Download X - SMU

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
EMIS 7300
SYSTEMS ANALYSIS METHODS
FALL 2005
Dr. John Lipp
Copyright © 2003-2005 Dr. John Lipp
Session 2 Outline
• Part 1: Correlation and Independence.
• Part 2: Confidence Intervals.
• Part 3: Hypothesis Testing.
• Part 4: Linear Regression.
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-2
Today’s Topics
• Bivariate random variables
– Statistical Independence.
– Marginal random variables.
– Conditional random variables.
• Correlation and Covariance
– Multivariate Distributions.
– Random Vectors.
– Correlation and Covariance Matrixes.
• Transformations
– Transformations of a random variable.
– Transformations of a bivariate random variables.
– Transformations of a multivariate random variables.
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-3
Bivariate Data
• A common experimental procedure is to control one variable
(input) and measure another variable (output).
• The values of the “input” variable are denoted xi and the
values of the “output” variable as yi.
• An xy-plot of the data points is referred to as a scatter
diagram if the data (xi and/or yi) are random.
• From the scatter diagram a general data trend may be
observed that suggests an empirical model.
• Fitting the data to this model is known as regression analysis.
When the appropriate empirical model is a line then the
procedure is called simple linear regression.
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-4
Bivariate Data (cont.)
n
xi
yi
1
9.5013
22.4030
2
2.3114
12.3828
3
6.0684
20.3993
4
4.8598
17.5673
5
8.9130
27.9870
6
7.6210
22.9163
7
4.5647
18.8927
8
0.1850
0.5602
9
8.2141
21.3490
10
4.4470
13.2672
11
6.1543
10.8923
12
7.9194
21.8680
13
9.2181
19.2104
14
7.3821
25.4247
15
1.7627
5.3050
EMIS7300 Fall 2005
30
25
20
15
10
5
0
0
1
2
3
Copyright  2003-2005 Dr. John Lipp
4
5
6
7
8
9
10
5-5
Bivariate Data (cont.)
• The line fit equation is
yˆ  mˆ x  bˆ
where
1 n
 n y x   1  n y  n x 
 yi  y  xi  x    i i    i    i 

 n  i 1   i 1 
mˆ  n i 1 n
  i 1
2
n
n
1
2
1
 x2    x 
 xi  x 

 i 
 i 
n i 1
 i 1  n  i 1 
n
n
1

bˆ  y  mˆ x    yi  mˆ  xi 
n  i1

i 1
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-6
Simple Linear Regression (cont.)
• The slope of the linear regression is related to the sample
correlation coefficient
1 n

xi  x  yi  y 

s
n i1
r  x mˆ 
sy
 1 n  x  x 2   1 n  y  y 2 

i
i
 n 



n
  i1
i 1
• The calculation for r can be rewritten as
 n y x   1  n y  n x 
 i i 
  i   i 
n
 i 1

 i 1  i1 
r
 n 2  1  n  2   n 2  1  n  2 
  yi     yi     xi     xi  
 i1  n  i1    i 1  n  i1  
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-7
Simple Linear Regression (cont.)
• r has no units.
• The value of r is bounded by 1.
– r=1
– 0<r1
– r=0
– 0 > r  -1
– r = -1
EMIS7300 Fall 2005
 the line fits the data perfectly.
 the line has a positive slope.
 there is no line fit.
 the line has a negative slope.
 the line fits the data perfectly.
Copyright  2003-2005 Dr. John Lipp
5-8
Simple Linear Regression (cont.)
10
9
8
7
6
5
4
3
2
1
0
10
9
8
7
6
5
4
3
2
1
0
0
0
1
1
2
2
3
3
EMIS7300 Fall 2005
4
4
5
5
6
6
7
7
8
8
9
9
10
10
10
9
8
7
6
5
4
3
2
1
0
10
9
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
10
0
1
2
3
4
5
6
7
8
9
10
Copyright  2003-2005 Dr. John Lipp
5-9
Bivariate Random Variables
• Consider the case of two random variables X and Y.
• The joint CDF is denoted FX,Y(x,y) = P(X  x, Y  y).
• The joint PDF is defined via the joint CDF
x y
FX ,Y ( x, y ) 
f
X ,Y
(u, v) du dv

