Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
EMIS 7300
SYSTEMS ANALYSIS METHODS
FALL 2005
Dr. John Lipp
Copyright © 2003-2005 Dr. John Lipp
Session 2 Outline
• Part 1: Correlation and Independence.
• Part 2: Confidence Intervals.
• Part 3: Hypothesis Testing.
• Part 4: Linear Regression.
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-2
Today’s Topics
• Bivariate random variables
– Statistical Independence.
– Marginal random variables.
– Conditional random variables.
• Correlation and Covariance
– Multivariate Distributions.
– Random Vectors.
– Correlation and Covariance Matrixes.
• Transformations
– Transformations of a random variable.
– Transformations of a bivariate random variables.
– Transformations of a multivariate random variables.
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-3
Bivariate Data
• A common experimental procedure is to control one variable
(input) and measure another variable (output).
• The values of the “input” variable are denoted xi and the
values of the “output” variable as yi.
• An xy-plot of the data points is referred to as a scatter
diagram if the data (xi and/or yi) are random.
• From the scatter diagram a general data trend may be
observed that suggests an empirical model.
• Fitting the data to this model is known as regression analysis.
When the appropriate empirical model is a line then the
procedure is called simple linear regression.
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-4
Bivariate Data (cont.)
n
xi
yi
1
9.5013
22.4030
2
2.3114
12.3828
3
6.0684
20.3993
4
4.8598
17.5673
5
8.9130
27.9870
6
7.6210
22.9163
7
4.5647
18.8927
8
0.1850
0.5602
9
8.2141
21.3490
10
4.4470
13.2672
11
6.1543
10.8923
12
7.9194
21.8680
13
9.2181
19.2104
14
7.3821
25.4247
15
1.7627
5.3050
EMIS7300 Fall 2005
30
25
20
15
10
5
0
0
1
2
3
Copyright 2003-2005 Dr. John Lipp
4
5
6
7
8
9
10
5-5
Bivariate Data (cont.)
• The line fit equation is
yˆ mˆ x bˆ
where
1 n
n y x 1 n y n x
yi y xi x i i i i
n i 1 i 1
mˆ n i 1 n
i 1
2
n
n
1
2
1
x2 x
xi x
i
i
n i 1
i 1 n i 1
n
n
1
bˆ y mˆ x yi mˆ xi
n i1
i 1
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-6
Simple Linear Regression (cont.)
• The slope of the linear regression is related to the sample
correlation coefficient
1 n
xi x yi y
s
n i1
r x mˆ
sy
1 n x x 2 1 n y y 2
i
i
n
n
i1
i 1
• The calculation for r can be rewritten as
n y x 1 n y n x
i i
i i
n
i 1
i 1 i1
r
n 2 1 n 2 n 2 1 n 2
yi yi xi xi
i1 n i1 i 1 n i1
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-7
Simple Linear Regression (cont.)
• r has no units.
• The value of r is bounded by 1.
– r=1
– 0<r1
– r=0
– 0 > r -1
– r = -1
EMIS7300 Fall 2005
the line fits the data perfectly.
the line has a positive slope.
there is no line fit.
the line has a negative slope.
the line fits the data perfectly.
Copyright 2003-2005 Dr. John Lipp
5-8
Simple Linear Regression (cont.)
10
9
8
7
6
5
4
3
2
1
0
10
9
8
7
6
5
4
3
2
1
0
0
0
1
1
2
2
3
3
EMIS7300 Fall 2005
4
4
5
5
6
6
7
7
8
8
9
9
10
10
10
9
8
7
6
5
4
3
2
1
0
10
9
8
7
6
5
4
3
2
1
0
0
1
2
3
4
5
6
7
8
9
10
0
1
2
3
4
5
6
7
8
9
10
Copyright 2003-2005 Dr. John Lipp
5-9
Bivariate Random Variables
• Consider the case of two random variables X and Y.
• The joint CDF is denoted FX,Y(x,y) = P(X x, Y y).
