Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
Summer Review for Students Entering Calculus Honors Name: ________________________ Class: ___________________ Date: __________ Honors Calculus Summer Packet Please show all work in the spaces provided. The answers are provided at the end of the packet. Algebraic Manipulation 6. Expand (3x 4 − 7y 3 ) 2 3x − y 2 1. Evaluate if x = 5 and y = −3 3(x − y) . . Ê 2y ˆ Ê y ˆ Ê y + 3 ˆ˜ ˜˜ 2. Simplify: ÁÁÁ x ˜˜˜ ÁÁÁ 2x ˜˜˜ ÁÁÁ x Ë ¯Ë ¯Ë ¯ 7. Multiply ÊÁ 2 ˆÊ ˆ Á x + x − 3 ˜˜ ÁÁ 3x 2 − x + 3 ˜˜ Ë ¯Ë ¯ . 3. 5x −3 y 2 x 5 y −1 z 0 ⋅ (2xy 3 ) −2 xy . 8. Expand using Pascal’s Triangle (3x − 2) . 4. Simplify 18xy 3 7a 2 b 2 ÷ 12x 2 y 35a 2 b . 5. Subtract (−3g 2 + 2g − 9) from (g 2 − 4g − 6) . . 1 5 ID: A Name: ________________________ ID: A 10. Factor completely 9. Factor completely a) a 2 − 6a − 40 a) −5x 4 y 2 + 20xy 3 + 15xy 4 b) 6y 2 + 13y − 5 b) 3x 3 + x 2 − 15x − 5 c) 12m3 n − 75mn c) 20x 2 − 125y 2 d) 49x 2 − 100y 2 d) 4x 2 − 12xy + 9y 2 e) 6xp + 42x − 5yp − 35y e) x 2 − 6x + 9 − 4y 2 . 2 Name: ________________________ ID: A 14. Divide using synthetic division 11. Factor the expression completely. 125a 3 − 8b 6 (3x 5 + 5x 4 + x + 5) ÷ (x + 2) . 12. Factor the expression completely. Ê ˆ4 Ê ˆ5 4 ÁÁ x 2 + 5 ˜˜ (3x)(x − 1) 4 + ÁÁ x 2 + 5 ˜˜ (9)(x − 1) 3 Ë ¯ Ë ¯ . Ê ˆ Ê ˆ 15. Divide: ÁÁ x 5 + x 4 − 8x 3 + x + 2 ˜˜ ÷ ÁÁ x 2 + x − 7 ˜˜ Ë ¯ Ë ¯ . 13. Factor the expression completely. 1 1 − ÁÊÁ x 2 + 4 ˜ˆ˜ 2 + 2 ÁÊÁ x 2 + 4 ˜ˆ˜ 2 Ë ¯ Ë ¯ . 3 Name: ________________________ 16. Simplify ID: A 20. Simplify the compound fractional expression. a a2 − x2 ⋅ 2 3x − 3a a 5 4 − x−1 x+1 1 x + x−1 x+1 . . 17. Simplify. 21. Simplify. (4w 2 − 3wy)(w + y) x−1 5 − 6x − 18 4x 2 − 14x + 6 (3y − 4w)(5w 2 − y 2 ) . 18. Simplify x 2 − 16 x 3 − 64 ÷ x 3 + 64 x 2 − 4x + 16 . 22. Perform the subtraction and simplify. 1 3 x − − x − x − 20 x + 4 x − 5 2 . . 19. Simplify. 1 x x 1− y 1+ . 4 Name: ________________________ ID: A 24. Evaluate without a calculator: 23. Simplify a) −3 3 −3 + 2 3 162 + 3 3 ÊÁ 1 ˆ˜ −4 a) ÁÁÁÁ − ˜˜˜˜ Ë 2¯ 81 Ê ˆ b) 4 15 ÁÁÁ 4 − 3 5 ˜˜˜ Ë ¯ b) − 32 − c) 27 Ê c) ÁÁÁ Ë ˆÊ 5x ˜˜˜ ÁÁÁ ¯Ë 3+ 3− 3 5 5 3 ˆ 5x ˜˜˜ ¯ d) .0049 3 2 3 2 d) 2m2 ⋅ 4m ⋅ 4m−2 . ÊÁ 3 ˆ˜ ÁÁ 2 ˜˜ Á ˜ e) ÁÁÁ 3p ˜˜˜ ÁÁ ˜˜ Á ˜ Ë ¯ −2 25. Simplify a) ÊÁ 1 ÁÁ ÁÁ 2 −2 ÁÁ x y f) ÁÁÁ −7 ÁÁ ÁÁ ÁÁ yx 4 Ë g) x y 243a 20 b 25 ˆ˜ 4 ˜˜ ˜˜ ˜˜ ˜˜ ˜˜ ˜˜ ˜˜ ˜ ¯ ÊÁ 1 ˆ˜ ÁÁ 2 ˜˜ ÁÁ ˜ ÁÁ x y 2 ˜˜˜ ÁÁ ˜˜ Á ˜ Ë ¯ 2 5 b) 2 −5 4 1 2 . 5 3 18a 2 b ⋅ 3 3 12ab 5 Name: ________________________ ID: A 28. Simplify and rewrite using only positive exponents. 26. Rationalize the denominator and simplify 4x − 16 2a a) 3 b 4 b) (x − 4) 3 5 4 4 4 27 . 3 c) d) 29. Simplify the expression ÊÁ 2x − 1 ˆ˜ −3 ÈÍÍÍ 2(2x + 1) − 2(2x − 1) ˘˙˙˙ ˜˜ ÍÍ ˙˙ − 4 ÁÁÁÁ ˜˜ ÍÍ ˙˙ 2 2x + 1 Í (2x + 1) ˙˚ Ë ¯ Î 5− 6 x y 2 5 . . 