where
 
f X ,Y ( x, y ) 
FX ,Y ( x, y )
x y
• Expected value
E X ,Y g ( x, y ) 

  g ( x, y ) f
X ,Y
( x, y ) dx dy

EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-10
Statistical Independence
• X and Y are statistically independent if and only if,
FX ,Y ( x, y)  FX ( x) FY ( y) or
f X ,Y ( x, y)  f X ( x) fY ( y)
• Statistical Independence has an effect on the expected value of
separable functions of joint random variables
E X ,Y g ( x)h( y ) 
  
  g ( x ) h( y ) f
X ,Y
( x, y ) dx dy

  

  g ( x ) h( y ) f



 g ( x) f

X
( x) fY ( y ) dx dy

X
( x)dx  h( y ) fY ( y ) dy

 E X {g ( X )}EY {h(Y )}
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-11
Marginal Random Variables
• It is often of interest to find the individual CDFs and PDFs
when two random variables are not statistically independent.
These are known as the marginal CDF and marginal PDF.
• Marginal CDFs are straightforward,
x 


FX ( x)  F ( x,)     f X ,Y (u, v) dv  du

  
 

FY ( y )  F (, y )     f X ,Y (u, v) du  dv

  
y
• Marginal PDFs are found by “integrating out” y or x,
f X ( x) 
EMIS7300 Fall 2005

 f X ,Y ( x, y) dy

fY ( y ) 
Copyright  2003-2005 Dr. John Lipp

 f X ,Y ( x, y) dx

5-12
Conditional Random Variables
• Conditional CDFs and PDFs can be defined,
FX ,Y ( x, y)  FX |Y ( x | y) FY ( y)  FY | X ( y | x) FX ( x)
f X ,Y ( x, y)  f X |Y ( x | y) fY ( y)  fY | X ( y | x) f X ( x)
• Rewriting the conditional PDF for X given Y
f X ,Y ( x, y )
f X |Y ( x | y ) 

fY ( y )
f X ,Y ( x, y )



f X ,Y ( x, y )dx

fY | X ( y | x) fY ( y )



fY | X ( y | x) fY ( y )dx
This is just ____________________ for random variables!
• A similar equation holds for Y given X.
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-13
Marginal Random Variables (cont.)
• Consistent results are obtained if X and Y are independent,
1
FX (x) = FX,Y (x,) = FX (x) FY () = FX (x)
f X ( x) 




1
 f X ,Y ( x, y) dy  f X ( x)  fY ( y)dy  f X ( x)
• Find the marginal PDFs for fX,Y(x,y) = 2 when 0 < x < y < 1
and fX,Y(x,y) = 0 everywhere else. Are X and Y independent?
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-14
Conditional Random Variables (cont.)
• The definitions of conditional CDFs and PDFs are consistent
when X and Y are statistically independent
FX ,Y ( x, y ) FX ( x) FY ( y )
FX |Y ( x | y ) 

 FX ( x)
FY ( y )
FY ( y )
FX ,Y ( x, y ) FX ( x) FY ( y )
FY | X ( y | x) 

 FY ( y )
FX ( x)
FX ( x)
f X ,Y ( x, y ) f X ( x) fY ( y )
f X |Y ( x | y ) 

 f X ( x)
fY ( y )
fY ( y )
f X ,Y ( x, y ) f X ( x) fY ( y )
fY | X ( y | x) 

 fY ( y )
f X ( x)
f X ( x)
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-15
Bivariate Guassian Random Variables
• Let X and Y be jointly Gaussian, but not necessarily
independent, random variables.
• The joint PDF is
f X ,Y ( x, y ) 
 y2  x   x 2 2  xy x y  x   x  y   y  x2  y   y 2

