Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
講者: 許永昌 老師 1 Contents Preface Guide line of Ch6 and Ch7 Addition and Multiplication Complex Conjugation Functions of a complex variable Example: Electric Circuit Cauchy-Riemann Conditions for differentiable function. Derivatives of Elementary Functions. Analytic functions. 2 Preface Functions of complex variables can be used: 1. If f(z)=u+iv, and f(z) is an analytic function, we can get 2u=2v=0 & uv=0 Electrostatic potential vs. E. Create a curved coordinate. 1. 2. Real numbers Complex numbers 2. 1. 1. 2. Fundamental theorem of algebra: Any polynomial of order n has n (in general) complex zeros. Real functions, infinite real series, and integrals usually can be generalized naturally to complex numbers simply by replacing a real variable x. Propagation versus Evanescence 3. 1. Helmholtz equation: (2+k2)u=-r. Integrals: 4. 1. 2. 3. 4. 5. 6. Evaluating definite integrals. Inverting power series Infinite product representations of analytic functions Obtaining solutions of differential equations for large values of some variable. Investigating the stability of potentially oscillatory systems Inverting integral transforms Many physical quantities that were originally real become complex as a simple physical theory is made more general. 5. 1. 2. Index of refraction. Impedance. 3 Guideline of Ch6 & Ch7 Basic complex algebra: +, , Polar form Functions of a complex variable The Cauchy-Riemann condition for analytic functions Cauchy integral & Cauchy integral formula. Morera’s Theorem & Liouville’s Theorem Taylor expansion and Laurent expansion Conformal mapping Poles, branch points and branch cut lines. Residue Theorem Product expansion of entire function Count the number of poles and zeros. The leading term of an asymptotic expansion *Reference: J. Bak, D.J. Newman, Complex Analysis 4 Complex algebra (請預讀P319~P321) Reference: http://en.wikipedia.org/wiki/Complex_number 幾乎整個Ch6 全包了。 A complex variable is an ordered pair of two real variables z(x ,y ) : z1+z2=(x1, y1)+(x2, y2)(x1+ x2, y1+ y2)=z2+z1. z1+(z2 +z3)=(z1+z2)+z3. Commutative Associative Multiplication: inner product z1z2=(x1, y1)(x2, y2)(x1x2-y1y2,x1y2+x2y1)= z2z1. Commutative az1=(ax1,ay1). aR [ : How about (a,0) (x1, y1)?] (z1z2)z3 = z1(z2z3) Associative Distributive: z1(z2+z3)=(x1(x2+x3)-y1(y2+y3),x1(y2+y3)+y1(x2+x3)=z1z2+z1z3 Others: Zero: 0(0,0), z+0=z. -z One: 1(1, 0). z-1. Imaginary unit: i (0, 1) and i2= -1. 5 Complex algebra (continue) y Im{z} Therefore, z x, y x, 0 0, y x 1, 0 y 0,1 Addition Multiplication x 1 y i r z | z x, 0 behave as real numbers x iy x Re{z} r cos i sin Polar form r ei where x and y are real numbers. r x 2 y 2 , cos x x y 2 2 and sin y x y 2 2 , respectively. i1 2 z1 z2 r1r2e 6 Exercise Find the roots of y(x)=x2+x+1. The polar form of 2+2i. i i1 2 z r e and z1 z2 r1r2e , why? ei=cos + isin, why? 7 Complex Conjugation (請預讀P321~P323) The complex conjugate of z is denoted by z*, where z*=x-iy if z=x+iy. Properties: ( ) (Modulus): |z| x 2 y 2 z * z (Argument): arg r ei arg(z1z2)=arg(z1)+arg(z2). arg(z*)=-arg(z) (z*)*=z. (z1 z2)*=z1*z2*. 1 z* 2 z z 8 Exercise Example 6.1.2 3i The Polar form of . 4 - 2i 9 Triangle inequality (請預讀P324) z1 - z2 z1 z2 z1 z2 Please prove it. 10 Functions of a Complex Variable (請預 讀P325) w(z)=u(x, y)+iv(x, y). part and part: 實部:Rw(z)=Re{w(z)}=u(x, y). 