• The joint PDF is defined via the joint CDF
x y
FX ,Y ( x, y )
f
X ,Y
(u, v) du dv
where
f X ,Y ( x, y )
FX ,Y ( x, y )
x y
• Expected value
E X ,Y g ( x, y )
g ( x, y ) f
X ,Y
( x, y ) dx dy
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-10
Statistical Independence
• X and Y are statistically independent if and only if,
FX ,Y ( x, y) FX ( x) FY ( y) or
f X ,Y ( x, y) f X ( x) fY ( y)
• Statistical Independence has an effect on the expected value of
separable functions of joint random variables
E X ,Y g ( x)h( y )
g ( x ) h( y ) f
X ,Y
( x, y ) dx dy
g ( x ) h( y ) f
g ( x) f
X
( x) fY ( y ) dx dy
X
( x)dx h( y ) fY ( y ) dy
E X {g ( X )}EY {h(Y )}
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-11
Marginal Random Variables
• It is often of interest to find the individual CDFs and PDFs
when two random variables are not statistically independent.
These are known as the marginal CDF and marginal PDF.
• Marginal CDFs are straightforward,
x
FX ( x) F ( x,) f X ,Y (u, v) dv du
FY ( y ) F (, y ) f X ,Y (u, v) du dv
y
• Marginal PDFs are found by “integrating out” y or x,
f X ( x)
EMIS7300 Fall 2005
f X ,Y ( x, y) dy
fY ( y )
Copyright 2003-2005 Dr. John Lipp
f X ,Y ( x, y) dx
5-12
Conditional Random Variables
• Conditional CDFs and PDFs can be defined,
FX ,Y ( x, y) FX |Y ( x | y) FY ( y) FY | X ( y | x) FX ( x)
f X ,Y ( x, y) f X |Y ( x | y) fY ( y) fY | X ( y | x) f X ( x)
• Rewriting the conditional PDF for X given Y
f X ,Y ( x, y )
f X |Y ( x | y )
fY ( y )
f X ,Y ( x, y )
f X ,Y ( x, y )dx
fY | X ( y | x) fY ( y )
fY | X ( y | x) fY ( y )dx
This is just ____________________ for random variables!
• A similar equation holds for Y given X.
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-13
Marginal Random Variables (cont.)
• Consistent results are obtained if X and Y are independent,
1
FX (x) = FX,Y (x,) = FX (x) FY () = FX (x)
f X ( x)
1
f X ,Y ( x, y) dy f X ( x) fY ( y)dy f X ( x)
• Find the marginal PDFs for fX,Y(x,y) = 2 when 0 < x < y < 1
and fX,Y(x,y) = 0 everywhere else. Are X and Y independent?
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-14
Conditional Random Variables (cont.)
• The definitions of conditional CDFs and PDFs are consistent
when X and Y are statistically independent
FX ,Y ( x, y ) FX ( x) FY ( y )
FX |Y ( x | y )
FX ( x)
FY ( y )
FY ( y )
FX ,Y ( x, y ) FX ( x) FY ( y )
FY | X ( y | x)
FY ( y )
FX ( x)
FX ( x)
f X ,Y ( x, y ) f X ( x) fY ( y )
f X |Y ( x | y )
f X ( x)
fY ( y )
fY ( y )
f X ,Y ( x, y ) f X ( x) fY ( y )
fY | X ( y | x)
fY ( y )
f X ( x)
f X ( x)
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-15
Bivariate Guassian Random Variables
• Let X and Y be jointly Gaussian, but not necessarily
independent, random variables.
• The joint PDF is
f X ,Y ( x, y )
y2 x x 2 2 xy x y x x y y x2 y y 2
1
2 1
2
x
2
y
2
xy
e
2
2 x2 y2 (1 xy
)
• Note:
E X ,Y { X } x
E X ,Y {Y } y
2
E X ,Y { X x } E X ,Y { X 2 } x x x2
2
E X ,Y {Y y } E X ,Y {Y 2 } y y y2
E X ,Y { X x Y y } E X ,Y { X Y } x y x y xy
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-16
Bivariate Guassian Random Variables (cont.)
• The marginal PDF of X ~ N( x,x2) and Y ~ N( y, y2).
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-17
Bivariate Guassian Random Variables (cont.)
• Consider the case that the Gaussian variables are uncorrelated,
that is, xy = 0. The joint PDF is then
x x 2
1
2 x2
1 e
f X ,Y ( x, y )
e
2
2
2 x
2 y
f X ( x) fY ( y )
y y 2
2 y2
• Thus, uncorrelated jointly Gaussian random variables are
independent Gaussian random variables.
