Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
TÍTULO DE LA TESIS “POWER AND TIMING MODELING OF SUBMICRON CMOS GATES” AUTOR: Josep Lluís Rosselló DIRECTOR: Jaume Segura Fuster FECHA DE LECTURA 22 de Febrero de 2003 PUBLICACIONES DERIVADAS REVISTAS “A Variable Threshold Voltage Inverter for CMOS Programmable Logic Circuits” J. Segura, J.L. Rosselló, J.Morra, H.Sigg, IEEE Journal of Solid-State Circuits, pp.12621265, vol. 33. no. 8 Agosto 1998 "Charge-based analytical model for the evaluation of power consumption in sub-micron CMOS buffers" J.L. Rosselló and Jaume Segura IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems. pp.433-448, vol. 21, no. 4, Abril 2002. "Simple and accurate propagation delay model for submicron CMOS gates based on charge analysis" J.L. Rossello and J. Segura, Electronics Letters, IEE, pp. 772-774, Vol. 38, no. 15, Julio 2002 "An analytical charge-based compact delay model for submicron CMOS inverters", J.L. Rosselló and J Segura, IEEE Transactions on Circuits and Systems I, (Aceptado para su publicación) CONGRESOS Autores: J.L. Rosselló, E. Isern, M. Roca, E. García, J. Segura Título: An analytical model of the charge driven by CMOS buffers Tipo de participación: comunicación a congreso Congreso: XII Design of Circuits and Integrated Systems Conference Publicación: Proceedings, pp. 471-474 Lugar de celebración: Sevilla Fecha: Noviembre 1997 Autores: I. De Paul, R. Picos, J.L. Rosselló, M. Roca, E. Isern, J, Segura, C.F. Hawkins Título: Transient current testing based on current (charge) integration Tipo de participación: comunicación a congreso Congreso: International Workshop on IDDQ Testing Publicación: Proceedings, pp. 26-30 Lugar de celebración: San Jose, California, USA Fecha: Noviembre 1998 Autores: J.L.Rosselló, E.Isern, M.Roca and J.Segura Título: An analytical model of CMOS buffers power consumption Tipo de participación: comunicación a congreso Congreso: XIV Design of Circuits and Integrated Systems Conference Publicación: Proceedings, pp. 125-130 Lugar de celebración: Palma de Mallorca, Baleares, España Fecha: Noviembre 1999 Autores: J.L.Rosselló and J.Segura Título: A physical modeling of the alpha-power law MOSFET model Tipo de participación: comunicación a congreso Congreso: XV Design of Circuits and Integrated Systems Conference Publicación: Proceedings, pp 65-70 Lugar de celebración: Montpellier, Francia Fecha: Noviembre 2000 Autores: J.L.Rosselló and J.Segura Título: A simple power consumption model of CMOS buffers driving RC interconnect lines Tipo de participación: comunicación a congreso Congreso: XI International Workshop on Power and Timing Modeling Publicación: Proceedings, Artículo no. 4.2 Lugar de celebración: Yverdon-Les-Bains, Suiza Fecha: Septiembre 2001 Autores: J.L.Rosselló and J.Segura Título: Power-delay modeling of Dynamic CMOS gates for circuit optimization Tipo de participación: comunicación a congreso Congreso: the International Conference on Computer Aided Design (ICCAD’01) Publicación: Proceedings, pp 494-499 Lugar de celebración: San José, CA, USA Fecha: Noviembre 2001 Autores: J.L.Rosselló and J.Segura Título: Modeling the input-output coupling capacitor effects on the CMOS buffer power consumption Tipo de participación: comunicación a congreso Congreso: XVI Conference on Design of Circuits and Integrated Systems Publicación: Proceedings, pp 613-617 Lugar de celebración: Porto, Portugal Fecha: Noviembre 2001 Autores: J.L.Rosselló and J.Segura Título: A compact charge-based propagation delay model for submicronic CMOS buffers Tipo de participación: comunicación a congreso Congreso: XII International Workshop on Power and Timing Modeling (PATMOS 2002), Publicación: Proceedings, pp 219-228 Lugar de celebración: Sevilla, España Fecha: Septiembre 2002 Autores: J.L.Rosselló and J.Segura Título: A Simple Analytical Description of Power Dissipation in Submicronic CMOS Buffers Tipo de participación: comunicación a congreso Congreso: XVII Conference on Design of Circuits and Integrated Systems Publicación: Proceedings, pp 627-630 Lugar de celebración: Santander, España Fecha: Noviembre 2002 Autores: J.L.Rosselló and J.Segura Título: Power and Timing modeling of Submicron CMOS Gates Tipo de participación: Presentación poster Congreso: 40th Design Automation Conference (DAC’03) Publicación: Proceedings, pp 627-630 Lugar de celebración: Anaheim, CA, USA. Fecha: Junio 2003 Autores: J.L.Rosselló and J.Segura Título: A Compact Charge-Based Crosstalk Induced Delay Model for Submicronic CMOS Gates Tipo de participación: Comunicación a congreso Congreso: XII International Workshop on Power and Timing Modeling (PATMOS 2003) Publicación: Proceedings, pp 627-630 Lugar de celebración: Torino, Italia. Fecha: Septiembre 2003 Autores: J.L.Rosselló and J.Segura Título: A physically-based nth power law MOSFET model for efficient CAD implementation Tipo de participación: Comunicación a congreso Congreso: XVII Design of Circuits and Integrated systems Conference (DCIS’03) Publicación: Proceedings, pp 380-383 Lugar de celebración: Ciudad Real, España. Fecha: Noviembre 2003 Autores: J.L.Rosselló and J.Segura Título: A Compact Propagation Delay Model for Deep-submicron CMOS Technologies including Crosstalk Effects Tipo de participación: Comunicación a congreso Congreso: Design Automation and Test in Europe (DATE’04), Lugar de celebración: Paris, Francia. Fecha: Febrero 2004 1262 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 8, AUGUST 1998 A Variable Threshold Voltage Inverter for CMOS Programmable Logic Circuits J. Segura, J. L. Rosselló, J. Morra, and H. Sigg Abstract— A programmable input threshold voltage inverter compatible with double gate transistors fabrication processes is presented. Such a circuit is useful as a programmable input threshold buffer for general purpose circuits that can be included in both TTL and CMOS environments, or can be used as low cost analog programmable comparator. A prototype is fabricated and measured. of the n-MOS and p-MOS transistors, respectively. The values that can take are determined by the relative sizing of the transistors composing the buffer. In the next section we present the design of the inverter, while the experimental results are reported in Section III. Finally, the conclusions are reported in Section IV. Index Terms—Buffer circuits, integrated circuit design. II. CIRCUIT OPERATION I. INTRODUCTION I N this work we develop a CMOS inverter compatible with double gate MOS technologies that can be programmed to different predefined threshold voltages. In the context of this work, the inverter logic threshold voltage ( ) is defined as the static input voltage at which the inverter output is . An input logic threshold programmable CMOS at inverter is of high interest in applications such as CMOS design of input buffers for general purpose circuits (as microcontrollers) to be used in both CMOS and TTL applications. Once the final application or environment of the circuit is known, the input circuitry can be programmed to match the outside signal threshold voltage (TTL or CMOS), thus optimizing the noise margin and the power consumption, as will be shown. A programmable logic threshold inverter is also of interest in analog applications, to be used as a voltage comparator. Instead of using a whole analog block (as an A/D or opamp) to determine if a signal is above or below a given reference, the proposed variable logic threshold inverter can be programmed to a voltage being the reference voltage required for each application. The inverter has the advantage of a significant area reduction given its simplicity and the reduced number of transistors required. Additionally, a comparator requires two inputs, while a programmable logic threshold buffer used as a comparator would only require a single package pin. The design proposed can be divided into two blocks: the programming circuitry and the buffer circuitry. The number of transistors of the buffer determines the different logic threshold levels of the whole inverter. A buffer with transistors ( , N-type transistors, and one P-type MOS), can logic threshold voltages between be programmed to and , and being the threshold voltages Manuscript received September 30, 1997; revised January 19, 1998. This work was supported in part by the Spanish Government under Grant TIC961602-E. J. Segura and J. L. Rosselló are with the Physics Department, Balearic Islands University, 07071 Palma de Mallorca, Spain (e-mail: dfsjsf4@ ps.uib.es). J. Morra and H. Sigg are with the Microcontroller Product Group, Philips Semiconductors, Albuquerque, NM 87113 USA (e-mail: Jim.Morra@ abq.sc.philips.com). Publisher Item Identifier S 0018-9200(98)05530-9. The logic threshold voltage of a CMOS inverter is given of the N and P transistors. In by the aspect ratio general, both transistors have the same length. Thus, the ratio (the ratio between the transistor widths) is the value that determines the inverter logic threshold voltage. For general applications, inverters are designed to have a curve symmetric static transfer characteristic, i.e., the at . Therefore, intersects the unity-gain line using the Shockley model to describe the behavior of the MOS transistor, and assuming the same value of the gate oxide thickness for both transistors, then the aspect ratio that gives a symmetric transfer characteristic has the well-known expression (1) and are the electron and hole mobility, respecwhere and are the transistors threshold voltages. tively, and In those cases where the transfer characteristic is not symmetric, the logic threshold voltage can be expressed as [1] (2) where it has been assumed that both transistors have the same ). length (i.e., A. Buffer Design A simplified schematic of a programmable logic threshold voltage inverter (with the programming circuitry not shown) is given in Fig. 1. Its operation is based on the expression stated in (2). The inverter uses a single gate p-MOS enhancement transistor