Download Honors Calculus Summer Work

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Summer Review
for Students
Entering
Calculus Honors
Name: ________________________ Class: ___________________ Date: __________
Honors Calculus Summer Packet
Please show all work in the spaces provided.
The answers are provided at the end of the packet.
Algebraic Manipulation
6. Expand (3x 4 − 7y 3 ) 2
3x − y 2
1. Evaluate
if x = 5 and y = −3
3(x − y)
.
.
Ê 2y ˆ Ê y ˆ Ê y + 3 ˆ˜
˜˜
2. Simplify: ÁÁÁ x ˜˜˜ ÁÁÁ 2x ˜˜˜ ÁÁÁ x
Ë ¯Ë
¯Ë
¯
7. Multiply
ÊÁ 2
ˆÊ
ˆ
Á x + x − 3 ˜˜ ÁÁ 3x 2 − x + 3 ˜˜
Ë
¯Ë
¯
.
3.
5x −3 y 2
x 5 y −1 z 0
⋅
(2xy 3 ) −2
xy
.
8. Expand using Pascal’s Triangle
(3x − 2)
.
4. Simplify
18xy 3
7a 2 b 2
÷
12x 2 y
35a 2 b
.
5. Subtract (−3g 2 + 2g − 9) from (g 2 − 4g − 6)
.
.
1
5
ID: A
Name: ________________________
ID: A
10. Factor completely
9. Factor completely
a) a 2 − 6a − 40
a) −5x 4 y 2 + 20xy 3 + 15xy 4
b) 6y 2 + 13y − 5
b) 3x 3 + x 2 − 15x − 5
c) 12m3 n − 75mn
c) 20x 2 − 125y 2
d) 49x 2 − 100y 2
d) 4x 2 − 12xy + 9y 2
e) 6xp + 42x − 5yp − 35y
e) x 2 − 6x + 9 − 4y 2
.
2
Name: ________________________
ID: A
14. Divide using synthetic division
11. Factor the expression completely.
125a 3 − 8b 6
(3x 5 + 5x 4 + x + 5) ÷ (x + 2)
.
12. Factor the expression completely.
Ê
ˆ4
Ê
ˆ5
4 ÁÁ x 2 + 5 ˜˜ (3x)(x − 1) 4 + ÁÁ x 2 + 5 ˜˜ (9)(x − 1) 3
Ë
¯
Ë
¯
.
Ê
ˆ Ê
ˆ
15. Divide: ÁÁ x 5 + x 4 − 8x 3 + x + 2 ˜˜ ÷ ÁÁ x 2 + x − 7 ˜˜
Ë
¯ Ë
¯
.
13. Factor the expression completely.
1
1
−
ÁÊÁ x 2 + 4 ˜ˆ˜ 2 + 2 ÁÊÁ x 2 + 4 ˜ˆ˜ 2
Ë
¯
Ë
¯
.
3
Name: ________________________
16. Simplify
ID: A
20. Simplify the compound fractional expression.
a
a2 − x2
⋅
2
3x
− 3a
a
5
4
−
x−1 x+1
1
x
+
x−1 x+1
.
.
17. Simplify.
21. Simplify.
(4w 2 − 3wy)(w + y)
x−1
5
−
6x − 18 4x 2 − 14x + 6
(3y − 4w)(5w 2 − y 2 )
.
18. Simplify
x 2 − 16
x 3 − 64
÷
x 3 + 64 x 2 − 4x + 16
.
22. Perform the subtraction and simplify.
1
3
x
−
−
x − x − 20 x + 4 x − 5
2
.
.
19. Simplify.
1
x
x
1−
y
1+
.
4
Name: ________________________
ID: A
24. Evaluate without a calculator:
23. Simplify
a) −3 3 −3 + 2 3 162 + 3
3
ÊÁ 1 ˆ˜ −4
a) ÁÁÁÁ − ˜˜˜˜
Ë 2¯
81
Ê
ˆ
b) 4 15 ÁÁÁ 4 − 3 5 ˜˜˜
Ë
¯
b) − 32
−
c) 27
Ê
c) ÁÁÁ
Ë
ˆÊ
5x ˜˜˜ ÁÁÁ
¯Ë
3+
3−
3
5
5
3
ˆ
5x ˜˜˜
¯
d) .0049
3
2
3
2
d) 2m2 ⋅ 4m ⋅ 4m−2
.