27. Rationalize the numerator and simplify a) 3+ 4 b) x+3 −5 3x − 66 ÊÁ 16 40 25 Á 30. ÁÁÁ −2 − −1 −1 + −2 Áx x y y Ë 7 . . 6 ˆ˜ ˜˜ ˜˜ ˜ ¯ −1 2 Name: ________________________ ID: A 32. Use the Laws of Logarithms to expand the expression. 31. Simplify each expression and write the result in the form a + bi. ÊÁ 4 ÁÁ x x − 1 ln ÁÁÁ ÁÁ 2x + 3 Ë a) 6 − (2 + 9i) + (−1 + 4i) ˆ˜ ˜˜ ˜˜ ˜˜ ˜ ¯ b) (7 − i)(3 + 3i) . 33. Use the Laws of Logarithms to combine the expression. c) (5 − 7i) 5logx − 2 1 ÊÁ 2 ˆ log Á x + 1 ˜˜ + 4log(x − 1) ¯ 3 Ë . d) 3−i 2 + 3i 34. Evaluate the expression. 10 log π . 35. Evaluate the expression. log 4 64 600 e) −5 − 3i −4i . 36. Evaluate the expression. 1 ÁÊÁ 1 ˜ˆ˜ Á ˜˜ ln ÁÁÁ ˜ ÁÁ 4 7 ˜˜˜ Ë e ¯ f) i 1795 . . 37. Evaluate the expression. log (0.000001) 7 Name: ________________________ ID: A Equations and Inequalities 38. Solve 3(x + 2) = 1 (12x + 4) − 5x 4 41. Solve the equation. |3x − 5| = 7 . . 42. Solve the equation for the indicated variable: 39. Solve the equation. y+1 2 1 y + (y − 4) = 5 2 4 a) ax + b = 11 , solve for x. cx + d b) x x = c − , solve for x. a b c) x x = c − , solve for b. a b . 40. Solve. 4 5 23 + = x + 3 6 18 . 8 Name: ________________________ ID: A 44. Solve by completing the square. 43. Solve each equation: x 2 + 8x + 22 = 0 a) n(9 − 3n)(2n + 5) = 0 b) x 2 + 8x − 20 = 0 . 45. Solve the equation by completing the square. 2x 2 − 12x − 7 = 0 c) 20x(x − 1) = 42 − 9x d) −8x 2 + 46x − 30 = 0 . 46. Solve by using the Quadratic Formula. x 2 − 6x = −10 e) 3x 2 − 6x = 10 . 9 Name: ________________________ ID: A 47. Find all solutions of the equation and express them in the form a + bi. 50. Solve 1 3 2(6x − 3) − 4 = 0 25x 2 + 16 = 0 . 51. Solve 1 1 − =6 x2 x . 48. Find all real solutions of the equation. x 6 − 9x 3 − 10 = 0 . 52. Solve x+2 +4 = 7 a) . 49. Solve 4 3 2 3 b) 2 = 4x − 37x + 9 = 0 . . 10 3b − 2 − 10 − b Name: ________________________ ID: A 57. Solve for x. 53. Solve for x. 4 3x = 32 x − 1 27 =2 1 + e −x . . 54. Solve for x. 4 3x + 2 = 3 5x − 4 58. Solve the equation for x e 4 x + 2e 2 x − 8 = 0 . . 55. Use the definition of the logarithmic function to find x. a) log x 4 = 1 2 b) log x 6 = 1 3 59. Solve for x. 2 − ln(7 − x) = 0 . 60. Solve for x ÁÊ 1 ˜ˆ ln(1) − 4x 2 = lnÁÁÁÁ ˜˜˜˜ Ëe¯ . 56. Solve for x: log 2 (x 2 − 6x) = 4 . . 11 Name: ________________________ ID: A 63. Solve the nonlinear inequality. Express the solution using interval notation and graph the solution set. 61. Solve the inequality. Graph the solution on a number line. |3x + 9| ≥ 6 x 2 + 3x > 10 . . 64. Solve the nonlinear inequality. Express the solution using interval notation and graph the solution set. 62. Solve and graph your answer on a real number line: |x − 3| − 2 < 6 x 1 x+1 − ≤ 3 x−2 4 . 