This is a very important exception to the notion that
uncorrelated random variables are not also independent
random variables.
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-18
Correlation and Covariance
• The correlation between two joint random variables X and Y
is defined as E{XY}.
• The covariance is defined as
cov(X,Y) = E{(X - x)(Y - y)} = E{XY} - x y = xy
where x and y are the means of X and Y, respectively.
• X and Y are uncorrelated if and only if cov(X,Y) = 0. An
equivalent condition is X and Y are uncorrelated if and only if
E{XY} = E{X}E{Y}. This is not the same as independence!
• Two random variables X and Y are said to be orthogonal if
and only if E{XY} = 0. Not the same as uncorrelated!
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-19
Correlation and Covariance (cont.)
• Independent random variables are always uncorrelated
x
y
cov(X,Y) = E{XY} - x y = E{X}E{Y} - x y= 0
The reverse is generally not true.
Uncorrelated RV’s
Independent RVs
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-20
Correlation and Covariance (cont.)
• The correlation coefficient (normalized covariance) is
xy
E X x Y y
xy
2
2
x y
E X x E Y y
–
–
–
–
The correlation coefficient is bounded, -1 xy +1.
xy = 0 if X and Y are uncorrelated.
xy = 1 means that X and Y are perfectly correlated.
xy = -1 means that X and Y are perfectly anti-correlated.
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-21
Correlation and Covariance (cont.)
• Although covariance describes a linear relationship between
variables (if it exists), it does not give an indication of nonlinear relationships between variables.
y
0.04
0.02
0.04
0.04
0.04
0.02
0.05
0.05
0.05
0.05
0.20
0.05
0.05
0.02
0.04
0.04
0.05
0.05
0.04
0.02
0.04
x
• The above distribution shows a clear relationship between the
random variables X and Y, but the covariance is zero!
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-22
Multivariate Distributions
• When more than two random variables are considered, the
various distributions and densities are termed multivariate.
– Joint CDF: FX1,X2,…Xn (x1,x2,…,xn)
– Joint PDF: fX1,X2,…Xn (x1,x2,…,xn)
– Conditional CDF:
FX1| X 2 ,...,X n ( x1 | x2 ,..., xn )
FX1 , X 2,...,X n ( x1 , x2 ,..., xn )
FX 2 ,...,X n ( x2 ,..., xn )
– Conditional PDF:
f X1| X 2 ,...,X n ( x1 | x2 ,..., xn )
EMIS7300 Fall 2005
f X1 , X 2,...,X n ( x1 , x2 ,..., xn )
f X 2 ,...,X n ( x2 ,..., xn )
Copyright 2003-2005 Dr. John Lipp
5-23
Multivariate Distributions (cont.)
– Marginal PDF:
f X 2 ,...,X n ( x2 ,..., xn )
f X , X ,...,X ( x1 , x2 ,..., xn )dx1
1
2
n
– Expectation:
E{g ( x1 ,..., xn )}
... g ( x1 ,..., xn ) f X ,...,X ( x1 ,..., xn ) dx1 dxn
1
n
– Independence:
f X1 , X 2 ,...,X n ( x1 , x2 ,..., xn ) f X1 ( x1 ) f X 2 ( x2 )... f X n ( xn )
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-24
Random Vectors
• Using vector notation is just as useful for random variables as
it is in other engineering disciplines.
• Consider the random vector
• Define the “vector PDF”
X1
X
2
X X3
X n
f ( x ) f X1 , X 2 ,...,X n ( x1 , x2 ,..., xn )
X
• The CDF, marginal, and conditionals are similar.
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-25
Correlation Matrix
• Let X be an 1N random vector and Y be a 1M random
vector. Then the correlation matrix, Rxy E{ XY T } , is
•
E{ X 1Y1} E{ X 1Y2 } E{ X 1Y3 } E{ X 1YM }
E{ X Y } E{ X Y } E{ X Y } E{ X Y }
2 1
2 2
2 3
2 M
T
E{ XY } E{ X 3Y1} E{ X 3Y2 } E{ X 3Y3 } E{ X 3YM }
E{ X N Y1} E{ X N Y2 } E{ X N Y3 } E{ X N YM }
T
Rx E{ XX } is known as the autocorrelation matrix.