ÊÁ 3 ˆ˜
ÁÁ 2 ˜˜
Á
˜
e) ÁÁÁ 3p ˜˜˜
ÁÁ
˜˜
Á
˜
Ë
¯
−2
25. Simplify
a)
ÊÁ 1
ÁÁ
ÁÁ 2 −2
ÁÁ x y
f) ÁÁÁ
−7
ÁÁ
ÁÁ
ÁÁ yx 4
Ë
g)
x y
243a 20 b 25
ˆ˜ 4
˜˜
˜˜
˜˜
˜˜
˜˜
˜˜
˜˜
˜
¯
ÊÁ 1 ˆ˜
ÁÁ 2 ˜˜
ÁÁ
˜
ÁÁ x y 2 ˜˜˜
ÁÁ
˜˜
Á
˜
Ë
¯
2
5
b) 2
−5
4
1
2
.
5
3
18a 2 b ⋅ 3
3
12ab 5
Name: ________________________
ID: A
28. Simplify and rewrite using only positive exponents.
26. Rationalize the denominator and simplify
4x − 16
2a
a) 3
b
4
b)
(x − 4) 3
5
4
4
4
27
.
3
c)
d)
29. Simplify the expression
ÊÁ 2x − 1 ˆ˜ −3 ÈÍÍÍ 2(2x + 1) − 2(2x − 1) ˘˙˙˙
˜˜ ÍÍ
˙˙
− 4 ÁÁÁÁ
˜˜ ÍÍ
˙˙
2
2x
+
1
Í
(2x
+
1)
˙˚
Ë
¯ Î
5−
6
x
y
2
5
.
.
27. Rationalize the numerator and simplify
a)
3+
4
b)
x+3 −5
3x − 66
ÊÁ 16
40
25
Á
30. ÁÁÁ −2 − −1 −1 + −2
Áx
x y
y
Ë
7
.
.
6
ˆ˜
˜˜
˜˜
˜
¯
−1
2
Name: ________________________
ID: A
32. Use the Laws of Logarithms to expand the
expression.
31. Simplify each expression and write the result in the
form a + bi.
ÊÁ 4
ÁÁ x x − 1
ln ÁÁÁ
ÁÁ 2x + 3
Ë
a) 6 − (2 + 9i) + (−1 + 4i)
ˆ˜
˜˜
˜˜
˜˜
˜
¯
b) (7 − i)(3 + 3i)
.
33. Use the Laws of Logarithms to combine the
expression.
c) (5 − 7i)
5logx −
2
1 ÊÁ 2
ˆ
log Á x + 1 ˜˜ + 4log(x − 1)
¯
3 Ë
.
d)
3−i
2 + 3i
34. Evaluate the expression.
10
log π
.
35. Evaluate the expression.
log 4 64 600
e)
−5 − 3i
−4i
.
36. Evaluate the expression.
1
ÁÊÁ 1 ˜ˆ˜
Á
˜˜
ln ÁÁÁ
˜
ÁÁ 4 7 ˜˜˜
Ë e ¯
f) i 1795
.
.
37. Evaluate the expression.
log (0.000001)
7
Name: ________________________
ID: A
Equations and Inequalities
38. Solve 3(x + 2) =
1
(12x + 4) − 5x
4
41. Solve the equation.
|3x − 5| = 7
.
.
42. Solve the equation for the indicated variable:
39. Solve the equation.
y+1
2
1
y + (y − 4) =
5
2
4
a)
ax + b
= 11 , solve for x.
cx + d
b)
x
x
= c − , solve for x.
a
b
c)
x
x
= c − , solve for b.
a
b
.
40. Solve.
4
5 23
+ =
x + 3 6 18
.
8
Name: ________________________
ID: A
44. Solve by completing the square.
43. Solve each equation:
x 2 + 8x + 22 = 0
a) n(9 − 3n)(2n + 5) = 0
b) x 2 + 8x − 20 = 0
.
45. Solve the equation by completing the square.
2x 2 − 12x − 7 = 0
c) 20x(x − 1) = 42 − 9x
d) −8x 2 + 46x − 30 = 0
.
46. Solve by using the Quadratic Formula.
x 2 − 6x = −10
e)
3x 2 − 6x = 10
.
9
Name: ________________________
ID: A
47. Find all solutions of the equation and express them
in the form a + bi.
50. Solve
1
3
2(6x − 3) − 4 = 0
25x 2 + 16 = 0
.