12 Name: ________________________ ID: A Lines and Coordinate Geometry 65. Graph the line of each equation: 66. Find the slope of: a) x + 3y = 6 a) a line passing through (-4, 4) and (2, -5) b) a line parallel to y = 2x + 7 c) the line whose equation is 2x − 3y = 12 b) y = −2x + 4 d) the line whose equation is y = −5 e) a line perpendicular to 6x + 5y = 9 . 67. Determine whether the lines are parallel, perpendicular, or neither. Explain your reasoning. c) x = 3 2x + 3y = 12 3x + 2y = 24 13 Name: ________________________ ID: A 70. Solve the system of equations by graphing. 68. Find an equation, in point-slope form, of the line that satisfies the given conditions. 2x + 3y = −27 11x − 3y = −12 Through (–1, –11); perpendicular to the line passing through (3, 1) and (7, –1). Then, rewrite the equation in standard form. . 69. Solve the system of equations by substitution 8x − 2y = 10 3x − y = 9 . 71. Solve the system of equations by elimination 2x − 3y = 6 9y − 6x = 9 14 Name: ________________________ ID: A 74. Find the solution set for the following system of inequalities. 72. Solve they system of equations by any method. 0.6x + 1.6y = 2.8 x + 2y ≤ −4 −0.05x + 0.08y = −0.02 3x − 2y > −4 . 73. Solve the system of equations by any method. 2 5 1 x+ y = 3 6 4 75. A pair of points is graphed. 1 −1 1 x− y= 10 10 5 (a) Find the distance between them. . (b) Find the coordinates of the midpoint. 15 Name: ________________________ ID: A 78. Find the center and radius of the circle. 76. Prove whether or not the points A(4, 3), B(2, 6), C(7, 5), and D(5, 8) form a square. x 2 + y 2 − 6x + 4y − 3 = 0 (a) The center is (b) The radius is (c) Graph and label important points (d) Domain: Range: . . 77. Find all points of intersection of the graphs of x 2 + 3x − y = 3 and x + y = 2 . 79. If the point ÊÁË −1,1 ˆ˜¯ lies on the graph of the equation kx 2 − xy + y 2 = 5, find the value of k. . . 16 Name: ________________________ ID: A Functions 81. The graph of a function g is given. 80. If f(x) = −2x 2 + x + 3 , evaluate each of the following: a) f(−2) b) f(3m) (a) Find g(–5). __________________ c) f(p 5 ) (b) Find g(–3). __________________ (c) Find g(–1). __________________ (d) Find g(1). __________________ (e) Find g(3). __________________ (f) Find the domain of g. __________________ d) f(x + h) (g) Find the range of g. __________________ (h) Estimate the values of x for which is g(x) = −1 . 