and a pulldown transistors net composed of one single gate n-MOS enhancement transistor and several double gate n-MOS devices connected in parallel. The value of is fixed, while the effective value of can be changed 0018–9200/98$10.00 1998 IEEE IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 8, AUGUST 1998 1263 using the TLV that has its vector components defined as if otherwise Fig. 1. Simplified schematic of a programmable logic threshold inverter. The programming circuitry is not shown. by programming or unprogramming the double gate n-MOS transistors. The different logic threshold voltages of the programmable , can be derived from (2) obtaining inverter, (3) is the ratio between the gate oxide where capacitance per unit area for the double and single gate is the width of the th double gate n-MOS transistors, is a Boolean variable associated to the th device, and is double gate transistor programming state. The value of one when such device is unprogrammed and zero otherwise. Each programming configuration of double gate transistors has associated a unique set of Boolean variables that define , as a threshold level vector (TLV), (4) identifies each vector and is the decimal The subindex representation of the TLV, defined as (5) , each one of the If TLV’s will lead to a different value of . ratio (the width of transistors and The in Fig. 1) is used to set the maximum value that can take, i.e., the logic threshold voltage associated to the TLV . Only of the whole remaining voltages can be independently chosen. The remaining levels will be a combination of the independent ones. We use a simple and straightforward technique to determine the size of each double gate transistor: associate each logic threshold level to one of the double gate transistors. This means that the inverter will be programmed to the logic threshold level for to (6) and single gate transistors Therefore, only both the for the and one of the double gate devices (the transistor TLV ) must be considered to calculate the width of each programmable transistor. From (3) we get (7) B. General Design The whole programmable inverter, containing both the buffer and the programming circuitry, is shown in Fig. 2. The programming circuitry consists of transistors that connect or isolate the gate of the n-MOS transistors value, and from the input buffer depending on the that drive the gate programming transistors . One register—the Programming Register—holds signal the TLV during the programming mode, and is reset in normal transistors. When , operation to turn off all the drives all the the inverter is in the normal mode, the input n-MOS transistors, and the equivalent active circuitry is the same as that in Fig. 1. Given that no dc current goes into the transistors can be gate of the n-MOS devices, the size of the , the inverter is in the programming minimum. When mode, the inverter input is disconnected from the n-MOS transistors gates, and the double gate transistors are driven by the contents of the Programming Register. In this mode, the inverter input is used to drive the drain of the double gate devices through the p-MOS transistor. During programming, the TLV is held in the Programming Register to drive the ) to the desired devices through programming gate signal ( transistors. The function of bit and the is different from the remaining bits and transistor devices, and are used to turn off the nonprogrammable to prevent current through this device in the transistor programming mode. In applications where more than one inverter is used, the programming register is shared by all the inverters of the circuit, and the input signal In is used to select which inverter is being programmed. C. A Programmable TTL/CMOS Input Inverter A particular case of the general design is a programmable TTL/CMOS input buffer. Such a circuit would be the simpler case of a programmable logic threshold inverter given that only one double gate device is required. The width ratio of the P and N single gate transistors is used to set the logic threshold level of the CMOS buffer configuration, while the width of the double gate transistor adjusts the TTL configuration input logic threshold. Given that the circuit is initially unprogrammed, it is set to the TTL configuration by default. The double gate device must be programmed and turned off to switch to the CMOS configuration. The TLV for an input TTL/CMOS buffer has a single bit, , which is set to program the CMOS configuration 1264 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 8, AUGUST 1998 Fig. 2. Schematic of the programmable logic threshold inverter including the programming circuitry. Fig. 3. Photograph of the prototype. and reset for the TTL configuration. In the next section we present the results obtained from a fabricated prototype. (a) III. EXPERIMENTAL RESULTS We designed and fabricated a CMOS-TTL programmable input buffer using the Philips 23G 1 double poly single metal stacked gate EPROM process. The