Download Solutions

Survey
yes no Was this document useful for you?
   Thank you for your participation!

* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project

Document related concepts
no text concepts found
Transcript
Wednesday, September 2, 2015
Page 334
Problem 1
Z
Problem. Find the indefinite integral
5
dx.
x
Solution.
Z
5
dx = 5 ln |x| + C.
x
Problem 3
Z
1
dx.
x+1
Solution. Let u = x + 1 and du = dx. Then we get
Z
Z
1
1
dx =
du
x+1
u
Problem. Find the indefinite integral
= ln |u| + C
= ln |x + 1| + C.
Problem 7
Z
x
dx.
−3
Solution. Let u = x2 − 3 and du = 2x dx. Then we get
Z
Z
2x
x
1
dx =
dx
2
2
x −3
2
x −3
Z
1
1
=
du
2
u
1
= ln |u| + C
2
1
= ln |x2 − 3| + C.
2
Problem. Find the indefinite integral
x2
Problem 12
Z
Problem. Find the indefinite integral
x3 − 8x
dx.
x2
1
Solution. First, divide x2 into each term of the numerator. Then integrate termwise.
Z 3
Z x − 8x
8
x−
dx
dx =
x2
x
1
= x2 − 8 ln |x| + C.
2
Problem 13
x2 + 2x + 3
dx.
x3 + 3x2 + 9x
Solution. Let u = x3 + 3x2 + 9x and du = (3x2 + 6x + 9) dx, which happens to be 3
times the numerator. Then we get
Z
Z
1
3x2 + 6x + 9
x2 + 2x + 3
dx
=
dx
x3 + 3x2 + 9x
3
x3 + 3x2 + 9x
Z
1
1
=
du
3
u
1
= ln |u| + C
3
1
= ln |x3 + 3x2 + 9x| + C.
3
Z
Problem. Find the indefinite integral
Problem 17
x3 − 3x2 + 5
Problem. Find the indefinite integral
dx.
x−3
Solution. Begin by using long division to divide x − 3 into x3 − 3x2 + 5. We get x2
with a remainder of 5, so
Z
x3 − 3x2 + 5
5
= x2 +
.
x−3
x−3
Now we can integrate.
Z
x3 − 3x2 + 5
dx =
x−3
Z x2 +
5
x−3
dx
1
= x3 + 5 ln |x − 3| + C.
3
Problem 27
Z
Problem. Find the indefinite integral
1
√ dx by u-substitution.
1 + 2x
2
√
Solution. Let u = 1 + 2x and du = √12x dx. Note that du =
that as dx = u du and use that for the substitution.
Z
Z 1
1
√ dx =
(u du)
1+u
1 + 2x
Z
u
=
du
1+u
Z 1
1−
=
du
1+u
1
u
dx, so we may rewrite
= u − ln |1 + u| + C
√
√
= 2x − ln |1 + 2x| + C.
Problem 29
Z
Problem. Find the indefinite integral
√
x
√
dx by u-substitution.
x−3
√
1
Solution. Let u = x and du = 2√1 x dx. Note that du = 2u
dx, so dx = 2u du. Now
substitute and integrate.
√
Z
Z x
u
√
dx =
· 2u du
u−3
x−3
Z 2u2
=
du
u−3
Z 18
=
du
2u + 6 +
u−3
= u2 + 6u + 18 ln |u − 3| + C
√
√
= x + 6 x + 18 ln | x − 3| + C.
Or, you could let u =
√
x − 3 and du =
1
√
2 x
3
dx. Then
√
x = u + 3 and du =
1
2(u+3)
dx,
so dx = 2(u + 3) du. Now substitute and integrate.
√
Z Z
u+3
x
√
dx =
· 2(u + 3) du
u
x−3
Z (u + 3)2
=2
du)
u
Z 2
u + 6u + 9
=2
du)
u
Z 9
u+6+
du)
=2
u
= u2 + 12u + 18 ln |u| + C
√
√
√
= ( x − 3)2 + 12( x − 3) + 18 ln | x − 3| + C.
Problem 32
Z
Problem. Find the indefinite integral
tan 5θ dθ.
Solution. Let u = 5θ and du = 5 dθ. Then
Z
Z
1
tan 5θ dθ =
5 tan 5θ dθ
5
Z
1
=
tan u du
5
1
= ln | sec u| + C
5
1
= ln | sec 5θ| + C.
5
Problem 34
Z
Problem. Find the indefinite integral
Solution. Let u =
x
2
sec
x
dx.
2
and du = 12 dx. Then
Z
Z
x
1
x
sec dx = 2
sec dx
2
2
2
Z
= 2 sec u du
= 2 ln | sec u + tan u| + C
x
x = 2 ln sec + tan + C.
2
2
4
Problem 39
Z
sec x tan x
dx.
sec x − 1
Solution. Let u = sec x − 1 and du = sec x tan x dx. Then
Z
Z
du
sec x tan x
dx =
sec x − 1
u
Problem. Find the indefinite integral
= ln |u| + C
= ln | sec x − 1| + C.
Problem 70
sin x
from x =
1 + cos x
Solution. Let u = 1 + cos x and du = − sin x dx. Then u π4 = 1 +
1 − √12 .
Problem. Find the area of the region under y =
Z
3π/4
π/4
sin x
dx = −
1 + cos x
Z
3π/4
1− √1
2
=−
1+ √1
to x =
√1
2
and u
3π
.
4
3π
4
=
− sin x
dx
1 + cos x
π/4
Z
π
4
du
u
2
1− √1
= − [ln |u|]1+ √12
2
1 1
= − ln 1 − √ + ln 1 + √ 2
2
1
1 + √ 2
= ln 1
1 − √2 √
2 + 1
= ln √
.
2 − 1
Problem 96
πx
over the interval [0, 2].
6
Solution. The formula for the average value of a function f (x) over an interval [a, b]
is
Z b
1
f (x) dx.
b−a a
Problem. Find the average value of f (x) = sec
5
So we need to find the value of
1
2
Let u =
πx
6
Z
2
sec
0
πx
dx.
6
π
6
and du = dx. Then u()0) = 0 and u(2) = π3 .
Z
Z
1 2
6 1 2π
πx
πx
dx = ·
sec
dx
sec
2 0
6
π 2 0 6
6
Z
3 π/3
sec u du
=
π 0
3
= [ln | sec u + tan u|]π/3
0
π
3
π
π =
ln sec + tan − ln |sec 0 + tan 0|
π
3
3
√ 3 ln 2 + 3 − ln 1
=
π
√ 3 = ln 2 + 3 .
π
Problem 97
Problem. A population of bacteria P is changing at a rate of
dP
3000
=
,
dt
1 + 0.25t
where t is the time in days. The initial population (when t = 0) is 1000. Write an
equation that gives the population at any time t. Then find the population when
t = 3.
Solution. The population P (t) is given by
Z
3000
P (t) =
dt.
1 + 0.25t
Let u = 1 + 0.25t and du = 0.25 dt. Then
Z
3000
P (t) =
dt
1 + 0.25t
Z
0.25
= 12000
dt
1 + 0.25t
Z
du
= 12000
u
= 12000 ln |u| + C
= 12000 ln |1 + 0.25t| + C.
6
To find the value of C, let t = 0.
P (0) = 12000 ln 1 + C
= C.
Therefore, C = 1000 and the population is
P (t) = 12000 ln (1 + 0.25t) + 1000.
When t = 3, the population is
P (3) = 12000 ln 1.75 + 1000
= 12000(0.5596) + 1000
= 7715.
7
Related documents