* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download Experiment 5: Principle of 3 phase induction motor
Pulse-width modulation wikipedia , lookup
Power inverter wikipedia , lookup
Electrical substation wikipedia , lookup
Opto-isolator wikipedia , lookup
Spark-gap transmitter wikipedia , lookup
Electric power system wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
History of electric power transmission wikipedia , lookup
Electrical ballast wikipedia , lookup
Utility frequency wikipedia , lookup
Electrification wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Power engineering wikipedia , lookup
Buck converter wikipedia , lookup
Three-phase electric power wikipedia , lookup
Stray voltage wikipedia , lookup
Rectiverter wikipedia , lookup
Brushless DC electric motor wikipedia , lookup
Alternating current wikipedia , lookup
Commutator (electric) wikipedia , lookup
Voltage optimisation wikipedia , lookup
Mains electricity wikipedia , lookup
Brushed DC electric motor wikipedia , lookup
Electric motor wikipedia , lookup
Variable-frequency drive wikipedia , lookup
Stepper motor wikipedia , lookup
Basic Electrical Technology (DET 211) Laboratory Module EXPERIMENT 5 PRINCIPLE OF 3 – PHASE INDUCTION MOTOR Objective: To understand the structure and principle of 3 – phase induction motor and to control the rotary direction Introduction: The induction motor (Figure 1) is an AC motor commonly used at homes in fans, compressor and in some certain office appliances such as photocopy machine. An induction motor has the same physical stator as synchronous machine, with a different rotor construction. There are two different types of induction motor rotors which can be placed inside the stator. One is called a squirrel cage rotor, while the other is called a wound rotor. Figure 1: Induction motor A squirrel cage induction motor rotor consists of a series of conducting bars laid into slots carved in the face of the rotor and shorted at either end by large shorting rings. This design is referred to as a cage rotor because the conductors, if examined by them, would look like one of the exercise wheels that squirrel run on. UNIVERSITI MALAYSIA PERLIS (UniMAP) – Exp.5 1 Basic Electrical Technology (DET 211) Laboratory Module Figure 2: two types of induction motor The speed of induction motor is dependent on motor design. The synchronous speed (the speed at which the stator field rotates) is determined by the frequency of input ac power and the number of poles in the stator. The relationship between poles (P), frequency (f) and synchronous speed (ns) is: ns 120 f P rpm The difference between the synchronous speed (ns) and the rotor speed (nr) is called the slip and is expressed as a percentage of synchronous speed. slip , s n s nr 100% ns The rotor speed may be expressed as nr 1 s ns rpm where s is expressed as a decimal. UNIVERSITI MALAYSIA PERLIS (UniMAP) – Exp.5 2 Basic Electrical Technology (DET 211) Laboratory Module At standstill, when the rotor is at rest, the operating field sweeps the rotor bars at its maximum rate. Under those conditions, the generated voltage in the rotor circuit will be maximum and determined by the number of turns on the rotor. As the field revolves, a back EMF is generated in the stator winding which is nearly equal to the impressed voltage. It thus follows that at standstill the flux sweeps the stator turns at the same rate as those in the rotor. This means that the induced voltages in the rotor and the stator turns on per phase basis are related by the turns ratio, as is the case in a transformer between primary and secondary. It also follows that the frequency of the rotor – induced voltages equals the line frequency when the rotor is at rest. In this condition the slip is s 1.0 or 100%. As the slip decreases, the rate at which the flux sweeps across the conductors decreases proportionately and the rotor EMF becomes ER s EBR and the rotor frequency is fR s f where ER rotor – induced voltage at slip, s E BR blocked rotor – induced voltage per phase f R rotor frequency Equipments: 1) Starting resistor (NO – 5302)……………………………………………………..1 set 2) Power supply (NO – 5306)………………………………………………………..1 set 3) Auto driving unit (NO – 5311)………………………………………………… …1 set 4) AC Voltage / Ammeter (NO – 5307)……………………………………….