17 Name: ________________________ ID: A 82. Consider the following function: f(x) = 3x 2 − 12x + 7 83. Consider the following function: f(x) = −2x 2 − 12x − 14 a) Write the quadratic function in vertex form. a) Write the quadratic function in vertex form. b) State the vertex and whether the graph has a minimum or maximum. b) State the vertex and whether the graph has a minimum or maximum. c) State the equation of the axis of symmetry. c) State the equation of the axis of symmetry. d) Find the x intercepts and approximate the values. d) Find the x intercepts and approximate the values. e) Find the y intercept e) Find the y intercept f) Graph using all the points. f) Graph using all the points. 18 Name: ________________________ ID: A 88. Explain how the graph of g is obtained from the graph of f. 84. Find the domain of the function. h(x) = 8x − 7 1 g (x) = − f (x − 5) 2 . . 89. Sketch the graph of the function using transformations. 85. Find the domain of the function. f(x) = x+9 x2 − 4 f(x) = − x + 2 + 3 . 86. Find the domain of the function. g(x) = x 2 − 4x − 32 State the domain and range. . . 90. Determine whether f(x) = 87. Find the domain of the function. neither g(x) = ln (3 − 2x) − 7x + 2 . . 19 x is even, odd, or x +4 2 Name: ________________________ ID: A 92. Sketch the graph of the piecewise defined function. 91. Evaluate the piecewise defined function at the indicated values. ÔÏÔ 2 ÔÔ x + 4x ÔÔ Ô f(x) = ÌÔ x ÔÔÔ ÔÔÔ −9 ÔÓ if x ≤ −3 if −3 < x ≤ 1 if x>1 ÏÔ ÔÔ 1 if x < −1 ÔÔÔ Ô f(x) = ÔÌ x 2 if − 1 ≤ x ≤ 1 ÔÔÔ ÔÔÔ −x + 3 if x > 1 ÔÓ (a) Evaluate f(−4) . ÊÁ 7 ˆ˜ (b) Evaluate f ÁÁÁÁ − ˜˜˜ . Ë 2 ˜¯ (c) Evaluate f(−3) . . 93. Write the equation of the piecewise defined function shown below: (d) Evaluate f(0) . (e) Evaluate f(35) . . . 20 Name: ________________________ ID: A 96. Determine the average rate of change of the function between the indicated values of the variable. 94. The graph of a function is sketched below. f(x) = 10 − 6x + x 2 a) x = −1, x=3 a) Determine the intervals on which the function is decreasing and which it is increasing. a) x = a, x = a + h b) State the relative minimum and maximum values. . 95. The graph of a function is given. Determine the average rate of change of the function between the indicated values of the variable. . 97. Explain what the difference quotient represents in terms of the graph of the function. . . 21 Name: ________________________ ID: A 98. Evaluate the difference quotient for each function. a) f(x) = 99. Given f(x) = 5 4 − 9x and g(x) = x 5 − 6 , evaluate (f û g)(x) and (g û f)(x) and simplify as much as possible. x+3 b) g(x) = x 3 − 4x . 100. Find f û g û h . f(x) = c) g (x) = 3 x+5 . . 22 5 , g(x) = x 3 , h(x) = x 2 + 4 x Name: ________________________ ID: A 104. Factor the function completely and then find all zeros of f(x) = 2x 3 − 3x 2 − 8x + 3 . 101. Use the given graphs of f and g to evaluate the expression. . 105. Find a polynomial with integer coefficients that satisfies the given conditions. (g û f)(3) = ______________ Q has degree 4, and zeros 3, 0, and 7i . 