51. Solve
1 1
− =6
x2 x
.
48. Find all real solutions of the equation.
x 6 − 9x 3 − 10 = 0
.
52. Solve
x+2 +4 = 7
a)
.
49. Solve
4
3
2
3
b) 2 =
4x − 37x + 9 = 0
.
.
10
3b − 2 −
10 − b
Name: ________________________
ID: A
57. Solve for x.
53. Solve for x.
4 3x = 32 x − 1
27
=2
1 + e −x
.
.
54. Solve for x.
4 3x + 2 = 3 5x − 4
58. Solve the equation for x
e 4 x + 2e 2 x − 8 = 0
.
.
55. Use the definition of the logarithmic function to
find x.
a) log x 4 =
1
2
b) log x 6 =
1
3
59. Solve for x.
2 − ln(7 − x) = 0
.
60. Solve for x
ÁÊ 1 ˜ˆ
ln(1) − 4x 2 = lnÁÁÁÁ ˜˜˜˜
Ëe¯
.
56. Solve for x: log 2 (x 2 − 6x) = 4
.
.
11
Name: ________________________
ID: A
63. Solve the nonlinear inequality. Express the solution
using interval notation and graph the solution set.
61. Solve the inequality. Graph the solution on a
number line.
|3x + 9| ≥ 6
x 2 + 3x > 10
.
.
64. Solve the nonlinear inequality. Express the solution
using interval notation and graph the solution set.
62. Solve and graph your answer on a real number
line: |x − 3| − 2 < 6
x
1
x+1
−
≤
3 x−2
4
.
12
Name: ________________________
ID: A
Lines and Coordinate Geometry
65. Graph the line of each equation:
66. Find the slope of:
a) x + 3y = 6
a) a line passing through (-4, 4) and (2, -5)
b) a line parallel to y = 2x + 7
c) the line whose equation is 2x − 3y = 12
b) y = −2x + 4
d) the line whose equation is y = −5
e) a line perpendicular to 6x + 5y = 9
.
67. Determine whether the lines are parallel,
perpendicular, or neither. Explain your reasoning.
c) x = 3
2x + 3y = 12
3x + 2y = 24
13
Name: ________________________
ID: A
70. Solve the system of equations by graphing.
68. Find an equation, in point-slope form, of the line
that satisfies the given conditions.
2x + 3y = −27
11x − 3y = −12
Through (–1, –11); perpendicular to the line
passing through (3, 1) and (7, –1).
Then, rewrite the equation in standard form.
.
69. Solve the system of equations by substitution
8x − 2y = 10
3x − y = 9
.
71. Solve the system of equations by elimination
2x − 3y = 6
9y − 6x = 9
14
Name: ________________________
ID: A
74. Find the solution set for the following system of
inequalities.
72. Solve they system of equations by any method.
0.6x + 1.6y = 2.8
x + 2y ≤ −4
−0.05x + 0.08y = −0.02
3x − 2y > −4
.
73. Solve the system of equations by any method.
2
5
1
x+ y =
3
6
4
75. A pair of points is graphed.
1
−1
1
x−
y=
10
10
5
(a) Find the distance between them.
.
(b) Find the coordinates of the midpoint.
15
Name: ________________________
ID: A
78. Find the center and radius of the circle.
76. Prove whether or not the points A(4, 3), B(2, 6),
C(7, 5), and D(5, 8) form a square.
x 2 + y 2 − 6x + 4y − 3 = 0
(a) The center is
(b) The radius is
(c) Graph and label important points
(d) Domain:
Range:
.
.
77. Find all points of intersection of the graphs of
x 2 + 3x − y = 3 and x + y = 2 .
79. If the point ÊÁË −1,1 ˆ˜¯ lies on the graph of the
equation kx 2 − xy + y 2 = 5, find the value of k.
.
.
16
Name: ________________________
ID: A
Functions
81. The graph of a function g is given.
80. If f(x) = −2x 2 + x + 3 , evaluate each of the
following:
a) f(−2)
b) f(3m)
(a) Find g(–5). __________________
c) f(p 5 )
(b) Find g(–3). __________________
(c) Find g(–1). __________________
(d) Find g(1). __________________
(e) Find g(3). __________________
(f) Find the domain of g. __________________
d) f(x + h)
(g) Find the range of g. __________________
(h) Estimate the values of x for which is g(x) = −1
.