1
2   1  
2
x
2
y
2
xy

e
2
2 x2 y2 (1  xy
)
• Note:
E X ,Y { X }   x
E X ,Y {Y }   y
2
E X ,Y { X   x  }  E X ,Y { X 2 }   x  x   x2
2
E X ,Y {Y   y  }  E X ,Y {Y 2 }   y  y   y2
E X ,Y { X   x  Y   y }  E X ,Y { X Y }   x  y   x y  xy
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-16
Bivariate Guassian Random Variables (cont.)
• The marginal PDF of X ~ N( x,x2) and Y ~ N( y, y2).
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-17
Bivariate Guassian Random Variables (cont.)
• Consider the case that the Gaussian variables are uncorrelated,
that is, xy = 0. The joint PDF is then

x   x 2  

 1
2 x2
 1 e

f X ,Y ( x, y )  
e
2
2
 2 x
  2 y

 f X ( x) fY ( y )

y   y 2 

2 y2



• Thus, uncorrelated jointly Gaussian random variables are
independent Gaussian random variables.
This is a very important exception to the notion that
uncorrelated random variables are not also independent
random variables.
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-18
Correlation and Covariance
• The correlation between two joint random variables X and Y
is defined as E{XY}.
• The covariance is defined as
cov(X,Y) = E{(X - x)(Y -  y)} = E{XY} -  x  y = xy
where  x and  y are the means of X and Y, respectively.
• X and Y are uncorrelated if and only if cov(X,Y) = 0. An
equivalent condition is X and Y are uncorrelated if and only if
E{XY} = E{X}E{Y}. This is not the same as independence!
• Two random variables X and Y are said to be orthogonal if
and only if E{XY} = 0. Not the same as uncorrelated!
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-19
Correlation and Covariance (cont.)
• Independent random variables are always uncorrelated
x
y
cov(X,Y) = E{XY} -  x  y = E{X}E{Y} -  x  y= 0
The reverse is generally not true.
Uncorrelated RV’s
Independent RVs
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-20
Correlation and Covariance (cont.)
• The correlation coefficient (normalized covariance) is
 xy
E  X   x Y   y 
 xy 

2
2
 x y
E  X   x  E Y   y  
–
–
–
–
The correlation coefficient is bounded, -1  xy  +1.
xy = 0 if X and Y are uncorrelated.
xy = 1 means that X and Y are perfectly correlated.
xy = -1 means that X and Y are perfectly anti-correlated.
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-21
Correlation and Covariance (cont.)
• Although covariance describes a linear relationship between
variables (if it exists), it does not give an indication of nonlinear relationships between variables.
y
0.04
0.02
0.04
0.04
0.04
0.02
0.05
0.05
0.05
0.05
0.20
0.05
0.05
0.02
0.04
0.04
0.05
0.05
0.04
0.02
0.04
x
• The above distribution shows a clear relationship between the
random variables X and Y, but the covariance is zero!
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-22
Multivariate Distributions
• When more than two random variables are considered, the
various distributions and densities are termed multivariate.
– Joint CDF: FX1,X2,…Xn (x1,x2,…,xn)
– Joint PDF: fX1,X2,…Xn (x1,x2,…,xn)
– Conditional CDF:
FX1| X 2 ,...,X n ( x1 | x2 ,..., xn ) 
FX1 , X 2,...,X n ( x1 , x2 ,..., xn )
FX 2 ,...,X n ( x2 ,..., xn )
– Conditional PDF:
f X1| X 2 ,...,X n ( x1 | x2 ,..., xn ) 
EMIS7300 Fall 2005
f X1 , X 2,...,X n ( x1 , x2 ,..., xn )
f X 2 ,...,X n ( x2 ,..., xn )
Copyright  2003-2005 Dr. John Lipp
5-23
Multivariate Distributions (cont.)
– Marginal PDF:
f X 2 ,...,X n ( x2 ,..., xn ) 