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-26
Covariance Matrix
• Let X be an 1N random vector and Y be a 1M random
vector. Then the covariance matrix is
T
C xy E( X x )(Y y )
x1 , y1 x1 , y2 x1 , y3 x1 , yM
x2 , y2
x2 , y3
x2 , yM
x2 , y1
x3 , y1 x3 , y2 x3 , y3 x3 , yM
xN , y1 xN , y2 xN , y3 xN , yM
where x and y are the vector means of X and Y , respectively.
• It is often more useful or more natural to write
T
T
C xy E( X x )(Y y ) E{ XY } x Ty Rxy x Ty
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-27
Covariance Matrix
• Let X be an 1N random vector and Y be a 1M random
vector. Then the covariance matrix is
T
C xy E( X x )(Y y )
cov( X 1 , Y1 ) cov( X 1 , Y2 ) cov( X 1 , Y3 ) cov( X 1 , YM )
cov( X , Y ) cov( X , Y ) cov( X , Y ) cov( X , Y )
2 1
2
2
2
3
2
M
cov( X 3 , Y1 ) cov( X 3 , Y2 ) cov( X 3 , Y3 ) cov( X 3 , YM )
cov( X N , Y1 ) cov( X N , Y2 ) cov( X N , Y3 ) cov( X N , YM )
where x and y are the vector means of X and Y , respectively.
• It is often more useful or more natural to write
T
T
C xy E( X x )(Y y ) E{ XY } x Ty Rxy x Ty
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-28
Covariance Matrix (cont.)
• More interesting is the autocovariance matrix,
12
1 2 12
C x 1 3 13
1 N 1N
2 1 21
22
2 3 23
3 1 31
3 2 32
32
2 N 2 N 3 N 3 N
N 1 N1
N 2 N1
N 3 N1
N2
• The autocovariance matrix is symmetric because ij = ji .
• It is often more useful or more natural to write
T
T
T
T
C x E ( X x )( X x ) E{ XX } x x Rx x x
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-29
Covariance Matrix (cont.)
• Autocovariance
matrix for
uncorrelated
random variables
(ij = 0).
12 0
0
2
0
0
2
Cx 0
0 32
0
0
0
• Covariance matrix
for perfectly
correlated random
variables (ij = 1).
1
2
C x 3 1 2 3 N
N
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
0
0
0
N2
5-30
Covariance Matrix (cont.)
• Consider a random variable Y which is the weighted sum of N
independent random variables Xi, …, XN
N
T
Y w1 X 1 w2 X 2 wN X N wi X i w X
i 1
• The mean of Y is straight forward
N
T
T
y E{Y } E{w X } w x wi xi
i 1
• The variance is also straight forward
T 2
T 2
2
2
2
y E{Y } y E w X w x
T T T T
E{w X X w} w x x w
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-31
Covariance Matrix (cont.)
• If the Xi are uncorrelated with different variances, then
12 0
0 0
2
0
0
0
2
N
T
2
2 2
2
y w 0
0 3 0 w wi i
i 1
0
0
0 N2
• If the Xi are correlated with different variances, then
2
1
1
2
2
2
N
y2 wT 3 1 2 3 N w wT 3 wi i
i1
N
N
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-32
Covariance Matrix (cont.)
• Let Y and b be M 1 vectors, A be an M N matrix, and X be
an N 1 vector, then Y = AX + b has the statistics
y A x b
C y ACx AT
• Usually it is easy to generate X as uncorrelated random
variables with unit variances (Cx = identity matrix).
• To generate Y with a desired autocovariance find the “square
root” of Cy =AAT using eigenvector decomposition
12 0 0
1 0 0
2
0
0
0
0
2
2
U T A U
C y UDU T U
0
0
2
0
0
0
0
0
0
N
N
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-33
Covariance Matrix (cont.)
• Covariance matrix for uncorrelated variables.
• Covariance matrix after rotation rotation for uncorrelated!
• How compute a sample correlation / covariance.
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-34
Gaussian Vector
• Let the elements of the random vector X be mutually
Gaussian. The PDF in vector notation is
1
( x x )T 1 ( x x )
1
2
f X ( x )
e
(2 ) N | |
Determinant of
where x is the mean and is the autocovariance matrix of X .