17
Name: ________________________
ID: A
82. Consider the following function:
f(x) = 3x 2 − 12x + 7
83. Consider the following function:
f(x) = −2x 2 − 12x − 14
a) Write the quadratic function in vertex form.
a) Write the quadratic function in vertex form.
b) State the vertex and whether the graph has a
minimum or maximum.
b) State the vertex and whether the graph has a
minimum or maximum.
c) State the equation of the axis of symmetry.
c) State the equation of the axis of symmetry.
d) Find the x intercepts and approximate the
values.
d) Find the x intercepts and approximate the
values.
e) Find the y intercept
e) Find the y intercept
f) Graph using all the points.
f) Graph using all the points.
18
Name: ________________________
ID: A
88. Explain how the graph of g is obtained from the
graph of f.
84. Find the domain of the function.
h(x) =
8x − 7
1
g (x) = − f (x − 5)
2
.
.
89. Sketch the graph of the function using
transformations.
85. Find the domain of the function.
f(x) =
x+9
x2 − 4
f(x) = − x + 2 + 3
.
86. Find the domain of the function.
g(x) =
x 2 − 4x − 32
State the domain and range.
.
.
90. Determine whether f(x) =
87. Find the domain of the function.
neither
g(x) = ln (3 − 2x) −
7x + 2
.
.
19
x
is even, odd, or
x +4
2
Name: ________________________
ID: A
92. Sketch the graph of the piecewise defined function.
91. Evaluate the piecewise defined function at the
indicated values.
ÔÏÔ 2
ÔÔ x + 4x
ÔÔ
Ô
f(x) = ÌÔ x
ÔÔÔ
ÔÔÔ −9
ÔÓ
if
x ≤ −3
if
−3 < x ≤ 1
if
x>1
ÏÔ
ÔÔ 1
if x < −1
ÔÔÔ
Ô
f(x) = ÔÌ x 2
if − 1 ≤ x ≤ 1
ÔÔÔ
ÔÔÔ −x + 3 if x > 1
ÔÓ
(a) Evaluate f(−4) .
ÊÁ 7 ˆ˜
(b) Evaluate f ÁÁÁÁ − ˜˜˜ .
Ë 2 ˜¯
(c) Evaluate f(−3) .
.
93. Write the equation of the piecewise defined
function shown below:
(d) Evaluate f(0) .
(e) Evaluate f(35) .
.
.
20
Name: ________________________
ID: A
96. Determine the average rate of change of the
function between the indicated values of the
variable.
94. The graph of a function is sketched below.
f(x) = 10 − 6x + x 2
a) x = −1,
x=3
a) Determine the intervals on which the function is
decreasing and which it is increasing.
a) x = a, x = a + h
b) State the relative minimum and maximum
values.
.
95. The graph of a function is given. Determine the
average rate of change of the function between the
indicated values of the variable.
.
97. Explain what the difference quotient represents in
terms of the graph of the function.
.
.
21
Name: ________________________
ID: A
98. Evaluate the difference quotient for each function.
a) f(x) =
99. Given f(x) = 5 4 − 9x and g(x) = x 5 − 6 ,
evaluate (f û g)(x) and (g û f)(x) and simplify as
much as possible.
x+3
b) g(x) = x 3 − 4x
.
100. Find f û g û h .
f(x) =
c) g (x) =
3
x+5
.
.
22
5
, g(x) = x 3 , h(x) = x 2 + 4
x
Name: ________________________
ID: A
104. Factor the function completely and then find all
zeros of f(x) = 2x 3 − 3x 2 − 8x + 3 .
101. Use the given graphs of f and g to evaluate the
expression.
.
105. Find a polynomial with integer coefficients that
satisfies the given conditions.
(g û f)(3) = ______________
Q has degree 4, and zeros 3, 0, and 7i
.
102. Find the inverse function of f.
Ê
ˆ5
f(x) = ÁÁ 8 − x 3 ˜˜
Ë
¯
.
106. Find all vertical and horizontal asymptotes of
6x 3 − 24x
f(x) = 3
2x − 6x 2 − 8x
.
103. Find the inverse function of f.
f(x) =
5x − 3
2x + 7
.
23
Name: ________________________
ID: A
109. Sketch the graph of the function using
transformations.
107. Sketch the graph of the function using
transformations.
f(x) = −ln(x + 4 ) − 1
f(x) = e −x − 2
Domain:
Domain:
Range:
Range:
Equation of Asymptote:
Equation of Asymptote:
Calculate the x and y intercepts
Calculate the x and y intercepts
.