 f X , X ,...,X ( x1 , x2 ,..., xn )dx1

1
2
n
– Expectation:
E{g ( x1 ,..., xn )} 




 ...  g ( x1 ,..., xn ) f X ,...,X ( x1 ,..., xn ) dx1 dxn
1
n
– Independence:
f X1 , X 2 ,...,X n ( x1 , x2 ,..., xn )  f X1 ( x1 ) f X 2 ( x2 )... f X n ( xn )
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-24
Random Vectors
• Using vector notation is just as useful for random variables as
it is in other engineering disciplines.
• Consider the random vector
• Define the “vector PDF”
 X1 
X 
  2
X  X3
  
 
 X n 

f ( x )  f X1 , X 2 ,...,X n ( x1 , x2 ,..., xn )

X
• The CDF, marginal, and conditionals are similar.
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-25
Correlation Matrix
• Let X be an 1N random vector and Y be a 1M random
vector. Then the correlation matrix, Rxy  E{ XY T } , is
•
 E{ X 1Y1} E{ X 1Y2 } E{ X 1Y3 }  E{ X 1YM } 
 E{ X Y } E{ X Y } E{ X Y }  E{ X Y } 
2 1
2 2
2 3
2 M


 T
E{ XY }   E{ X 3Y1} E{ X 3Y2 } E{ X 3Y3 }  E{ X 3YM } 









 E{ X N Y1} E{ X N Y2 } E{ X N Y3 }  E{ X N YM }
 T
Rx  E{ XX } is known as the autocorrelation matrix.
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-26
Covariance Matrix
• Let X be an 1N random vector and Y be a 1M random
vector. Then the covariance matrix is
    T
C xy  E( X   x )(Y   y ) 
  x1 , y1  x1 , y2  x1 , y3   x1 , yM 






x2 , y2
x2 , y3
x2 , yM
 x2 , y1

  x3 , y1  x3 , y2  x3 , y3   x3 , yM 
 



 


 xN , y1  xN , y2  xN , y3   xN , yM 




where  x and  y are the vector means of X and Y , respectively.
• It is often more useful or more natural to write
    T
 T
 
 
C xy  E( X   x )(Y   y )   E{ XY }   x  Ty  Rxy   x  Ty
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-27
Covariance Matrix
• Let X be an 1N random vector and Y be a 1M random
vector. Then the covariance matrix is
    T
C xy  E( X   x )(Y   y ) 
 cov( X 1 , Y1 ) cov( X 1 , Y2 ) cov( X 1 , Y3 )  cov( X 1 , YM ) 
 cov( X , Y ) cov( X , Y ) cov( X , Y )  cov( X , Y ) 
2 1
2
2
2
3
2
M


  cov( X 3 , Y1 ) cov( X 3 , Y2 ) cov( X 3 , Y3 )  cov( X 3 , YM ) 









cov( X N , Y1 ) cov( X N , Y2 ) cov( X N , Y3 )  cov( X N , YM )




where  x and  y are the vector means of X and Y , respectively.
• It is often more useful or more natural to write
    T
 T
 
 
C xy  E( X   x )(Y   y )   E{ XY }   x  Ty  Rxy   x  Ty
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-28
Covariance Matrix (cont.)
• More interesting is the autocovariance matrix,
  12

  1 2 12
C x    1 3 13



 1 N 1N
 2 1  21
 22
 2 3  23
 3 1  31
 3 2  32
 32


 2 N  2 N  3 N  3 N
  N 1  N1 

  N 2  N1 
  N 3  N1 





 N2 
• The autocovariance matrix is symmetric because ij = ji .
• It is often more useful or more natural to write
    T
 T
 T
 T


