Survey
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the work of artificial intelligence, which forms the content of this project
Wednesday, September 2, 2015 Page 334 Problem 1 Z Problem. Find the indefinite integral 5 dx. x Solution. Z 5 dx = 5 ln |x| + C. x Problem 3 Z 1 dx. x+1 Solution. Let u = x + 1 and du = dx. Then we get Z Z 1 1 dx = du x+1 u Problem. Find the indefinite integral = ln |u| + C = ln |x + 1| + C. Problem 7 Z x dx. −3 Solution. Let u = x2 − 3 and du = 2x dx. Then we get Z Z 2x x 1 dx = dx 2 2 x −3 2 x −3 Z 1 1 = du 2 u 1 = ln |u| + C 2 1 = ln |x2 − 3| + C. 2 Problem. Find the indefinite integral x2 Problem 12 Z Problem. Find the indefinite integral x3 − 8x dx. x2 1 Solution. First, divide x2 into each term of the numerator. Then integrate termwise. Z 3 Z x − 8x 8 x− dx dx = x2 x 1 = x2 − 8 ln |x| + C. 2 Problem 13 x2 + 2x + 3 dx. x3 + 3x2 + 9x Solution. Let u = x3 + 3x2 + 9x and du = (3x2 + 6x + 9) dx, which happens to be 3 times the numerator. Then we get Z Z 1 3x2 + 6x + 9 x2 + 2x + 3 dx = dx x3 + 3x2 + 9x 3 x3 + 3x2 + 9x Z 1 1 = du 3 u 1 = ln |u| + C 3 1 = ln |x3 + 3x2 + 9x| + C. 3 Z Problem. Find the indefinite integral Problem 17 x3 − 3x2 + 5 Problem. Find the indefinite integral dx. x−3 Solution. Begin by using long division to divide x − 3 into x3 − 3x2 + 5. We get x2 with a remainder of 5, so Z x3 − 3x2 + 5 5 = x2 + . x−3 x−3 Now we can integrate. Z x3 − 3x2 + 5 dx = x−3 Z x2 + 5 x−3 dx 1 = x3 + 5 ln |x − 3| + C. 3 Problem 27 Z Problem. Find the indefinite integral 1 √ dx by u-substitution. 1 + 2x 2 √ Solution. Let u = 1 + 2x and du = √12x dx. Note that du = that as dx = u du and use that for the substitution. Z Z 1 1 √ dx = (u du) 1+u 1 + 2x Z u = du 1+u Z 1 1− = du 1+u 1 u dx, so we may rewrite = u − ln |1 + u| + C √ √ = 2x − ln |1 + 2x| + C. Problem 29 Z Problem. Find the indefinite integral √ x √ dx by u-substitution. x−3 √ 1 Solution. Let u = x and du = 2√1 x dx. Note that du = 2u dx, so dx = 2u du. Now substitute and integrate. √ Z Z x u √ dx = · 2u du u−3 x−3 Z 2u2 = du u−3 Z 18 = du 2u + 6 + u−3 = u2 + 6u + 18 ln |u − 3| + C √ √ = x + 6 x + 18 ln | x − 3| + C. Or, you could let u = √ x − 3 and du = 1 √ 2 x 3 dx. Then √ x = u + 3 and du = 1 2(u+3) dx, so dx = 2(u + 3) du. Now substitute and integrate. √ Z Z u+3 x √ dx = · 2(u + 3) du u x−3 Z (u + 3)2 =2 du) u Z 2 u + 6u + 9 =2 du) u Z 9 u+6+ du) =2 u = u2 + 12u + 18 ln |u| + C √ √ √ = ( x − 3)2 + 12( x − 3) + 18 ln | x − 3| + C. Problem 32 Z Problem. Find the indefinite integral tan 5θ dθ. Solution. Let u = 5θ and du = 5 dθ. Then Z Z 1 tan 5θ dθ = 5 tan 5θ dθ 5 Z 1 = tan u du 5 1 = ln | sec u| + C 5 1 = ln | sec 5θ| + C. 5 Problem 34 Z Problem. Find the indefinite integral Solution. Let u = x 2 sec x dx. 2 and du = 12 dx. Then Z Z x 1 x sec dx = 2 sec dx 2 2 2 Z = 2 sec u du = 2 ln | sec u + tan u| + C x x = 2 ln sec + tan + C. 2 2 4 Problem 39 Z sec x tan x dx. sec x − 1 Solution. Let u = sec x − 1 and du = sec x tan x dx. Then Z Z du sec x tan x dx = sec x − 1 u Problem. Find the indefinite integral = ln |u| + C = ln | sec x − 1| + C. Problem 70 sin x from x = 1 + cos x Solution. Let u = 1 + cos x and du = − sin x dx. Then u π4 = 1 + 1 − √12 . Problem. Find the area of the region under y = Z 3π/4 π/4 sin x dx = − 1 + cos x Z 3π/4 1− √1 2 =− 1+ √1 to x = √1 2 and u 3π . 4 3π 4 = − sin x dx 1 + cos x π/4 Z π 4 du u 2 1− √1 = − [ln |u|]1+ √12 2 1 1 = − ln 1 − √ + ln 1 + √ 2 2 1 1 + √ 2 = ln 1 1 − √2 √ 2 + 1 = ln √ . 2 − 1 Problem 96 πx over the interval [0, 2]. 6 Solution. The formula for the average value of a function f (x) over an interval [a, b] is Z b 1 f (x) dx. b−a a Problem. Find the average value of f (x) = sec 5 So we need to find the value of 1 2 Let u = πx 6 Z 2 sec 0 πx dx. 6 π 6 and du = dx. Then u()0) = 0 and u(2) = π3 . Z Z 1 2 6 1 2π πx πx dx = · sec dx sec 2 0 6 π 2 0 6 6 Z 3 π/3 sec u du = π 0 3 = [ln | sec u + tan u|]π/3 0 π 3 π π = ln sec + tan − ln |sec 0 + tan 0| π 3 3 √ 3 ln 2 + 3 − ln 1 = π √ 3 = ln 2 + 3 . π Problem 97 Problem. A population of bacteria P is changing at a rate of dP 3000 = , dt 1 + 0.25t where t is the time in days. The initial population (when t = 0) is 1000. Write an equation that gives the population at any time t. Then find the population when t = 3. Solution. The population P (t) is given by Z 3000 P (t) = dt. 1 + 0.25t Let u = 1 + 0.25t and du = 0.25 dt. Then Z 3000 P (t) = dt 1 + 0.25t Z 0.25 = 12000 dt 1 + 0.25t Z du = 12000 u = 12000 ln |u| + C = 12000 ln |1 + 0.25t| + C. 6 To find the value of C, let t = 0. P (0) = 12000 ln 1 + C = C. Therefore, C = 1000 and the population is P (t) = 12000 ln (1 + 0.25t) + 1000. When t = 3, the population is P (3) = 12000 ln 1.75 + 1000 = 12000(0.5596) + 1000 = 7715. 7