虛部:I w(z)=Im{w(z)}=v(x, y). Code: z_to_uv.m 5 4 y 0.4 z-plane 0.3 v 3 0.2 2 0.1 1 0 w-plane 5 x 10 0 1.21.41.61.8 u 2 2.22.4 11 Multivalued functions (請預讀P326) nth root: z=rei ei2pm mZ The source of multivalue. z1/n= r 1/n ei /n ei2pm/n , m=0 ,1 , …, n-1. ei2pm Logarithm: z=rei ei2pm mZ lnz=lnr + i( +2p m), mZ Q: How to solve this problem? A: Cut line. (Will be discussed in Ch6.6) Cut line 12 Example (請預讀P327) Electric Circuit: Based on Kirchhoff’s loop rule dI Q IR L V0 cos wt dt C L I Q R -Q C V0coswt The steady-state solution: : I=Re{I0eiwt}, If we assume that I=I1coswt+I2sinwt, Q=Re{I0/(iw) eiwt}, can we get the same answer? i w t dI/dt=Re{iw I0e }, V=Re{V0eiwt}, We get I0{R+iwL-i/(wC)}=ZI0=V0, I0=V0/Z . Impedance: Z w R iw L 1 iwC 13 Homework 6.1.1 6.1.2 6.1.3 6.1.6 6.1.7 6.1.15 6.1.17 6.1.20 14 Cauchy-Riemann Conditions (請預 讀P331~P334) Definition of : f(z) is differentiable at z0 if the limit lim f z - f z0 z - z0 z z0 Q: Can we say that if a complex function obeys this conditions, it is differentiable at z0? exists from any direction in the complex plane. df dz lim z0 z z0 f z - f z0 z - z0 It means that lim x 0 f ' z0 f z0 x - f z0 x If f(z)=u(x, y)+iv(x, y), we get lim y 0 f z0 i y - f z0 i y u v 1 u v v u i i - i . x x i y y y y u v u v Therefore, and - . Cauchy-Riemann conditions x y y x 15 Cauchy-Riemann Conditions (continue) If a complex function obeys Cauchy-Riemann conditions (fy=ifx) and it is differentiable at z. (注意粗體字的部分) Proof: f f x x, y y - f x, y y f x, y y - f x, y If f x is continuous, then C z if it is differentiable C x iC y, i.e. If f y is continuous, then where f , , f f x y x y 1 f f , , C , z x y and u x, y , v x, y , x, y , respectively. f f C -i , x y Let’s substitute these conditions into Eq. (1), we get f f df x iy C z, where C is independent of z. x dz 16 Cauchy-Riemann Conditions (continue) A counterexample of a function whose fx and fy are not continuous but obey the Cauchy-Riemann Condition: Reference: J. Bak & D. J. Newman, Complex Analysis, P33. xyz f z z 2 0 z0 0 0 z0 -0.5 1 0.5 0 1 0.5 -0.5 Non-differentiable at z=0: f z - f 0 0.5 0.5 -0.5 1 1 0.5 0 -0.5 -1 0.5 0 -1 0 -0.5 -0.5 -1 -1 which depends on the direction. 2 2 z 1 z if along y x fy(0)=fx(0)=0 which obeys the Cauchy-Riemann Conditions. f x x i x x0 except 0. xy yz z xy z - 2 x 3 yz 2 2 z 4 y x 2 i 1 2 - 2 1 i 1 2 2 0 f x 0 17 Cauchy-Riemann Conditions (continue) f f z, z z * Where f z z* x z f y x y z z* f z * z* (此條待考證) z z z* x z z* / 2 z* f 1 f x - if y f x , y x 2 f y if x y i z* - z / 2 f x f y f 1 * * f x if y 0. * z z z z x y z z y x 2 Therefore, f ' f z and z* f 0. * z z 這就是為何我們在看複變時,看到的 f 都是z的函數,幾乎沒 看過z*的。 18 Cauchy-Riemann Conditions (final) Differentiable at z: f ’(z) does exist CauchyRiemann Conditions fx(z)=ify(z). fx and fy are continuous at z. 19 Derivatives of elementary functions (請預讀P334) We define the elementary functions by their Taylor expansion with xz. zn e , n 0 n ! z sin z -1 n 0 n z 2 n 1 , 2n 1! ln 1 z -1 n -1 n 1 zn , n cos z -1 n n 0 z 2n , 2n ! z 1 In the convergent region, z z - z n dz n lim nz n -1 , dz z 0 z de z d z n z n -1 ez , dz n 0 dz n ! n 1 n - 1 ! n 2n d sin z d z 2 n 1 n n 2n 1 z -1 cos z , -1 dz 2 n 1 ! 2 n 1 ! n 0 dz n 0 d ln 1 z dz n d 1 n -1 z n -1 n -1 -1 1 z , n n 1 1 z n 1 dz 20 Analytic Functions (請預讀P335~P336) Analytic Function: f(z) is analytic at the point z0 if (1) f(z) is and (2) . 所以光一個點differentiable還不能說他在該點就 analytic。 Entire function: f(z) is an entire function if it is analytic 1 2 * z - 1 z , 2 . : Counterexample: z* and |z|2 Differentiable at z=? fx, f y exist? Analytic? Entire function? 21 Homework 6.2.1 6.2.3 6.2.5 22 Nouns : ) of z: ) of z: : : i (0, 1) and i2= -1. P320~P321 z*=x-iy. |z|=(x2+y2)½ . arg(z)= if z=rei. |z1|-|z2||z1+z2||z1|+|z2|. P326 of lnz: P365 lnr+i, -p p. : : ( ( : To Math. Phys. at z0: : : P169 in M. T. Vaughn, Intro. P21 of this slide P21 of this slide 23