* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Download EE 231 _lect_07
Operational amplifier wikipedia , lookup
Schmitt trigger wikipedia , lookup
Radio transmitter design wikipedia , lookup
Electronic engineering wikipedia , lookup
Switched-mode power supply wikipedia , lookup
Valve RF amplifier wikipedia , lookup
Power electronics wikipedia , lookup
RLC circuit wikipedia , lookup
Power MOSFET wikipedia , lookup
Rectiverter wikipedia , lookup
Surge protector wikipedia , lookup
Current mirror wikipedia , lookup
Resistive opto-isolator wikipedia , lookup
Integrated circuit wikipedia , lookup
Current source wikipedia , lookup
Network analysis (electrical circuits) wikipedia , lookup
Electric Circuits I “Dr. Ahmed El-Shenawy” Electrical Circuits I Lecture 7 <Dr Ahmed El-Shenawy> Electric Circuits I “Dr. Ahmed El-Shenawy” Superposition Theory Whenever a linear system is excited, or driven, by more than one independent source of energy, the total response is the sum of the individual responses. An individual response is the result of an independent source acting alone. Because we are dealing with circuits made up of interconnected linearcircuit elements, we can apply the principle of superposition directly to the analysis of such circuits when they are driven by more than one independent energy source Electric Circuits I “Dr. Ahmed El-Shenawy” The superposition principle states that the voltage across (or current through) an element in a linear circuits is the algebraic sum of the voltage across (or current through) that element due to each independent source acting alone. Step to apply: 1- Turn off all independent sources except one source. Find the required (voltage or current) due to that active source. Current Source open circuit(0 A) Voltage Source short circuit (0 V) 2- Repeat step 1 for each other independent sources. 3- Find the total contribution by adding algebraically all the contribution due to the independent source. Electric Circuits I “Dr. Ahmed El-Shenawy” Consider only the voltage source E1 Electric Circuits I “Dr. Ahmed El-Shenawy” Consider only the current source I i1 i11 i12 i 2 i 21 i 22 i3 i31 i32 i 4 i 41 i 42 Electric Circuits I “Dr. Ahmed El-Shenawy” Example: Use the principle of superposition to find vo in the circuit shown. Electric Circuits I “Dr. Ahmed El-Shenawy” Example: Use the principle of superposition to find the current io in the circuit shown.