Download On T1 Space in L-Topological Spaces

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts

Brouwer fixed-point theorem wikipedia , lookup

3-manifold wikipedia , lookup

Sheaf (mathematics) wikipedia , lookup

Continuous function wikipedia , lookup

Covering space wikipedia , lookup

Grothendieck topology wikipedia , lookup

Fundamental group wikipedia , lookup

General topology wikipedia , lookup

Transcript
Journal of Physical Sciences, Vol. 21, 2016, 15-22
ISSN: 2350-0352 (print), www.vidyasagar.ac.in/journal
Published on 24 December 2016
On T1 Space in L-Topological Spaces
Rafiqul Islam* and M.S. Hossain1
*
Department of mathematics, Pabna University of Science and Technology,
Pabna-6600, Bangladesh.
1
Department of mathematics, University of Rajshahi, Rajshahi-6205, Bangladesh.
Email: [email protected]
Received 12 September 2016; accepted 30 November 2016
ABSTRACT
In this paper, we introduce eight notions of T1 space in L-topological spaces. We
established some relation among them. Also, we prove that all of these definitions satisfy
“good extension” property. Finally, we prove that all of these notions are hereditary,
productive and projective. Moreover, we observe that all concepts are preserved under
one-one, onto and continuous mapping.
Keywords: L-Fuzzy Set, Fuzzy topological space, L-Topological spaces, Hereditary.
1. Preliminary and Introduction
The fundamental concept of fuzzy set introduced by Zadeh [23] provided a natural
foundation for building new branches. In 1968 Chang [2] introduced the concept of
fuzzy topological spaces and there after many fuzzy topologists, have contributed various
forms of separation axioms to the theory of fuzzy topological spaces. The L-fuzzy
topological spaces were defined by Kubiak [9], Sostake [20,21] and their co-workers.
Through this paper, X will be a nonempty set, I = [0, 1] and L be a complete
distributive lattice with 0 and 1. The class of all L-fuzzy sets on a universe X will be
denoted by LX and L-fuzzy sets on X will be denoted by u, v, w, etc. Crisp subset of X
will be denoted by capital letter A, B, C etc. L-fuzzy singleton will be denoted by xr, yr,
zr. The class of all fuzzy singletons in X is denoted by S(X). For every xt ∈S(X) and
v ∈LX, we write xr ∈v iff r ≤ v(x), also by α(x) = α , ∀ x∈X and α ∈I, we mean the
constant mapping on X with value α and 1A denoted the characteristic mapping of A⊆X.
Definition 1.1. [23] Let X be a non-empty set and I = [0, 1]. A fuzzy set in X is a
function : → which assign to each element ∈ , a degree of membership,
() ∈ .
Definition 1.2. [4] Let X be a non-empty set and L be a complete distributive lattice
with 0 and 1. An L-fuzzy set in X is a function : → which assign to each
element ∈ , a degree of membership, () ∈ .
Definition 1.3. [4] Let be an L-fuzzy set in .Then 1 − = ′ is called the
complement of in (Zadeh 1965).
15
Rafiqul Islam and M.S. Hossain
Definition 1.4. [4] If ∈ and is an L-fuzzy sets in defined by () = ,
∀ ∈ then we refer to as a constant L-fuzzy sets and denoted it by itself.
In particular, we have the constant L-fuzzy sets 0 and 1.
Definition 1.5. [12] An L-fuzzy point in is a special L-fuzzy sets with
membership function () = = () = 0 ≠ where ∈ .
Definition 1.6. [12] An L-fuzzy point is said to belong to an L-fuzzy set in
( ∈ ) if and only if () < () and () ≤ (). That is ∈ ! <
().
Definition 1.7. [2] Let = [0,1], be a non-empty set and $ be the collection of
all mappings from into , i. e. the class of all fuzzy sets in . A fuzzy topology
on is defined as a family % of members of $ , satisfying the following conditions:
()1, 0 ∈ %()if& ∈ % for each ∈ ∆ then ⋃&∈∆ & ∈ %()if ) , * ∈ % then
) ∩ * ∈ % . The pair (, %) is called a fuzzy topological space (fts, in short) and the
members of % are called%-open (or simply open) fuzzy sets. A fuzzy set , is called a
%-closed (or simply closed) fuzzy set if 1 − , ∈ %.
