Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Chapter 10 & 11 Energy & Work Energy • The capacity of a physical system to perform work. • Can be heat, kinetic or mechanical energy, light, potential energy, electrical, or other forms. • Energy is transformed from one form to another. It is not created or destroyed. Work • Work = (force) x (distance) • To have work, there must be: – A force – Movement of something by that force Is work being done when you push against a wall? NO! There is no movement! Is work being done when a weightlifter lifts a weight? Yes – The weight is moving…. What is the weightlifter holds the weight in place, is work being done? NO! No movement! Work • Work = (Force) x (Distance) Units: Force = Newton (N) Distance = Meter (m) Work = Nm = joule (J) 1 Joule of work is equal to one Newton of force applied over the distance of 1 meter. Potential Energy (PE) • The stored energy an object has because of its state, composition, or position. – Ex: A compressed spring • The spring is able to bounce back due to PE – Ex: Food, Fuels • When atoms are rearranged, energy is released Potential Energy (PE) – Ex: When objects are lifted against gravity • Gravitational Potential Energy = weight x height = mgh • Depends only on the weight and the vertical displacement. – Does not depend on the path taken! Using the steps, ramp, or lifting the ball directly up all produce the same PE! Kinetic Energy (KE) • The energy associated with a moving object due to its motion – Gravitational potential energy can be transformed into kinetic energy Kinetic Energy = ½ mass x speed2 KE = ½ mv2 Since Speed is squared, a small change in speed can cause a large change in KE. KE can be positive or zero, never negative. The Work-Energy Theorem • The change in kinetic energy is equal to work done. Work = ΔKE • If there is no change in an object’s energy, then no work has been done. • Energy is required to reduce the speed on an object. – A car is able to stop due to the work done by the brakes. Comparison of Kinetic Energy and Momentum • Momentum – Vector Quantity • Directional • Able to be canceled • Kinetic Energy – Scalar Quantity • Can’t be canceled – Transform from one form to another – Depends on velocity • M = mv – Depends on velocity2 • KE = ½ mv2 Conservation of Energy • In the absence of external work input or output, the energy of a system remains unchanged. Energy cannot be created or destroyed • Energy is transformed from one form to another The water behind a dam has potential energy. When it flows through the When themovement demolitioncan ball or arrow dam, the energy of its is released, then the potential be used to power a generator, which is transformed into kinetic can transformenergy the energy into electircity energy Power • Power: the rate at which work is done Remember: Work = (Force) x (Distance) So it takes the same amount of WORK walking up stairs as it does running…. But the POWER changes because the TIME changes. Power is greater running up the stairs than walking. Power • The rate at which energy is changed from one form to another. • Unit: Work = Joule (J) Time = second (s) Power = J/s = watt (W) 1 Watt of power is equal to 1 joule of work done in 1 second. Machines • Machine: A device used to multiply a force or to change the direction of a force – Ex: Lever • Changes the direction of the force – When we push down, it pushes the object up • (Force x Distance)input = (Force x Distance)output – If the pivot point (fulcrum) is close to the load, then a small input force produces a large output force Machines – Ex: Pulley • Changes the direction of the force • Does not multiply force – Ex: Block and Tackle • System of pulleys • Multiplies force at the expense of distance Efficiency Efficiency = Work Done Energy Used • Using the same energy input, some machines have a greater output – They are more efficient! – Energy is wasted as heat • Typically a lever is more efficient than a pulley because more energy is lost as heat in a pulley system