.
108. Let f(x) = 3 x + 2 and g(x) = x 3 − 2 . Which of the
following are true?
110.
Which of the following are true?
a) ln ÊÁË x + y ˆ˜¯ = ln(x) + ln(y)
a) g(x) = f − 1 (x) for all real values of x.
b) ÊÁË f û g ˆ˜¯ (x) = 1 for all real values of x.
Ê yˆ
b) ln ÁÁÁ x ˜˜˜ = y ln(x)
Ë ¯
c) f(x) is one to one.
y
c) ln (x ) = y ln(x)
24
d)
lnx
= log y x
lny
e)
lnx
= ln(x − y)
lny
Name: ________________________
ID: A
Trigonometry
116. Find an angle between 0 and 2π that is coterminal
with the given angle.
111. Which of the following expressions are equivalent?
a) cos 2 x
b) cos x 2
c) (cos x)
2
19π
4
.
112. Which of the following expressions are equivalent?
a) (sinx)
d)
−1
1
sinx
b) arcsin x
c) sinx −1
e)csc x
f)sin −1 x
.
117. Find the reference angle for the given angle.
a) 120°
.
113. Find the terminal point P(x,y) on the unit circle
14π
determined by the given value of t =
.
3
b) 225°
c) 1110°
.
114. Convert 150° to radians.
d)
35π
3
d)
28π
5
.
115. Convert −
3π
radians to degrees.
4
.
25
Name: ________________________
ID: A
119. Find the values of the trigonometric functions of θ
from the information given.
118. Find the exact value for each trigonometric
function.
(a) sec
tan θ = 6, sin θ > 0
23π
6
(a) sinθ
(b) csc
7π
6
(c) cot
ÊÁ π
ÁÁ −
ÁÁ 3
Ë
(b) cosθ
ˆ˜
˜˜
˜˜
¯
(c) cscθ
(d) secθ
ÊÁ 9π
(d) tanÁÁÁÁ −
Ë 2
ˆ˜
˜˜
˜˜
¯
(e) cotθ
.
(e) sec(−4π )
120. Simplify completely the trigonometric expression.
cos x
sec x + tanx
.
.
26
Name: ________________________
ID: A
123. Find all solutions of the equation.
121. Evaluate in radians
ÊÁ
ˆ
ÁÁ − 3 ˜˜˜
Á
˜˜
a) arccos ÁÁ
ÁÁ 2 ˜˜˜
Ë
¯
1 − sinx = 2cos 2 x
b) arctan (−1)
ÁÊ 1 ˜ˆ
c) sin −1 ÁÁÁÁ − ˜˜˜˜
Ë 2¯
ÊÁ 1 ˆ˜
d) sec −1 ÁÁÁÁ − ˜˜˜˜
Ë 2¯
.
124. Find all solutions of the equation.
e) arcsin (−1)
tan2 (5x) − 1 = 0
.
122. Find all solutions of the equation.
4cos 2 x − 4cos x + 1 = 0
.
125. Solve the inequality
2sin 2 x ≥ sinx over
.
.
27
0 ≤ x < 2π
Name: ________________________
ID: A
Problem Solving
You must use an ALGEBRAIC process for all of the word problems.
Correct answers obtained by guess-and-check will not obtain full credit.
126. Find four consecutive odd integers whose sum is
464.
128. An orange has 15 calories more than a
grapefruit. Twenty oranges and ten grapefruits
have 1800 calories together. Jim ate three
oranges and half a grapefruit. How many
calories did Jim eat?
.
.
129. A sports club publishes a monthly newsletter.
Expenses are $0.90 for printing and mailing a copy,
plus $600 total for research and writing. Write a
function that represents the total monthly cost of
publishing the newsletter and use it to determine
the cost of sending 1000 copies.
127. The product of 3 and a number, decreased by 8,
is the same as twice the number, increased by
15. Find the number.
.
.
28
Name: ________________________
ID: A
133. Find the area and perimeter of a right triangle with
a leg of length 8 and hypotenuse 12.
130. A company manufactures and sells small weather
radios. If the cost of producting the radio can be
expressed as C(x) = 10,000 + 30x and the revenue
produced from the sales can be expressed as
R(x) = 50x , how many radios must be produced and
sold for the company to make a profit? (If you
don’t know the meaning of a term, look it up!)