C x  E ( X   x )( X   x )  E{ XX }   x  x  Rx   x  x
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-29
Covariance Matrix (cont.)
• Autocovariance
matrix for
uncorrelated
random variables
(ij = 0).
 12 0
0

2
0

0
2

Cx   0
0  32



 
 0
0
0
• Covariance matrix
for perfectly
correlated random
variables (ij = 1).
1 
 
 2
C x    3  1  2  3   N 
  
 
 N 
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp





0 

0 
0 

 
 N2 
5-30
Covariance Matrix (cont.)
• Consider a random variable Y which is the weighted sum of N
independent random variables Xi, …, XN
N
T 
Y  w1 X 1  w2 X 2   wN X N   wi X i  w X
i 1
• The mean of Y is straight forward
N
T 
T 
 y  E{Y }  E{w X }  w  x   wi  xi
i 1
• The variance is also straight forward
T  2
T  2
2
2
2
 y  E{Y }   y  E w X   w  x 
T   T  T  T 
 E{w X X w}  w  x  x w




EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-31
Covariance Matrix (cont.)
• If the Xi are uncorrelated with different variances, then
 12 0
0  0 


2
0

0

0
2

 N
T
2
2 2
2
y w  0
0  3  0  w   wi  i
i 1



   
 
 0
0
0   N2 
• If the Xi are correlated with different variances, then
2


  1 
 1
  
 
2 

2
2
N









 y2  wT   3  1  2  3   N w   wT   3      wi i 
     i1

  

  
 
   
 N 
  N 
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-32
Covariance Matrix (cont.)
• Let Y and b be M  1 vectors, A be an M  N matrix, and X be
an N  1 vector, then Y = AX + b has the statistics


 y  A x  b
C y  ACx AT
• Usually it is easy to generate X as uncorrelated random
variables with unit variances (Cx = identity matrix).
• To generate Y with a desired autocovariance find the “square
root” of Cy =AAT using eigenvector decomposition
 12 0  0 
 1 0  0 




2
0


0
0


0
2
2
U T  A  U 

C y  UDU T  U 
 
 
  0 
  0 



2 
0
0
0

0
0
0



N
N
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-33
Covariance Matrix (cont.)
• Covariance matrix for uncorrelated variables.
• Covariance matrix after rotation  rotation for uncorrelated!
• How compute a sample correlation / covariance.
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-34
Gaussian Vector

• Let the elements of the random vector X be mutually
Gaussian. The PDF in vector notation is
1  
 
 ( x   x )T 1 ( x   x )
1

2
f X ( x ) 
e
(2 ) N |  |
Determinant of 


where  x is the mean and  is the autocovariance matrix of X .

• If the elements X are independent / uncorrelated (equivalent for
Guassian only!) the inverse is trivial


0
1

 
 

0
2
1
EMIS7300 Fall 2005
0
 22

0
1
 12
0 
0


2
 0 
0

2

 
  


2 
 N
0
 0

Copyright  2003-2005 Dr. John Lipp
0 

 0 
  
2 
 N 

5-35
Bivariate Guassian Random Variables (cont.)
• Consider the case that the Gaussian variables are uncorrelated,
that is, xy = 0. The joint PDF is then

x   x 2  

 1
2 x2
 1 e

f X ,Y ( x, y )  
e
2
2
 2 x
  2 y

 f X ( x) fY ( y )

y   y 2 

2 y2



• Thus, uncorrelated jointly Gaussian random variables are
independent Gaussian random variables.
This is a very important exception to the notion that
uncorrelated random variables are not also independent
random variables.
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-36
• Transformation of RVs
• Use inverse transformation to show Z = X+Y thing is
convolution.
• Use inverse transformation to show how to use uniform for
generating other RVs.
• See 232 in Papuolis book.
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-37
Transformations of Random Variables
• Many of the continuous random variables from the previous
session where defined as non-linear functions of other random
variables, e.g., a chi-square random variable is the result from
squaring a zero-mean Gaussian random variable.
• Here is how NOT to transform a random xvariable
1 
– Let X ~ exponential, i.e., f X ( x)  e , x  0 .