• If the elements X are independent / uncorrelated (equivalent for
Guassian only!) the inverse is trivial
0
1
0
2
1
EMIS7300 Fall 2005
0
22
0
1
12
0
0
2
0
0
2
2
N
0
0
Copyright 2003-2005 Dr. John Lipp
0
0
2
N
5-35
Bivariate Guassian Random Variables (cont.)
• Consider the case that the Gaussian variables are uncorrelated,
that is, xy = 0. The joint PDF is then
x x 2
1
2 x2
1 e
f X ,Y ( x, y )
e
2
2
2 x
2 y
f X ( x) fY ( y )
y y 2
2 y2
• Thus, uncorrelated jointly Gaussian random variables are
independent Gaussian random variables.
This is a very important exception to the notion that
uncorrelated random variables are not also independent
random variables.
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-36
• Transformation of RVs
• Use inverse transformation to show Z = X+Y thing is
convolution.
• Use inverse transformation to show how to use uniform for
generating other RVs.
• See 232 in Papuolis book.
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-37
Transformations of Random Variables
• Many of the continuous random variables from the previous
session where defined as non-linear functions of other random
variables, e.g., a chi-square random variable is the result from
squaring a zero-mean Gaussian random variable.
• Here is how NOT to transform a random xvariable
1
– Let X ~ exponential, i.e., f X ( x) e , x 0 .
– Define Y X and substitute X = Y 2 into fX(x),
fY ( y ) f X ( y )
2
1
e
y2
, y0
– But Y should be Rayleigh, fY ( y )
EMIS7300 Fall 2005
y
Copyright 2003-2005 Dr. John Lipp
e
y2
2
, y0!
5-38
Transformations of Random Variables (cont.)
• The reason the “obvious” procedure failed is that the PDF has
no meaning outside of an integral!
• The correct procedure is to transform the CDF and then
compute its derivative to get the transformed PDF.
• Let Y = g(X) X = g-1(Y) be a one-to-one “mapping”, then
1
d
g
( y)
fY ( y ) f X ( g 1 ( y ))
dy
• For X ~ exponential and Y X X = Y 2 then
y2
2
2y
2 d y
fY ( y ) f X ( y )
e , y0
dy
• The scaling factor looks different from the Rayleigh PDF.
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-39
Transformations of Random Variables (cont.)
• Why is a one-to-one mapping is important? Let X ~ N(0, x2)
and apply the transformation Y = X 2 (Y should be chi-square)
y
d y
1
2 x2
fY ( y ) f X ( y )
e
, y0
2
dy
2 2 x y
• The above “PDF” does not integrate to 1! Instead, it
integrates to ½.
0.4
4
0.3
3
f (y)
0.2
Y
X
f (x)
• What went wrong? Two points from X map into Y
0.1
0
2
1
-4
EMIS7300 Fall 2005
-3
-2
-1
0
x
1
2
3
4
0
Copyright 2003-2005 Dr. John Lipp
1
2
3
4
5
y
6
7
8
9
5-40
Transformations of Random Variables (cont.)
• In general, a mapping of X to Y with a function Y = g(X) must
be analyzed by dividing g(X) into N monotonic regions (roots)
and then summing the PDF contributions from each region
N
d g 1 ( y )
1
fY ( y ) f X ( g ( y ))
dy
i 1
• The transformation Y = X 2 has two monotonic regions, X < 0
and X 0 (the equality belongs on the right).
25
20
x2
15
10
5
0
EMIS7300 Fall 2005
-4
-3
-2
-1
0
x
1
Copyright 2003-2005 Dr. John Lipp
2
3
4
5-41
Transformations of Bivariate Random Variables
• The process is identical to that for a random variable except
that the derivative operation is replaced with the Jacobian.
• Let Y1 = g1(X1, X2) and Y2 = g2(X1, X2).
fY1Y2(y1,y2) is found with
N
fY1 ,Y2 ( y1 , y2 )
i 1
The joint PDF
x1 , x2
f X1 , X 2 ( g ( y1 , y2 ), g ( y1 , y2 )) J
y1 , y2
1
1
1
2
where
g11 ( y1 , y2 )
x1 , x2
y1
J
1
g
y
,
y
2 ( y1 , y 2 )
1 2
y1
EMIS7300 Fall 2005
g11 ( y1 , y2 ) g1 ( x1 , x2 )
y2
x1
1
g 2 ( y1 , y2 ) g 2 ( x1 , x2 )
x1
y2
Copyright 2003-2005 Dr. John Lipp
g1 ( y1 , y2 )
x2
g 2 ( x1 , y2 )
x2
5-42
1
Transformations of Bivariate Random Variables (cont.)