.
134. The area of a triangle is 72 in2 and the base is 8
in. Find the height.
.
131. Five times the supplement of an angle is 630° more
than its complement. Find the angle, its
supplement, and its complement.
.
135. In the figure below, find a polynomial expression
that represents the area of the shaded region.
.
132. Find the value of x. Then, find the perimeter of
the triangle.
.
29
Name: ________________________
ID: A
138. A wire 230 in. long is cut into two pieces. One
piece is formed into a square and the other into a
circle. If the two figures have the same area, what
are the lengths of the two pieces of wire (to the
nearest tenth of an inch)?
136. Phyllis invested $13,000, a portion earning a
1
simple interest rate of 4 % per year and the rest
2
earning a rate of 4% per year. After one year the
total interest earned on these investments was
$555. How much money did she invest at each
rate?
.
137. Solve the right triangle.
__________ in.
(a) Find b. Please give the answer to two decimal
places.
(b) Find r. Please give the answer to two decimal
places.
(c) Find m∠A.
.
30
Name: ________________________
ID: A
139. A cylindrical can has a volume of 90π cm3 and is
10 cm tall.
141. The volume of a cone is 80 in 3 . Find a function that
models the height h of the cone in terms of its
radius r.
a) What is its diameter?
.
142. A rancher with 650 ft of fencing wants to enclose a
rectangular area and then divide it into four pens
with fencing parallel to one side of the rectangle
(see the figure).
b) If the can has a bottom, but no top, what is its
sufrace area?
(a) Find a function that models the total area of the
four pens.
.
140. A poster is 12 inches longer than it is wide. Find a
function that models its area A in terms of its width
w.
(b) Find the largest possible total area of the four
pens.
.
31
ID: A
Honors Calculus Summer Packet
Answer Section
NUMERIC RESPONSE
1.
1
4
2. 2x
3.
4.
4y + 3
5
11
4x y 4
15y 2
2bx
5. 4g 2 − 6g + 3
6. 9x 8 − 42x 4 y 3 + 49y 6
7. 3x 4 + 2x 3 − 7x 2 + 6x − 9
8. 243x 5 − 810x 4 + 1080x 3 − 720x 2 + 240x − 32
9. a) (a − 10) (a + 4)
b) ÊÁË 3y − 1 ˆ˜¯ ÊÁË 2y + 5 ˆ˜¯
c) 3mn (2m − 5) (2m + 5)
d) ÊÁË 7x − 10y ˆ˜¯ ÊÁË 7x + 10y ˆ˜¯
e) ÊÁË 6x − 5y ˆ˜¯ ÊÁË p + 7 ˆ˜¯
Ê
ˆ
Ê
ˆ
10. a) 5x ⋅ y 2 ⋅ ÁÁ −x 3 + 4y + 3y 2 ˜˜
b) (3x + 1) ⋅ ÁÁ x 2 − 5 ˜˜
c) 5(2x − 5y) ⋅ (2x + 5y)
Ë
¯
Ë
¯
2
d) ÊÁË 2x − 3y ˆ˜¯
e) ÊÁË x − 3 − 2y ˆ˜¯ ÊÁË x − 3 + 2y ˆ˜¯
Ê
ˆ Ê
ˆ
11. ÁÁ 5a − 2b 2 ˜˜ ⋅ ÁÁ 25a 2 + 10a ⋅ b 2 + 4b 4 ˜˜
Ë
¯ Ë
¯
4
Ê
ˆ
Ê
ˆ
12. 3 ÁÁ x 2 + 5 ˜˜ ⋅ (x − 1) 3 ⋅ ÁÁ 7x 2 − 4x + 15 ˜˜
Ë
¯
Ë
¯
13.
x2 + 6
x2 + 4
14. 3x 4 − x 3 + 2x 2 − 4x + 9 −
15. x 3 − x + 1 +
13
x+2
−7x + 9
x2 + x − 7
a +x
−3a
−w
17. Ê
5ÁË w − y ˆ˜¯
16.
18.
x 2 + 4x + 16
2
(x + 4 )
19.
y (x + 1 )
x ÁÊË y − x ˜ˆ¯
1
ID: A
x+9
x + 2x − 1
7x − 2
21.
2(2x − 1)(x − 3)
20.
22.