Definition 1.8. [9] Let be a non-empty set and L be a complete distributive lattice
with 0 and 1. Suppose that . be the sub collection of all mappings from to
. . , . ⊆ $ .Then . is called L-topology on if it satisfies the following
conditions:
(i)
(ii)
(iii)
0∗ , 1∗ ∈ .
If ) , * ∈ . then ) ∩ * ∈ .
If & ∈ .for each ∈ ∆ then ∪&∈∆ & ∈ . .
Then the pair (, .) is called a L-topological space (lts, for short) and the members of .
are called open L-fuzzy sets. An L-fuzzy sets , is called a closed L-fuzzy set if 1 − , ∈
..
Definition 1.9. [9] Let 2 be an L-fuzzy set in lts (, .). Then the closure of 2 is
denoted by 2̅ and defined as 2̅ =∩ 45: 2 ⊆ 5, 5 ∈ . 6 7.
The interior of 2written2isdefinedby2 =∪ 45: 5 ⊆ 2, 5 ∈ .7.
Definition 1.10. [9] An L-fuzzy singleton in is an L-fuzzy set in which is zero
everywhere except at one point say , where it takes a value say with 0 < ≤ 1
and ∈ . We denote it by and ∈ iff ≤ ().
Definition 1.11. [9] An L-fuzzy singleton is said to be quasi-coincident (qcoincident, in short) with an L-fuzzy set in , denoted by C
iff + () > 1.
Similarly, an L-fuzzy set in is said to be q-coincident with an L-fuzzy set F in
, denoted by CF if and only if () + F() > 1 for some ∈ . Therefore CGF
16
On T1 Space in L-Topological Spaces
iff () + F() ≤ 1 for all ∈ , where CG F denote an L-fuzzy set in is said
to be not q-coincident with an L-fuzzy set F in .
Definition 1.12. [2] Let and H are two sets and : → His a function. For a fuzzy
subset in , we define a fuzzy subset , in H by
,() = ! { ()}if I) [{}] ≠ ∅, ∈ ,() = 0 if I) [{}] = ∅, ∈ .
Definition 1.13. [14] Let be a real-valued function on an L-topological space. If
{: () > } is open for every real , then is called lower-semi continuous
function (lsc, in short).
Definition 1.14. [15] Let (, .) and (H, !) be two L-topological space and be a
mapping from (, .) into (H, !) . . : (, .) → (H, !). Then is called(i)
(ii)
(iii)
(iv)
Continuous iff for each open L-fuzzy set ∈ ! ⟹ I) () ∈ ..
Open iff (5) ∈ ! for each open L-fuzzy set 5 ∈ ..
Closed iff (2) is s-closed for each 2 ∈ . 6 where . 6 is closed L-fuzzy
set in .
Homeomorphism iff is bijective and both and I) are continuous.
Definition 1.15. [6] Let be a nonempty set and L be a topology on . Let . =
M(L) be the set of all lower semi continuous (lsc) functions from ( , L) to (with
usual topology). Thus M(L) = { ∈ $ : I) (
, 1] ∈ L} for each ∈ . It can be
shown that M(L) is a L-topology on . Let “P” be the property of a topological
space ( , L) and LP be its L-topological analogue. Then LP is called a “good
extension” of P “if the statement ( , L) has P iff (, M(L)) has LP” holds good for
every topological space (, L).
Definition 1.16. [24] Let {(& , .& ): ∈ ∆} be a family of L-topological space. Then
the space (Π& , Π.& ) is called the product lts of the family {(& , .& ): ∈ ∆} where Π.&
denote the usual product L-topologies of the families {.& : ∈ ∆} of L-topologies on
.
2. T1-property in L-topological spaces
Here, we define the following definitions of T1-property in L-topological spaces.
Definition 2.1. An lts( , .) is called(a) − L) () if ∀ , ∈ , ≠ then ∃ , , ∈ . such that () ≠ () and
,() ≠ ,().
(b) − L) () if ∀ , ∈ , ≠ then ∃ , , ∈ . such that () = 1, () =
0 and ,() = 0, ,() = 1.
(c) − L) () if for any pair of distinct L-fuzzy points , Q ∈ R() then ∃ , , ∈
. such that ∈ , Q ∉ and ∉ ,, Q ∈ ,.