102. Find the inverse function of f. Ê ˆ5 f(x) = ÁÁ 8 − x 3 ˜˜ Ë ¯ . 106. Find all vertical and horizontal asymptotes of 6x 3 − 24x f(x) = 3 2x − 6x 2 − 8x . 103. Find the inverse function of f. f(x) = 5x − 3 2x + 7 . 23 Name: ________________________ ID: A 109. Sketch the graph of the function using transformations. 107. Sketch the graph of the function using transformations. f(x) = −ln(x + 4 ) − 1 f(x) = e −x − 2 Domain: Domain: Range: Range: Equation of Asymptote: Equation of Asymptote: Calculate the x and y intercepts Calculate the x and y intercepts . . 108. Let f(x) = 3 x + 2 and g(x) = x 3 − 2 . Which of the following are true? 110. Which of the following are true? a) ln ÊÁË x + y ˆ˜¯ = ln(x) + ln(y) a) g(x) = f − 1 (x) for all real values of x. b) ÊÁË f û g ˆ˜¯ (x) = 1 for all real values of x. Ê yˆ b) ln ÁÁÁ x ˜˜˜ = y ln(x) Ë ¯ c) f(x) is one to one. y c) ln (x ) = y ln(x) 24 d) lnx = log y x lny e) lnx = ln(x − y) lny Name: ________________________ ID: A Trigonometry 116. Find an angle between 0 and 2π that is coterminal with the given angle. 111. Which of the following expressions are equivalent? a) cos 2 x b) cos x 2 c) (cos x) 2 19π 4 . 112. Which of the following expressions are equivalent? a) (sinx) d) −1 1 sinx b) arcsin x c) sinx −1 e)csc x f)sin −1 x . 117. Find the reference angle for the given angle. a) 120° . 113. Find the terminal point P(x,y) on the unit circle 14π determined by the given value of t = . 3 b) 225° c) 1110° . 114. Convert 150° to radians. d) 35π 3 d) 28π 5 . 115. Convert − 3π radians to degrees. 4 . 25 Name: ________________________ ID: A 119. Find the values of the trigonometric functions of θ from the information given. 118. Find the exact value for each trigonometric function. (a) sec tan θ = 6, sin θ > 0 23π 6 (a) sinθ (b) csc 7π 6 (c) cot ÊÁ π ÁÁ − ÁÁ 3 Ë (b) cosθ ˆ˜ ˜˜ ˜˜ ¯ (c) cscθ (d) secθ ÊÁ 9π (d) tanÁÁÁÁ − Ë 2 ˆ˜ ˜˜ ˜˜ ¯ (e) cotθ . (e) sec(−4π ) 120. Simplify completely the trigonometric expression. cos x sec x + tanx . . 26 Name: ________________________ ID: A 123. Find all solutions of the equation. 121. Evaluate in radians ÊÁ ˆ ÁÁ − 3 ˜˜˜ Á ˜˜ a) arccos ÁÁ ÁÁ 2 ˜˜˜ Ë ¯ 1 − sinx = 2cos 2 x b) arctan (−1) ÁÊ 1 ˜ˆ c) sin −1 ÁÁÁÁ − ˜˜˜˜ Ë 2¯ ÊÁ 1 ˆ˜ d) sec −1 ÁÁÁÁ − ˜˜˜˜ Ë 2¯ . 124. Find all solutions of the equation. e) arcsin (−1) tan2 (5x) − 1 = 0 . 122. Find all solutions of the equation. 4cos 2 x − 4cos x + 1 = 0 . 125. Solve the inequality 2sin 2 x ≥ sinx over . . 27 0 ≤ x < 2π Name: ________________________ ID: A Problem Solving You must use an ALGEBRAIC process for all of the word problems. Correct answers obtained by guess-and-check will not obtain full credit. 