….....1 set 5) DC Voltage / Ammeter (NO – 5308)…………………….……………………….1set 6) Machine field frame (NO – 5310)……………………………………………..….2 set 7) 3 phase machine graphic board (NO – 5314)……..……………………………1set 8) Rotary converter graphic (NO – 5315)……………………………………….….1 set 9) 3 – pole rotor (A04)……………………………………………………………...…1set 10) Cage rotor (A06)…………………………………………………………………..1set 11) Wide pole piece for field winding (A10)………………………………………....5set 12) Field winding / 300 turns (A13)…………………………………………………..3 set 13) Field winding / 700 turns (A14)……………………………………………….….2 set 14) C Type brush holder set (A18)…………………………………………………..1 set 15) Rotor fixture (A20)…………………………………………………………….…..2 set 16) Magnetic pole fixture (A21)…………………………………………………...….5 set 17) Fixing bolt (A22)………………………………………………………………..….6 set 18) 8mm spanner (A24)……………………………………………………………….1set UNIVERSITI MALAYSIA PERLIS (UniMAP) – Exp.5 3 Basic Electrical Technology (DET 211) Laboratory Module Procedure: 1. Design and constructed the circuit based on single-line diagram as shown in Figure 3.0. Make sure you use the correct items with their respective parts numbers. 2. Make sure you use the field winding/300 turns (A13) for the induction motor and the field winding/700 turns (A14) for the rotary converter. (Refer to Figure 3). Figure 3 Circuit diagram of induction motor 3. Wiring up your set – up accordingly. Before turning ON the power, perform these steps: I. Adjust the speed control knob of the Auto Driving unit (NO-5311) to the position of MIN. II. Set the starting resistor (NO-5302) to the position of maximum value (50) . (Request your instructor to confirm your work before turning on the power supply) 4. Turn ON the power supply. Slowly, set the speed until 1200 rpm on CW direction. Then, adjust the starting resistor, R f until you get starting voltage, V 2 5V Measure and record the value of starting current, A2 , starting voltage V 2 and field resistance R f . Observe the rotor direction. 5. Adjust the starting resistor slowly until the starting voltage, V 2 6V . Record the value of starting current, A2 and rotor speed, nr in Table 1. 6. Repeat procedure no 6 for the starting voltage of 6.5V, 7V, 7.5V and 8V. 7. Turn OFF the power supply. Change the switch direction of the driving unit to CCW. Observe the rotor direction. UNIVERSITI MALAYSIA PERLIS (UniMAP) – Exp.5 4 Basic Electrical Technology (DET 211) Laboratory Module 8. Turn all the switches OFF and disconnect the connecting code after complete the experiment. Disassemble the equipments, parts and store in the designated places. UNIVERSITI MALAYSIA PERLIS (UniMAP) – Exp.5 5 Basic Electrical Technology (DET 211) Laboratory Module EXPERIMENT 5 PRINCIPLE OF 3 – PHASE INDUCTION MOTOR Name: ______________________________ Group: ____________ Matric No: _______________ Date: ______________ RESULTS: Starting Voltage, V =_______________V Starting current, I =________________A Field Resistance, R f ____________ Speed, N =_____________________ rpm 3. Table 1 Starting Voltage (V2) (Volt) Starting Current (A2) (Ampere) Rotor Speed, nr (rpm) 4. Plot a graph of rotor speed vs starting voltage. 5. Plot a graph of rotor speed vs starting current. 6. Explain your graphs. UNIVERSITI MALAYSIA PERLIS (UniMAP) – Exp.5 6 Basic Electrical Technology (DET 211) Laboratory Module Name: ______________________________ Group: ____________ 7. Matric No: _______________ Date: ______________ How was the rotor direction when the switch direction in CW and CCW? Explain. 8. Calculate the synchronous speed if a 3-pole motor supplied from a three – phase 60Hz supply. The rotor speed at full load is your max rotor speed value from your data. 9. What is the slip of your induction motor? (refer to Question 8) 10. What is the rotor frequency? (refer to Question 9) UNIVERSITI MALAYSIA PERLIS (UniMAP) – Exp.5 7 Basic Electrical Technology (DET 211) Laboratory Module Name: ______________________________ Group: ____________ Matric No: _______________ Date: ______________ DISCUSSION: CONCLUSION: UNIVERSITI MALAYSIA PERLIS (UniMAP) – Exp.5 8