• Example: Let X1 and X2 be zero-mean, independent Gaussian
random variables with equal variances. Compute the PDF
fR,(r,) of the polar transform R X 12 X 22 , tan 1 ( X 1 X 2 ).
• First, note that this transform is one-to-one.
• Second, the PDF of fX1,X2(x1,x2) is
1
2 x12 x22
1
2 x
f X1 , X 2 ( x1 , x2 )
e
2 x2
• Third, the Jacobian is
x x
x1 , x2
x1
J
1
y1 , y2 tan ( x1 x2 )
x1
2
1
EMIS7300 Fall 2005
2
2
x x
x2
tan 1 ( x1 x2 )
x2
2
1
2
2
Copyright 2003-2005 Dr. John Lipp
1
x1
r
x2
r2
x2
r
x1
2
r
1
r
5-43
Transformations of Bivariate Random Variables (cont.)
• Substituting
x1 , x2
1
1
fY1 ,Y2 ( y1 , y2 ) f X1 , X 2 ( g1 (r , ), g 2 (r , )) J
r ,
f X1 , X 2 (r cos( ), r sin( )) r
1
2 r 2 cos2 ( ) r 2 sin 2 ( )
1
2 x
e
r
2
2 x
r
2
1 r
2 e 2 x
2 x
• Thus R ~ Rayleigh with = x2 and ~ uniform [0,2].
• Moreover, R and are statistically independent.
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-44
Transformations of Bivariate Random Variables (cont.)
• The process of transformation of random variables has
several important and useful results.
• A random variable U ~ uniform [0,1] can be transformed to
any other PDF fX(x) with the transform X = FX-1(U).
– Exponential: X = - ln(1 - U).
– Rayleigh: X ln(1 U ).
The only limitation is being able to invert FX(x).
• A pair of independent, zero-mean, unit variance Gaussian
random variables can be generated from
X1 = Rcos() and X2 = Rsin()
where R is Rayleigh ( = 1) and is uniform [0,2].
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-45
Transformations of Bivariate Random Variables (cont.)
• Let X1 and X2 be independent random variables and define
Y = X1 + X2
W = X1
– The transformation is one-to-one.
– The Jacobian is x x x x 1
1
2
1
2
1
1
1
x ,x
x1
x2
J 1 2
1
x1
x1
1 0
y, w
x1
x2
– Thus fY,W(y,w) = fX1 (w)f X2(y-w).
– Integrating vs. w
fY ( y )
f
X1
( w) f X 2 ( y w)dw f X1 ( x1 ) f X 2 ( x2 )
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-46
Transformations of Bivariate Random Variables (cont.)
• Let X1 and X2 be random variables and define
Y = X1 X2
W = X2
– The transformation is one-to-one.
– The Jacobian is x x x x 1
x ,x
J 1 2
y, w
– Thus
and
EMIS7300 Fall 2005
1 2
x1
x2
x1
1 2
x2
x2
x2
x2
x1
0
1
1
1 1
x2 w
fY,W(y,w) = fX1,X2(y / w, w) / |w|
1
fY ( y ) f X1 , X 2 ( y / w, w) dw
w
Copyright 2003-2005 Dr. John Lipp
5-47
Transformations of Bivariate Random Variables (cont.)
• Let X1 and X2 be random variables and define
Y = X1 / X2
W = X2
– The transformation is one-to-one.
– The Jacobian is
1
x1 x2 x1 x2
1
x ,x
x1
x2
J 1 2
x2
x2
x2
y, w
0
x1
x2
– Thus
x1
x22
1
1
x2 w
fY,W(y,w) = fX1,X2(yw,w)
and
fY ( y )
f
X1 , X 2
( yw, w) w dw
EMIS7300 Fall 2005
Copyright 2003-2005 Dr. John Lipp
5-48
Homework
• Mandatory (answers in the back of the book):
5-27
EMIS7300 Fall 2005
5-37
5-39
5-89
Copyright 2003-2005 Dr. John Lipp
5-49