17
Rafiqul Islam and M.S. Hossain
(d) − L) (,)if
for
all
pairs
of
distinct
L-fuzzy
singletons
, Q ∈ R()with CGQ then∃, , ∈ .such that ⊆ ,Q CGandQ ⊆
,, CG,.
(e) − L) (,) if for any pair of distinct L-fuzzy points , Q ∈ R()then∃, , ∈ .
such that ∈ , CG Q andQ ∈ ,, ,CG .
(f) − L) (,)if for any pair of distinct L-fuzzy points , Q ∈ R()then∃, , ∈ .
such that ∈ , Q ∩ = 0andQ ∈ ,, ∩ , = 0.
(g) − L) (,)if∀, ∈ , ≠ then∃, , ∈ . such that () > 0, () =
0and,() = 0, ,() > 0.
(h) − L) (,)if∀, ∈ , ≠ then∃, , ∈ .such
that() > ()and,() > ,().
Here, we established a comparison of the definitions − L) (), − L) (), − L) (,),
− L) (,), − L) (,), − L) (,), − L) (,)with − L) ()is given below:
Theorem 2.2. Let (, .) be an lts. Then we have the following implications:
− L) (,) − L) ()
− L) (,) → − L) (,) → − L) () → − L) ()
− L) (,) − L) (,)
The reverse implications are not true in general.
Proof: − L) () ⇒ − L) (), − L) () ⇒ − L) () and − L) (,) ⇒ − L) () can
be proved easily. Now − L) (,) ⇒ − L) ()since − L) (,) ⇔ − L) ().
− L) (,) ⇒ − L) (), since − L) (,) ⇒ − L) (,). − L) (,)and − L) (,) ⇒
− L) () since − L) (,) ⇒ − L) (,) and − L) (,) ⇒ − L) ().
None of the reverse implications are true; it can be seen through the following:
Example 2.2.1. Let = 4, 7, . be the L-topology on generated by 4
: ∈ 7 ∪
4, ,7 where() = 0.5, () = 0.6and,() = 0.7, ,() = 0.4and
= 40,0.05,0.1,0.15, … … … 0.95,17.
Proof: − L) () ⇏ − L) (): Here the lts(, .) is clearly − L) () but it is not
− L) (). Since there is no none empty L-fuzzy set in . which takes zero value at or.
− L) () ⇏ − L) (): For if we take the distinct L-fuzzy points ]/_ , )/* ∈ R(),then
there does not exist , , ∈ . such that ]/_ ∈ , )/* ∉ and]/_ ∉ ,, )/* ∈ ,.
− L) () ⇏ − L) (,): As for the distinct L-fuzzy singletons ) , ) in . there does not
exist , , ∈ . such that ) ⊆ , ) CGand) ⊆ ,, ) CG,.
− L) () ⇏ − L) (,): This follows automatically from the fact that − L) (,) ⇔ −
L) ()and it has already been shown that − L) () ⇏ − L) ().
− L) () ⇏ − L) (,): Since for any two distinct L-fuzzy points ]/_ , )/* in R(),
then there does not exist , , ∈ .which is disjoint with]/_ and)/* .
− L) () ⇏ − L) (,) and − L) () ⇏ − L) (,): It is obvious because
− L) (,) ⇒ − L) () and − L) (,) ⇒ − L) () and it has already been shown
that − L) () ⇏ − L) ().
18
On T1 Space in L-Topological Spaces
3. “Good extension”, hereditary, productive and projective properties in l-topology
Here, we show that all these definitions − L) (), − L) (), − L) (),
− L) (,), − L) (,), − L) (,), − L) (,)and − L) (,)are
‘ofL) − property, as shown below:
‘good
extensions
Theorem 3.1. Let (, L) be a topological space. Then (, L) is L) iff b, M(L)c is
− L) ().
Proof: Let (, L) be L) .Choose , ∈ with ≠ .Then ∃d, e ∈ L such that ∈
d, ∉ dand ∈ e, ∉ e. Now consider the lower semi continuous functions1f , 1g .
Then 1f , 1g ∈ M(L)with1f () = 1, 1f () = 0 and1g () = 0, 1g () = 1and so
that1f () ≠ 1f ()and 1g () ≠ 1g (). Thus b, M(L)cis − L) ().