126. Find four consecutive odd integers whose sum is 464. 128. An orange has 15 calories more than a grapefruit. Twenty oranges and ten grapefruits have 1800 calories together. Jim ate three oranges and half a grapefruit. How many calories did Jim eat? . . 129. A sports club publishes a monthly newsletter. Expenses are $0.90 for printing and mailing a copy, plus $600 total for research and writing. Write a function that represents the total monthly cost of publishing the newsletter and use it to determine the cost of sending 1000 copies. 127. The product of 3 and a number, decreased by 8, is the same as twice the number, increased by 15. Find the number. . . 28 Name: ________________________ ID: A 133. Find the area and perimeter of a right triangle with a leg of length 8 and hypotenuse 12. 130. A company manufactures and sells small weather radios. If the cost of producting the radio can be expressed as C(x) = 10,000 + 30x and the revenue produced from the sales can be expressed as R(x) = 50x , how many radios must be produced and sold for the company to make a profit? (If you don’t know the meaning of a term, look it up!) . 134. The area of a triangle is 72 in2 and the base is 8 in. Find the height. . 131. Five times the supplement of an angle is 630° more than its complement. Find the angle, its supplement, and its complement. . 135. In the figure below, find a polynomial expression that represents the area of the shaded region. . 132. Find the value of x. Then, find the perimeter of the triangle. . 29 Name: ________________________ ID: A 138. A wire 230 in. long is cut into two pieces. One piece is formed into a square and the other into a circle. If the two figures have the same area, what are the lengths of the two pieces of wire (to the nearest tenth of an inch)? 136. Phyllis invested $13,000, a portion earning a 1 simple interest rate of 4 % per year and the rest 2 earning a rate of 4% per year. After one year the total interest earned on these investments was $555. How much money did she invest at each rate? . 137. Solve the right triangle. __________ in. (a) Find b. Please give the answer to two decimal places. (b) Find r. Please give the answer to two decimal places. (c) Find m∠A. . 30 Name: ________________________ ID: A 139. A cylindrical can has a volume of 90π cm3 and is 10 cm tall. 141. The volume of a cone is 80 in 3 . Find a function that models the height h of the cone in terms of its radius r. a) What is its diameter? . 142. A rancher with 650 ft of fencing wants to enclose a rectangular area and then divide it into four pens with fencing parallel to one side of the rectangle (see the figure). b) If the can has a bottom, but no top, what is its sufrace area? (a) Find a function that models the total area of the four pens. . 