2
−3x − 7
(x − 5) ⋅ (x + 4)
23. a) 12
3
d) 32m
3
3 + 6
6
b) 16 15 − 60 3
3
2
e)
1
9p 3
f)
c) 3 − 5x
x9
y 12
1
g)
x
24. a) 16
b) - 8
25. a) 3a 4 b 5
26. a)
27. a)
28.
29.
2a
3
c)
1
243
d)
11
8
y3
343
= 0.000343
1,000,000
b) 36ab 2
b2
b
−
1
3−
4
b)
7
15
12
b)
x ⋅ 5 y3
d)
y
c) − 15 − 3 2
1
Ê
3 ÁÁÁ
Ë
ˆ
x + 3 + 5 ˜˜˜
¯
2
x−4
−16(2x + 1)
4
(2x − 1)
1
30.
4x − 5y
3
31. a) 3 − 5i
b) 24 + 18i
c) −24 − 70i
d)
3 11
−
⋅i
13 13
1
⋅ ln(x − 1) − ln(2x + 3)
2
ÊÁ 5
ˆ
ÁÁ x ⋅ (x − 1) 4 ˜˜˜
Á
˜˜
33. log ÁÁ
˜
ÁÁ 3 x 2 + 1 ˜˜
Ë
¯
34. π
35. 1800
−4
36.
7
37. −6
32. 4ln(x) +
COMPLETION
38. x = −1
45
39. y =
13
2
e)
3 5
− i
4 4
f) −i
ID: A
40. x = 6
2
3
11d − b
42. a) x =
a − 11c
41. x = 4,x = −
43. a) n = 0, 3, or
b) x =
−5
2
cab
a +b
b) x = −10, 2
c) b =
6
7
c) x = − ,x =
5
4
44. x = −4 ± i 6
5 2
2
46. x = 3 ± i
4
4
47. x = − ⋅ i, ⋅ i
5
5
45. x = 3 ±
48. x =
3
10 ,x = −1
49. x =
1
or 27
8
50. x =
11
6
−1
1
or
2
3
a) x = 7 b) b = 6 (reject b = 1)
x = −5
2ln4 + 4ln3
x=
5ln3 − 3ln4
16; 216
x = 8 or − 2
ÊÁ 2 ˆ˜
ln ÁÁÁÁ ˜˜˜˜
Ë 25 ¯
51. x =
52.
53.
54.
55.
56.
57.
58. x =
−ax
ax
or
x − ac
ac − x
ln2
2
59. x = 7 − e 2
1
60. x = ±
2
61. x ≤ −5 or x ≥ −1
62. −5 < x < 11
3
d) x = 5 or
3
4
e) x =
3±
39
3
ID: A
63. (−∞, −5) ∪ (2, ∞)
64. (−∞,−1] ∪ (2,6]
SHORT ANSWER
65. a)
66. a) −
b)
3
2
b) 2
c)
2
3
d) 0
e)
c)
5
6
−2
−3
, m2 =
3
2
Since these slopes are neither equal nor opposite reciprocals, the lines are neither parallel nor perpendicular.
68. y + 11 = 2(x + 1)
67. m1 =
2x − y = 9
69. (-4, -21)
70. ÊÁË −3, − 7ˆ˜¯
71.
72.
73.
No solution.
(2, 1)
ÁÊ −4, − 7˜ˆ
Ë
¯
4
ID: A
74.
75. 2 10 ; (1, –2)
76. You need to find the slopes and lengths of all the sides. If the consecutive sides are all congruent and
perpendicular, then the shape is a square.
77. ÊÁË −5,7 ˆ˜¯ and ÊÁË 1,1 ˆ˜¯
78. (3, –2); 4
79. k = 3
ESSAY
80. a) −7 b) −18m2 + 3m + 3 c) −2p 10 + p 5 + 3
81. 3; 2; –2; 1; 0; [–5, 3]; [–2, 3]
d) −2x 2 − 4xh − 2h 2 + x + h + 3
5
ID: A
82. a) f(x) = 3(x − 2) 2 − 5
b) Vertex (2, -5) minimum
c) x=2
d) x intercepts x = 2 ±
5
3
≈ 2 ± 1.3
≈ 0.7 and 3.3
e) f(0) = 7
f)
83. a) f(x) = −2(x + 3) 2 + 4
b) Vertex (-3, 4) maximum
c) x = -3
d) x intercepts x = −3 ± 2
≈ −3 ± 1.4
≈ −1.6 and − 4.4
e) f(0) = −14
f)
ÈÍ
Í 7 ˆ˜
84. ÍÍÍÍ , ∞ ˜˜˜˜
ÍÎ 8 ¯
6
ID: A
85. (−∞, −2) ∪ (−2,2) ∪ (2, ∞)
86. (−∞, −4] ∪ [8, ∞)
ÍÈÍ −2 3 ˆ˜
, ˜˜˜
87. ÍÍÍÍ
ÍÎ 7 2 ˜¯
88. reflect over the x axis ; vertical shrink by a factor of 2 ; shift 5 units right.