– Define Y  X and substitute X = Y 2 into fX(x),
fY ( y )  f X ( y ) 
2
1

e

y2

, y0
– But Y should be Rayleigh, fY ( y ) 
EMIS7300 Fall 2005
y

Copyright  2003-2005 Dr. John Lipp
e
y2

2
, y0!
5-38
Transformations of Random Variables (cont.)
• The reason the “obvious” procedure failed is that the PDF has
no meaning outside of an integral!
• The correct procedure is to transform the CDF and then
compute its derivative to get the transformed PDF.
• Let Y = g(X)  X = g-1(Y) be a one-to-one “mapping”, then
1
d
g
( y)
fY ( y )  f X ( g 1 ( y ))
dy
• For X ~ exponential and Y  X  X = Y 2 then
y2
2
2y 
2 d y
fY ( y )  f X ( y )

e , y0
dy

• The scaling factor  looks different from the Rayleigh PDF.
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-39
Transformations of Random Variables (cont.)
• Why is a one-to-one mapping is important? Let X ~ N(0, x2)
and apply the transformation Y = X 2 (Y should be chi-square)

y
d y
1
2 x2
fY ( y )  f X ( y )

e
, y0
2
dy
2 2 x y
• The above “PDF” does not integrate to 1! Instead, it
integrates to ½.
0.4
4
0.3
3
f (y)
0.2
Y
X
f (x)
• What went wrong? Two points from X map into Y
0.1
0
2
1
-4
EMIS7300 Fall 2005
-3
-2
-1
0
x
1
2
3
4
0
Copyright  2003-2005 Dr. John Lipp
1
2
3
4
5
y
6
7
8
9
5-40
Transformations of Random Variables (cont.)
• In general, a mapping of X to Y with a function Y = g(X) must
be analyzed by dividing g(X) into N monotonic regions (roots)
and then summing the PDF contributions from each region
N
d g 1 ( y )
1
fY ( y )   f X ( g ( y ))
dy
i 1
• The transformation Y = X 2 has two monotonic regions, X < 0
and X  0 (the equality belongs on the right).
25
20
x2
15
10
5
0
EMIS7300 Fall 2005
-4
-3
-2
-1
0
x
1
Copyright  2003-2005 Dr. John Lipp
2
3
4
5-41
Transformations of Bivariate Random Variables
• The process is identical to that for a random variable except
that the derivative operation is replaced with the Jacobian.
• Let Y1 = g1(X1, X2) and Y2 = g2(X1, X2).
fY1Y2(y1,y2) is found with
N
fY1 ,Y2 ( y1 , y2 )  
i 1
The joint PDF
 x1 , x2 
f X1 , X 2 ( g ( y1 , y2 ), g ( y1 , y2 )) J 

 y1 , y2 
1
1
1
2
where
 g11 ( y1 , y2 )
 x1 , x2 
y1
J

1

g
y
,
y
2 ( y1 , y 2 )
 1 2
y1
EMIS7300 Fall 2005
 g11 ( y1 , y2 )  g1 ( x1 , x2 )
y2
x1

1
 g 2 ( y1 , y2 )  g 2 ( x1 , x2 )
x1
y2
Copyright  2003-2005 Dr. John Lipp
 g1 ( y1 , y2 )
x2
 g 2 ( x1 , y2 )
x2
5-42
1
Transformations of Bivariate Random Variables (cont.)
• Example: Let X1 and X2 be zero-mean, independent Gaussian
random variables with equal variances. Compute the PDF
fR,(r,) of the polar transform R  X 12  X 22 ,   tan 1 ( X 1 X 2 ).
• First, note that this transform is one-to-one.
• Second, the PDF of fX1,X2(x1,x2) is
1
 2 x12  x22 
1
2 x
f X1 , X 2 ( x1 , x2 ) 
e
2 x2
• Third, the Jacobian is
 x x
 x1 , x2 
x1
J