Conversely, let (, M(L))be − L) (). To show that (, L)is L) . Choose , ∈
with ≠ . Then ∃, , ∈ M(L) such that() ≠ ()and ,() ≠ ,(). Let () <
() and ,() < ,(). Choose and! such that () < < () and ,() < ! <
,() and consider I) (, 1]and , I) (!, 1]. Then I) (, 1], , I) (!, 1] ∈ L and is ∉
I) (, 1], ∈ I) (, 1] and ∈ , I) (!, 1], ∉ , I) (!, 1]. Hence (, L)isL) .
Similarly we can show that − L) (), − L) (), − L) (,), − L) (,),
− L) (,), − L) (,), − L) (,)are also hold ‘good extension’ property.
Theorem 3.2. Let (, .) be an lts, i ⊆ and.j = 4ǀi: ∈ .7, then
(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(, .) is − L) () ⇒ (i, .j ) is − L) ().
(, .) is − L) () ⇒ (i, .j ) is − L) ().
(, .) is − L) () ⇒ (i, .j ) is − L) ().
(, .) is − L) (,) ⇒ (i, .j ) is − L) (,).
(, .) is − L) (,) ⇒ (i, .j ) is − L) (,).
(, .) is − L) (,) ⇒ (i, .j ) is − L) (,).
(, .) is − L) (,) ⇒ (i, .j ) is − L) (,).
(, .) is − L) (,) ⇒ (i, .j ) is − L) (,).
Proof: We prove only (b). Suppose (, .)is L-topological space and − L) ().We shall
prove (i, .j ) is − L) (). Let , ∈ iwith ≠ , then , ∈ with ≠ as i ⊆ .
Since (, .)is − L) (), ∃, , ∈ . such that () = 1, () = 0and,() = 0,
,() = 1. For i ⊆ we find ǀi, ,ǀi ∈ .j and ǀi() = 1, ǀi() = 0and,ǀi() =
0, ,ǀi() = 1as , ∈ i. Hence it is clear that the subspace (i, .j ) is − L) ().
Similarly, (a), (c), (d), (e), (f), (g), (h) can be proved.
i.e. L-T1(j), for j = i, ii, iii,… (viii). Satisfy hereditary property.
Theorem 3.3. Given 4(& , .& ): ∈ Λ7 be a family of L-topological space. Then the
product of L-topological space (Π& , Π.& ) is − L) (m) iff each coordinate space (& , .& )
is − L) (m) wherem = , , , ,, ,, ,, ,, ,.
Proof: Let each coordinate space 4(& , .& ): ∈ Λ7 be − L) (). Then we show that the
product space is − L) ().Suppose , ∈ with ≠ , again suppose = Π& , =
Π& then n ≠ n for some m ∈ Λ. Now considern , n ∈ n . Since bn , .n cis − L) (),
∃n , ,n ∈ .n such that n bn c = 1, n bn c = 0and,n bn c = 0, ,n bn c = 1. Now take
19
Rafiqul Islam and M.S. Hossain
= Π′n , , = Π,′n where no = n , ,no = ,n and & = ,& = 1for ≠ m. Then , , ∈ Π.&
such that () = 1, () = 0 and ,() = 0, ,() = 1. Hence the product L-topological
space (Π& , Π.& ) is − L) ().
Conversely, let the product L-topological space (Π& , Π.& )is −
L) ().Take any coordinate spacebn , .n c, choose n , n ∈ n , n ≠ n . Now
construct , ∈ such that = Π′& , = Π′& where &o = &o for ≠ m and no =
n , no = n . Then ≠ and using the product space − L) ()∃, , ∈ Π.& such
that () = 1, () = 0and,() = 0, ,() = 1. Now choose any L-fuzzy point
in . Then ∃ a basic open L-fuzzy set Πn ∈ Π.n such that ∈ Πn ⊆ which
implies that < Πn () or that < pn n bno cand hence < Πn bno c∀m ∈
Λ … … ()and () = 0 ⇒ Πn () = 0 … … ().Similarly, corresponding to a
fuzzy point Q ∈ , there exists a basic open L-fuzzy set Π,nQ ∈ Π.n that Q ∈ Π,nQ ⊆
, which implies that ! < ,nQ (m)∀m ∈ Λ … … () and ,nQ () = 0 … … (,). Further,
Πn () = 0 ⇒ & (& ) = 0, since for m ≠ , no = no and hence from (),n bn c =
n bn c > . Similarly, Π,nQ () = 0 ⇒ ,&Q (& ) = 0using(). Thus we have
& (& ) > , & (& ) = 0and ,&Q (& ) > !, ,&Q (& ) = 0. Now consider ! & =
& , !Q ,&Q = ,& ∈ .& then & (& ) = 1, & (& ) = 0 and ,& (& ) = 0, ,& (& ) = 1
showing that (& , .& ) is − L) ().