140. A poster is 12 inches longer than it is wide. Find a function that models its area A in terms of its width w. (b) Find the largest possible total area of the four pens. . 31 ID: A Honors Calculus Summer Packet Answer Section NUMERIC RESPONSE 1. 1 4 2. 2x 3. 4. 4y + 3 5 11 4x y 4 15y 2 2bx 5. 4g 2 − 6g + 3 6. 9x 8 − 42x 4 y 3 + 49y 6 7. 3x 4 + 2x 3 − 7x 2 + 6x − 9 8. 243x 5 − 810x 4 + 1080x 3 − 720x 2 + 240x − 32 9. a) (a − 10) (a + 4) b) ÊÁË 3y − 1 ˆ˜¯ ÊÁË 2y + 5 ˆ˜¯ c) 3mn (2m − 5) (2m + 5) d) ÊÁË 7x − 10y ˆ˜¯ ÊÁË 7x + 10y ˆ˜¯ e) ÊÁË 6x − 5y ˆ˜¯ ÊÁË p + 7 ˆ˜¯ Ê ˆ Ê ˆ 10. a) 5x ⋅ y 2 ⋅ ÁÁ −x 3 + 4y + 3y 2 ˜˜ b) (3x + 1) ⋅ ÁÁ x 2 − 5 ˜˜ c) 5(2x − 5y) ⋅ (2x + 5y) Ë ¯ Ë ¯ 2 d) ÊÁË 2x − 3y ˆ˜¯ e) ÊÁË x − 3 − 2y ˆ˜¯ ÊÁË x − 3 + 2y ˆ˜¯ Ê ˆ Ê ˆ 11. ÁÁ 5a − 2b 2 ˜˜ ⋅ ÁÁ 25a 2 + 10a ⋅ b 2 + 4b 4 ˜˜ Ë ¯ Ë ¯ 4 Ê ˆ Ê ˆ 12. 3 ÁÁ x 2 + 5 ˜˜ ⋅ (x − 1) 3 ⋅ ÁÁ 7x 2 − 4x + 15 ˜˜ Ë ¯ Ë ¯ 13. x2 + 6 x2 + 4 14. 3x 4 − x 3 + 2x 2 − 4x + 9 − 15. x 3 − x + 1 + 13 x+2 −7x + 9 x2 + x − 7 a +x −3a −w 17. Ê 5ÁË w − y ˆ˜¯ 16. 18. x 2 + 4x + 16 2 (x + 4 ) 19. y (x + 1 ) x ÁÊË y − x ˜ˆ¯ 1 ID: A x+9 x + 2x − 1 7x − 2 21. 2(2x − 1)(x − 3) 20. 22. 2 −3x − 7 (x − 5) ⋅ (x + 4) 23. a) 12 3 d) 32m 3 3 + 6 6 b) 16 15 − 60 3 3 2 e) 1 9p 3 f) c) 3 − 5x x9 y 12 1 g) x 24. a) 16 b) - 8 25. a) 3a 4 b 5 26. a) 27. a) 28. 29. 2a 3 c) 1 243 d) 11 8 y3 343 = 0.000343 1,000,000 b) 36ab 2 b2 b − 1 3− 4 b) 7 15 12 b) x ⋅ 5 y3 d) y c) − 15 − 3 2 1 Ê 3 ÁÁÁ Ë ˆ x + 3 + 5 ˜˜˜ ¯ 2 x−4 −16(2x + 1) 4 (2x − 1) 1 30. 4x − 5y 3 31. a) 3 − 5i b) 24 + 18i c) −24 − 70i d) 3 11 − ⋅i 13 13 1 ⋅ ln(x − 1) − ln(2x + 3) 2 ÊÁ 5 ˆ ÁÁ x ⋅ (x − 1) 4 ˜˜˜ Á ˜˜ 33. log ÁÁ ˜ ÁÁ 3 x 2 + 1 ˜˜ Ë ¯ 34. π 35. 1800 −4 36. 7 37. −6 32. 4ln(x) + COMPLETION 38. x = −1 45 39. y = 13 2 e) 3 5 − i 4 4 f) −i ID: A 40. x = 6 2 3 11d − b 42. a) x = a − 11c 41. x = 4,x = − 43. a) n = 0, 3, or b) x = −5 2 cab a +b b) x = −10, 2 c) b = 6 7 c) x = − ,x = 5 4 44. x = −4 ± i 6 5 2 2 46. x = 3 ± i 4 4 47. x = − ⋅ i, ⋅ i 5 5 45. x = 3 ± 48. x = 3 10 ,x = −1 49. x = 1 or 27 8 50. x = 11 6 −1 1 or 2 3 a) x = 7 b) b = 6 (reject b = 1) x = −5 2ln4 + 4ln3 x= 5ln3 − 3ln4 16; 216 x = 8 or − 2 ÊÁ 2 ˆ˜ ln ÁÁÁÁ ˜˜˜˜ Ë 25 ¯ 51. x = 52. 53. 54. 55. 56. 57. 58. x = −ax ax or x − ac ac − x ln2 2 59. x = 7 − e 2 1 60. x = ± 2 61. x ≤ −5 or x ≥ −1 62. −5 < x < 11 3 d) x = 5 or 3 4 e) x = 3± 39 3 ID: A 63. (−∞, −5) ∪ (2, ∞) 64. (−∞,−1] ∪ (2,6] SHORT ANSWER 65. a) 66. a) − b) 3 2 b) 2 c) 2 3 d) 0 e) c) 5 6 −2 −3 , m2 = 3 2 Since these slopes are neither equal nor opposite reciprocals, the lines are neither parallel nor perpendicular. 68. y + 11 = 2(x + 1) 67. m1 = 2x − y = 9 69. (-4, -21) 70. ÊÁË −3, − 7ˆ˜¯ 71. 72. 73. No solution. (2, 1) ÁÊ −4, − 7˜ˆ Ë ¯ 4 ID: A 74. 75. 