 175 g hydrocarbon sample is analyzed and found to contain ~83% carbon.
The molar mass of the sample is determined to be 58 g/mol.
Determine the empirical and molecular formula for this sample.
Determine the empirical formula of this compound.
Step 1) convert %  gram
Assume sample is 100 g.
Then, 83 g carbon and 17 g hydrogen.
MMempirical = 29 g/mol
Step 2) gram  moles
x mol C 83 g C 1mol C
12 g C
x mol H 17 g H 1mol H
1g H
2 C @ 12 g = 24 g
5H@ 1g = 5g
29 g
6.917 mol C / 6.917 mol = 1 C
17 mol H
/ 6.917 mol = 2.5 H
(2.4577 H)
CH2.5
C2H5
MMmolecular = 58 g/mol
Step 3) mol / mol
58/29 = 2
Therefore 2(C2H5) = C4H10
butane
Find the molar mass and percentage composition of zinc acetate
Zn2+ CH3COO1acetate = CH3COO1-
Zn(CH3COO)2
1 Zn @ 65.4 g/mol = 65.4 g / 183.4 g x 100% = 35.6 % Zn
4 C @ 12 g/mol
6 H @ 1 g/mol
= 48 g
= 6g
4 O @ 16 g/mol
= 64 g
Zn(CH3COO)2
183.4 g
/ 183.4 g x 100% = 26.2 % C
/ 183.4 g x 100% = 3.3 % H
/ 183.4 g x 100% = 34.9 % O
A compound is found to be 45.5% Y and 54.5% Cl.
Its molar mass (molecular mass) is 590 g.
Assume a 100 g sample size
a) Find its empirical formula
45.5 g Y
1 mol Y
88.9 g Y
= 0.5118 mol Y / 0.5118 mol = 1 Y
YCl3
54.5 g Cl
1 mol Cl
35.5 g Cl
= 1.535 mol Cl / 0.5118 mol = 3 Cl
1 Y @ 88.9 g/mol = 88.9g
3 Cl @ 35.5 g/mol = 106.5 g
b) Find its molecular formula
590 / 195.4 = 3
3 (YCl3)
YCl3
Y3Cl9
195.4 g
6.02x1023
Molar Mass
Atomic Mass
vs.
2g
H2 = _____
H2 = _______
2 amu
18 g
H2O = _____
H2O = ________
18 amu
120 g
MgSO4 = _____
MgSO4 = ________
120 amu
g
(NH4)3PO4 = 149
_____
(NH4)3PO4 = ________
149 amu
Percentage Composition (by mass)
% =
part
x 100 %
whole
Empirical vs.
(lowest ratio)
Molecular Formula
Empirical Formula



% g
g  mol
mol
mol
Interpretation of a Chemical Formula
O
O
S
O
O
H
H
Sulfuric Acid
H2SO4
Two atoms
of hydrogen
One atom
of sulfur
Four atoms
of oxygen
Chemical Formulas
C8H18
Subscript indicates that
there are 8 carbon atoms
in a molecule of octane.
Davis, Metcalfe, Williams, Castka, Modern Chemistry, 1999, page 203
Subscript indicates that
there are 18 hydrogen atoms
In a molecule of octane.
Stock System of
Nomenclature
CuCl2
Name of
cation
+
Roman
numeral
indicating
charge
copper (II)
Name of anion
chloride
Chemical Formulas
Al2(SO4)3
Subscript 2
refers to
2 aluminum
atoms.
Davis, Metcalfe, Williams, Castka, Modern Chemistry, 1999, page 204
Subscript 4
refers to
4 oxygen
atoms in
sulfate ion.
Subscript 3 refers to
everything inside parentheses.
Here there are 3 sulfate ions,
with a total of 3 sulfur atoms
and 12 oxygen atoms.
Naming Binary Ionic
Compounds
Al2O3
Name of cation
Name of anion
aluminum
oxide
Davis, Metcalfe, Williams, Castka, Modern Chemistry, 1999, page 207
The OLD System
of Nomenclature
CuCl2
Name of
cation
+
-ic higher
oxidation #
Name of anion
-ous lower
oxidation #
Cupric
Davis, Metcalfe, Williams, Castka, Modern Chemistry, 1999, page 208
chloride
Review
TWO Elements
Metal (fixed) + Non-metal
binary
-ide
NaCl
Group 1, Group 2, Ag, Zn, Al
sodium chloride
Metal (variable) + Non-metal
Transition Elements
STOCK system (Roman Numeral)
CrCl2
OLD system
chromium (II) chloride
Cr2+
Cl1[-ic (higher) & -ous (lower)]
Cu1+ or Cu2+
CuCl2
cupric chloride
Sn stannum
Pb plumbum
Cu cuprum
Au aurum
Fe ferrum
Three or more Elements
Ternary Compounds
Polyatomic Ions [-ate (one more O) & -ite (one less O)]
LiNO3
LiNO2
Li3N
lithium nitrate
lithium nitrite
lithium nitride
(binary compound)
Polyatomic Ions
1 more oxygen
per____ate
ClO41NO41CO42SO52PO53-
perchlorate
pernitrate
percarbonate
persulfate
perphosphate
[-ate (one more O) & -ite (one less O)]
1 less oxygen
_____ite
Memorize
NORMAL
_____ate
chlorate
nitrate
carbonate
sulfate
phosphate
ClO31NO31CO32SO42PO43-
chlorite
nitrite
carbonite
sulfite
phosphite
2 less oxygen
hypo_____ite
ClO21NO21CO22SO32PO33-
hypochlorite
hyponitrite
hypocarbonite
hyposulfite
hypophosphite
ClO1NO1CO2SO22PO23-
ammonium, cyanide, hydroxide
NH41+
CN1-
OH1-
How many atoms in a formula unit of ammonium hypophosphite? 18
3 NH41+
PO23(NH4)3PO2
(Greek prefixes)……DO NOT REDUCE!
Nonmetal & Nonmetal
Mono
Di
Tri
Tetra
Penta
Hexa
Hepta
Octa
Nona
Deca
1
2
3
4
5
6
7
8
9
10
Resources - Nomenclature
Objectives
Worksheet - binary cmpds: single charge cation
Worksheet - ions in chemical formulas
Worksheet - ionic cmpds: polyatomic ions w multiple-charge cation
Worksheet - ionic formulas (binary, polyatomic, transition)
Worksheet - empirical and molecular
Worksheet - traditional system of nomenclature
Worksheet - covalent binary cmpds: non-metal - non-metal
Worksheet - ionic cmpds: polyatomic ions
Worksheet - vocab (bonding)
Worksheet - heat energy problems
Activity - bonding pieces
Worksheet - ionic binary cmpds: multiple charge cation
Activity - molecular models
Worksheet - errors in chemical formulas and nomenclature
Worksheet - oxidation numbers and ionic cmpds
activity - mole pattern
Worksheet - names and formulas of cmpds
Outline (general)