1
 y1 , y2   tan ( x1 x2 )
x1
2
1
EMIS7300 Fall 2005
2
2
 x x
x2
 tan 1 ( x1 x2 )
x2
2
1
2
2
Copyright  2003-2005 Dr. John Lipp
1
x1
 r
x2
r2
x2
r
x1
 2
r
1
 r
5-43
Transformations of Bivariate Random Variables (cont.)
• Substituting
 x1 , x2 
1
1
fY1 ,Y2 ( y1 , y2 )  f X1 , X 2 ( g1 (r , ), g 2 (r , )) J 

 r , 
 f X1 , X 2 (r cos( ), r sin( ))  r
1
 2 r 2 cos2 ( ) r 2 sin 2 ( ) 
1
2 x

e
r
2
2 x
r
 2

1  r
    2 e 2 x 
 2   x

• Thus R ~ Rayleigh with  = x2 and  ~ uniform [0,2].
• Moreover, R and  are statistically independent.
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-44
Transformations of Bivariate Random Variables (cont.)
• The process of transformation of random variables has
several important and useful results.
• A random variable U ~ uniform [0,1] can be transformed to
any other PDF fX(x) with the transform X = FX-1(U).
– Exponential: X = -  ln(1 - U).
– Rayleigh: X    ln(1  U ).
The only limitation is being able to invert FX(x).
• A pair of independent, zero-mean, unit variance Gaussian
random variables can be generated from
X1 = Rcos() and X2 = Rsin()
where R is Rayleigh ( = 1) and  is uniform [0,2].
EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-45
Transformations of Bivariate Random Variables (cont.)
• Let X1 and X2 be independent random variables and define
Y = X1 + X2
W = X1
– The transformation is one-to-one.
– The Jacobian is   x  x    x  x  1
1
2
1
2
1
1
1
 x ,x 
x1
x2
J 1 2  

 1
x1
x1
1 0
 y, w 
x1
x2
– Thus fY,W(y,w) = fX1 (w)f X2(y-w).
– Integrating vs. w

fY ( y ) 
f
X1
( w) f X 2 ( y  w)dw  f X1 ( x1 )  f X 2 ( x2 )

EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-46
Transformations of Bivariate Random Variables (cont.)
• Let X1 and X2 be random variables and define
Y = X1 X2
W = X2
– The transformation is one-to-one.
– The Jacobian is   x x    x x  1
 x ,x 
J 1 2  
 y, w 
– Thus
and
EMIS7300 Fall 2005
1 2
x1
x2
x1
1 2
x2
x2
x2

x2
x1
0
1
1

1 1

x2 w
fY,W(y,w) = fX1,X2(y / w, w) / |w|

1
fY ( y )   f X1 , X 2 ( y / w, w) dw
w

Copyright  2003-2005 Dr. John Lipp
5-47
Transformations of Bivariate Random Variables (cont.)
• Let X1 and X2 be random variables and define
Y = X1 / X2
W = X2
– The transformation is one-to-one.
– The Jacobian is
1
  x1 x2    x1 x2 
1
 x ,x 
x1
x2
J 1 2  
 x2
x2
x2
 y, w 
0
x1
x2
– Thus

x1
x22
1
1
 x2  w
fY,W(y,w) = fX1,X2(yw,w)

and
fY ( y ) 
f
X1 , X 2
( yw, w) w dw

EMIS7300 Fall 2005
Copyright  2003-2005 Dr. John Lipp
5-48
Homework
• Mandatory (answers in the back of the book):
5-27
EMIS7300 Fall 2005
5-37
5-39
5-89
Copyright  2003-2005 Dr. John Lipp
5-49
Related documents