Moreover one can verify that
(& , .& ), ∈ Λis − L) () ⇔ (Π& , Π.& ) is − L) ()
(& , .& ), ∈ Λis − L) () ⇔ (Π& , Π.& ) is − L) ()
(& , .& ), ∈ Λis − L) (,) ⇔ (Π& , Π.& ) is − L) (,)
(& , .& ), ∈ Λis − L) (,) ⇔ (Π& , Π.& ) is − L) (,)
(& , .& ), ∈ Λis − L) (,) ⇔ (Π& , Π.& ) is − L) (,)
(& , .& ), ∈ Λis − L) (,) ⇔ (Π& , Π.& ) is − L) (,)
(& , .& ), ∈ Λis − L) (,) ⇔ (Π& , Π.& ) is − L) (,) .
Hence we see that − L) (), − L) (), − L) (), − L) (,), − L) (,),
− L) (,), − L) (,), − L) (,)Properties are productive and projective.
4. Mapping in L-topological spaces
We show that − L) (m) property is preserved under one-one, onto and continuous
mapping for m = , , , ,, ,, ,, ,, ,.
Theorem 4.1. Let (, .) and (H, !) be two L-topological spaces and : (, .) → (H, !) be
one-one, onto and L-open map, then(a) (, .) is − L) () ⇒ (H, !) is − L) ().
(b) (, .) is − L) () ⇒ (H, !) is − L) ().
(c) (, .) is − L) () ⇒ (H, !) is − L) ().
20
On T1 Space in L-Topological Spaces
(d)
(e)
(f)
(g)
(h)
(, .) is − L) (,) ⇒ (H, !) is − L) (,).
(, .) is − L) (,) ⇒ (H, !) is − L) (,).
(, .) is − L) (,) ⇒ (H, !) is − L) (,).
(, .) is − L) (,) ⇒ (H, !) is − L) (,).
(, .) is − L) (,) ⇒ (H, !) is − L) (,).
Proof: Suppose (, .) is − L) ().We shall prove that (H, !) is − L) (). Let ) , * ∈
H with ) ≠ * .Since is onto,∃) , * ∈ such that () ) = ) , (* ) = * and
) ≠ * as is one-one. Again since (, .) is − L) ()∃, , ∈ . such that () ) = 1,
(* ) = 0and,() ) = 0, ,(* ) = 1.
Now, ()() ) = 4!() ): () ) = ) 7 = 1
()(* ) = 4!(* ): (* ) = * 7 = 0and
(,)() ) = 4!,() ): () ) = ) 7 = 0
(,)(* ) = 4!,(* ): (* ) = * 7 = 1.
Since is L-open, (), (,) ∈ !. Now it is clear that ∃(), (,) ∈ ! such
that()() ) = 1,()(* ) = 0and(,)() ) = 0, (,)(* ) = 1.Hence it is clear that
the L-topological space (H, !) is − L) ().Similarly (a), (c), (d), (e),(f), (g), (h) can be
proved.
Theorem 4.2. Let (, .) and (H, !) be two L-topological spaces and : (, .) → (H, !) be
L-continuous and one-one map, then(a)
(b)
(c)
(d)
(e)
(f)
(g)
(h)
(H, !) is − L) () ⇒ (, .) is − L) ().
(H, !) is − L) () ⇒ (, .) is − L) ().
(H, !) is − L) () ⇒ (, .) is − L) ().
(H, !) is − L) (,) ⇒ (, .) is − L) (,).
(H, !) is − L) (,) ⇒ (, .) is − L) (,).
(H, !) is − L) (,) ⇒ (, .) is − L) (,).
(H, !) is − L) (,) ⇒ (, .) is − L) (,).
(H, !) is − L) (,) ⇒ (, .) is − L) (,).