89.
D [−2, ∞)
R (−∞,3]
90. odd
7
91. 0; − ; –3; 0; –9
4
92.
93.
ÔÏÔ −x − 3
if x < −2
ÔÔ
ÔÔ
ÔÔÔ
2
ÌÔ 4 − x if − 2 ≤ x ≤ 2
ÔÔÔ
ÔÔÔ 3
if x > 2
ÔÓ
È
˘
94. a) Dec : ÍÍÎ −3,−1 ˙˙˚
Inc: (−∞, −3] ∪ [−1, ∞)
b) rel min value ≈ 0.8
rel max value = 2
5
95.
6
96. −4, 2a + h − 6
97. The DQ represents the slope between any two points on the function whose x values are h units apart.
7
ID: A
1
x+h+3 +
98.
x+3
; 3x 2 + 3xh + h 2 − 4 ;
−3
(x + h + 5)(x + 5)
5
58 − 9x 5 ; −9x − 2
5
5
100. f ÊÁÁ g ÊÁË h(x) ˆ˜¯ ˆ˜˜ =
=
Ë
¯ ÊÁ 2
ˆ˜ 3 x 6 + 12x 4 + 48x 2 + 64
Áx + 4˜
Ë
¯
101. 3
99.
8− 5 x
7x + 3
103. f −1 (x) =
−2x + 5
104. (2x − 1) (x + 3 ) (x − 1 )
102. f −1 (x) =
x=
3
1
, x = −3, x = 1
2
105. Q(x) = x 4 − 3x 3 + 49x 2 − 147x
106. y = 3, x = 4, x = −1
107.
Domain (−4,∞)
Range (−∞,∞)
Asy: x = −4
Intercepts: x =
1
− 4 , y = −ln(4) − 1
e
108. a and c only
8
ID: A
109.
Domain (−∞,∞)
Range (−2,∞)
Asy: y = −2 Intercepts: x = −ln2 , y = −1
110. b and d only
CASE
111. a and c
112. a, d, e and b,f
ÊÁ
ˆ
ÁÁ 1
3 ˜˜˜˜
Á
113. ÁÁ − ,
˜
ÁÁ 2 2 ˜˜˜
Ë
¯
5
114.
π
6
115. –135
3π
116.
4
π 2π
117. 60; 45; 30, ;
3 5
118.
2 3
3
; –2; −
; undefined; -1
3
3
37
1
6
1
;
;
; 37 ;
6
6
37
37
120. 1 − sin(x)
5π
−π
3π
7π
−π
7π
11π
121. a)
b)
(NOT
or
)
c)
(NOT
or
)
6
4
4
4
6
6
6
π
5π
122. x = + 2k ⋅ π ,
+ 2k ⋅ π where k is an integer.
3
3
π 2π
123. x = +
k, where k ∈ Z where k is an integer.
2
3
119.
124. x =
π
20
+
π
2
k, where k is an integer.
9
d) undefined
e)
−π
2
ID: A
ÈÍ
˘
Í π 5π ˙˙˙
˙˙ ∪ [π ,2π )
125. ÍÍÍÍ ,
ÍÎ 6 6 ˙˙˚
PROBLEM
126.
127.
128.
129.
130.
131.
132.
113, 115, 117, 119
n = 23
220 calories
The cost is $1500 for 1000 copies.
They must sell at least 500 radios.
angle=45°, comp=45°, supp = 135°
x = 12; P = 102
A = 16 5
P = 20 + 4 5
h = 18in
6x + 22
$7,000; $6,000
30.03; 41.75; 44
108.1, 121.9
d = 6, SA= 69π
140. A(w) = w 2 + 12w
240
141. h(r) =
π ⋅ r2
5
142. A(w) = ⋅ w ⋅ (130 − w) ; 10,562.5
2
133.
134.
135.
136.
137.
138.
139.
10
Related documents