2 10 ; (1, –2) 76. You need to find the slopes and lengths of all the sides. If the consecutive sides are all congruent and perpendicular, then the shape is a square. 77. ÊÁË −5,7 ˆ˜¯ and ÊÁË 1,1 ˆ˜¯ 78. (3, –2); 4 79. k = 3 ESSAY 80. a) −7 b) −18m2 + 3m + 3 c) −2p 10 + p 5 + 3 81. 3; 2; –2; 1; 0; [–5, 3]; [–2, 3] d) −2x 2 − 4xh − 2h 2 + x + h + 3 5 ID: A 82. a) f(x) = 3(x − 2) 2 − 5 b) Vertex (2, -5) minimum c) x=2 d) x intercepts x = 2 ± 5 3 ≈ 2 ± 1.3 ≈ 0.7 and 3.3 e) f(0) = 7 f) 83. a) f(x) = −2(x + 3) 2 + 4 b) Vertex (-3, 4) maximum c) x = -3 d) x intercepts x = −3 ± 2 ≈ −3 ± 1.4 ≈ −1.6 and − 4.4 e) f(0) = −14 f) ÈÍ Í 7 ˆ˜ 84. ÍÍÍÍ , ∞ ˜˜˜˜ ÍÎ 8 ¯ 6 ID: A 85. (−∞, −2) ∪ (−2,2) ∪ (2, ∞) 86. (−∞, −4] ∪ [8, ∞) ÍÈÍ −2 3 ˆ˜ , ˜˜˜ 87. ÍÍÍÍ ÍÎ 7 2 ˜¯ 88. reflect over the x axis ; vertical shrink by a factor of 2 ; shift 5 units right. 89. D [−2, ∞) R (−∞,3] 90. odd 7 91. 0; − ; –3; 0; –9 4 92. 93. ÔÏÔ −x − 3 if x < −2 ÔÔ ÔÔ ÔÔÔ 2 ÌÔ 4 − x if − 2 ≤ x ≤ 2 ÔÔÔ ÔÔÔ 3 if x > 2 ÔÓ È ˘ 94. a) Dec : ÍÍÎ −3,−1 ˙˙˚ Inc: (−∞, −3] ∪ [−1, ∞) b) rel min value ≈ 0.8 rel max value = 2 5 95. 6 96. −4, 2a + h − 6 97. The DQ represents the slope between any two points on the function whose x values are h units apart. 7 ID: A 1 x+h+3 + 98. x+3 ; 3x 2 + 3xh + h 2 − 4 ; −3 (x + h + 5)(x + 5) 5 58 − 9x 5 ; −9x − 2 5 5 100. f ÊÁÁ g ÊÁË h(x) ˆ˜¯ ˆ˜˜ = = Ë ¯ ÊÁ 2 ˆ˜ 3 x 6 + 12x 4 + 48x 2 + 64 Áx + 4˜ Ë ¯ 101. 3 99. 8− 5 x 7x + 3 103. f −1 (x) = −2x + 5 104. (2x − 1) (x + 3 ) (x − 1 ) 102. f −1 (x) = x= 3 1 , x = −3, x = 1 2 105. Q(x) = x 4 − 3x 3 + 49x 2 − 147x 106. y = 3, x = 4, x = −1 107. Domain (−4,∞) Range (−∞,∞) Asy: x = −4 Intercepts: x = 1 − 4 , y = −ln(4) − 1 e 108. a and c only 8 ID: A 109. Domain (−∞,∞) Range (−2,∞) Asy: y = −2 Intercepts: x = −ln2 , y = −1 110. b and d only CASE 111. a and c 112. a, d, e and b,f ÊÁ ˆ ÁÁ 1 3 ˜˜˜˜ Á 113. ÁÁ − , ˜ ÁÁ 2 2 ˜˜˜ Ë ¯ 5 114. π 6 115. –135 3π 116. 4 π 2π 117. 60; 45; 30, ; 3 5 118. 2 3 3 ; –2; − ; undefined; -1 3 3 37 1 6 1 ; ; ; 37 ; 6 6 37 37 120. 1 − sin(x) 5π −π 3π 7π −π 7π 11π 121. a) b) (NOT or ) c) (NOT or ) 6 4 4 4 6 6 6 π 5π 122. x = + 2k ⋅ π , + 2k ⋅ π where k is an integer. 3 3 π 2π 123. x = + k, where k ∈ Z where k is an integer. 2 3 119. 124. x = π 20 + π 2 k, where k is an integer. 9 d) undefined e) −π 2 ID: A ÈÍ ˘ Í π 5π ˙˙˙ ˙˙ ∪ [π ,2π ) 125. ÍÍÍÍ , ÍÎ 6 6 ˙˙˚ PROBLEM 126. 127. 128. 129. 130. 131. 132. 113, 115, 117, 119 n = 23 220 calories The cost is $1500 for 1000 copies. They must sell at least 500 radios. angle=45°, comp=45°, supp = 135° x = 12; P = 102 A = 16 5 P = 20 + 4 5 h = 18in 6x + 22 $7,000; $6,000 30.03; 41.75; 44 108.1, 121.9 d = 6, SA= 69π 140. A(w) = w 2 + 12w 240 141. h(r) = π ⋅ r2 5 142. A(w) = ⋅ w ⋅ (130 − w) ; 10,562.5 2 133. 134. 135. 136. 137. 138. 139. 10