Proof: Suppose (H, !) is − L) ().We shall prove that (, .)is − L) (). Let ) , * ∈
with ) ≠ * , ⇒ () ) ≠ (* ) as is one-one. Since (H, !) is − L) (), ∃, , ∈ !
such that b() )c = 1, ((* )) = 0 and,b() )c = 0, ,((* )) = 1.This implies that
I) ()() ) = 1, I) ()(* ) = 0and I) (,)() ) = 0, I) (,)(* ) = 1and
hence I) (), I) (,) ∈ . as is L-continuous and, , ∈ ! .Now it is clear that
I) (), I) (,) ∈ . such that I) ()() ) = 1, I) ()(* ) = 0 and I) (,)() ) =
0, I) (,)(* ) = 1. Hence the L-topological space (, .) is −L) ().Similarly (a), (c),
(d), (e), (f), (g), (h) can be proved.
REFERENCES
1.
2.
D.M.Ali, A note on FT0, FT1, FT2 spaces, Ganit, (1987) 35-40.
C.L.Chang, Fuzzy topological spaces, J. Math. Anal Appl., 24 (1968) 182-192.
21
Rafiqul Islam and M.S. Hossain
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
E.Ahmed, M.S.Hossain and D.M.Ali, On Intuitionistic Fuzzy T1-Spaces, Journal of
Physical Science, 19 (2014) 59-66.
J.A.Goguen, L-fuzzy sets, J. Math. Anal. Appl., 18 (1967) 145-174.
M.S.Hossain and D.M.Ali, On T1 fuzzy topological spaces, Ganit J. Bangladesh
Math. Soc., 24 (2004) 99-106.
M.S.Hossain and D.M.Ali, Fuzzy normality and some of its α-forms, Journal of
Physical Sciences, 14 (2010) 87-94.
F.Jin-xuan and RenBai-lin, A set of new separation axioms in L-fuzzy topological
spaces, Fuzzy sets and Systems, 96 (1998) 359-366.
S.R.T.Kudri, Countability in L-fuzzy topology, Fuzzy Sets and Systems, 71 (1995)
241-249.
T.Kubiak, On fuzzy topologies, Ph.D. Thesis, Adam Mickiewicz, Poznan, Poland,
1985.
S.G.Li, Remarks on product of L-fuzzy topological spaces, Fuzzy Sets and Systems,
94 (1998) 121-124.
S.G.Li, Separation axioms in L-fuzzy topological spaces (I): T0 andT1, Fuzzy Sets
and Systems, 116 (2000) 377-383.
L.Y.Ming and L.M.Kang, Fuzzy Topology, Copyright © by World Scientific
Publishing Co. Pte. Ltd. 1997.
R.Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl., 56
(1976) 621-633.
S.R.Malghan and S.S.Benchalli, On open Maps, closed Maps and Local
compactness in fuzzy topological spaces, J. Math. Anal. Appl., 99(2) (1984) 338349.
A.A.Nouh, C-closed sets in L-fuzzy topological space and some of its applications,
Turk J. Math., 26 (2002) 245-261.
Pu.Ming, Pao.Ming, L.Ying, Fuzzy topology I. Neighborhood Structure of a fuzzy
point and Moore-Smith convergence, J. Math. Anal. Appl., 76 (1980) 571-599.
Pu. Ming, Pao, Ming, Liu Ying, Fuzzy topology II. Product and Quotient Spaces, J.
Math. Anal. Appl., 77 (1980) 20-37.
S.P.Sinha, Separation axioms in fuzzy topological spaces, Fuzzy Sets and Systems,
45 (1992) 261-270.
R.Srivastava , S.N.Lal, A.K.Srivastava, Fuzzy T1-topological spaces, J. Math . Anal.
Appl., 102 (1984) 442-448.
A.P.Sostak, On a fuzzy topological structure, Suppl. Rend. Circ. Mat. Palermo Ser.
II, 11 (1985) 89-103.
A.P.Sostak, On the neighborhood structure of fuzzy topological spaces, Zb, Rad., 4
(1990) 7-14.
L.S.Xu, The strong Hausdorff Separation property in L-fuzzy topological spaces,
Mohu. Xitong. Yu. Shuxue, 5 (1991) 25-29.
L.A.Zadeh, Fuzzy sets, Information and Control, 8 (1965) 338-353.
Z.Bin, Inclusive Regular Separation in L-fuzzy topological Spaces, J. of
Mathematical Research and Exposition, 25(4) (2005).
22