circuit was placed on the scribe of a wafer, and the sensitivity of the input buffer logic threshold to process variations was characterized. Only the buffer circuitry was fabricated. The programming circuitry was not included as the devices were accessed separately with probe tips for programming. Measurements were made with an HP4155 Semiconductor Parameter Analyzer. Fig. 3 shows a photograph of the circuit. The prototype was designed to have two programmable logic threshold voltages corresponding to the TTL and the CMOS switching level. The TTL configuraV, while the CMOS tion was designed to have V. configuration was Fig. 4 reports the voltage and current static transfer characteristics of the buffer for both the TTL and CMOS modes. The is 1.35 V, while the experimental value obtained for CMOS configuration logic threshold voltage is 3 V [Fig. 4(a)]. The deviations from the theoretical values are 0.05 V for the TTL configuration and 0.3 V for the CMOS one. These small deviations are due to the use of the Shockley transistor (b) Fig. 4. (a) Static voltage transfer characteristic and (b) current consumption measured for the programmable inverter for both the CMOS and the TTL configurations. model in (7) to derive the effective widths of programmable transistors. The use of more accurate models that take into account second order effects of the transistor would correct these small deviations. IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 8, AUGUST 1998 INPUT LOGIC THRESHOLD VOLTAGES Circuit TTL CMOS A 1.35 2.99 AND 1265 TABLE I DEVIATIONS FOR THE TTL AND CMOS CONFIGURATION OF SEVERAL MEASURED TTL-CMOS BUFFERS B 1.37 3.02 C 1.39 3.02 D 1.41 3.02 Fig. 4(a) shows that programming the input buffer logic threshold improves the noise margin of each application. Fig. 4(b) reports that the power consumption of the buffer is optimized when the circuit is used in a CMOS environment, obtaining a reduction in the current from 60 A to less V). Therefore, the switching power than 1 A (for consumption will be lowered in a CMOS environment using a programmable inverter because the maximum static current dissipation is reduced from 120 to 20 A. Such a reduction will contribute to lower short-circuit current dissipation, and therefore the overall circuit consumption [2]–[4]. Table I shows the input buffer logic threshold values measured for different circuits. It can be observed that the TTL buffer logic threshold values have a larger variation than the CMOS buffer logic threshold values, but in both cases the variations are small. Maximum speed transient measurements were not possible since we did not include output buffers to drive the large capacitance of the bond pads and measurement equipment [5]. The operation speed of the input buffer can be enhanced by adding normal inverter stages to obtain a tapered buffer. The number of stages and its size depends on the capacitance to be driven as has been extensively studied [6]–[8]. The penalty of the area overhead is small given that the transistors added to each inverter for the size of the programming circuitry can be minimum sized. Additionally, pass only one programming register and one set of transistors are required for all programmable buffers in the die. devices can be distributed The programming register and anywhere in the design which contributes to compact layout. IV. CONCLUSIONS A programmable input logic threshold voltage inverter for double gate transistor technologies is described, along with E 1.28 3.02 F 1.32 3.05 Max. dev. Mean dev. 8.5% 0.05 11.4% 0.23 Std. dev. 0.046 0.017 its principle of operation and design procedure. A CMOSTTL input buffer has been designed and fabricated showing that it can be programmed to the CMOS and TTL levels depending on the outside environment of the final application. Measurements show good agreement between predicted and obtained logic threshold voltages. Measurements also show a significant enhancement of the noise margins of the circuit. Finally, the input buffer provides the capability of reducing the input circuitry power consumption, especially for CMOS applications. ACKNOWLEDGMENT The authors would like to thank D. Vancil from Phillips USA for his assistance in the buffer design. REFERENCES [1] J. P. Uyemura, Fundamentals of MOS Digital Integrated Circuits. Reading, MA: Addison-Wesley, 1988. [2] H. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits,” IEEE J. Solid-State Circuits, vol. 19, pp. 468–473, 1984. [3] S. Ma and P. Franzon, “Energy control and accurate delay estimation in the design of CMOS buffers,” IEEE J. Solid-State Circuits, vol. 29, pp. 1150–1153, Sept. 1994. [4] U. Ko and P. T. Balsara, “Short-circuit power driven gate sizing technique for reducing power dissipation,” IEEE Trans. Very Large Scale Integration (VLSI) Syst., vol. 3, pp. 450–455, Sept. 1995. [5] C. Yoo, M. K. Kim, and W. Kim, “A static power saving TTL-to-CMOS input buffer,” IEEE J. Solid-State Circuits, vol. 30, pp. 616–620, May 1995. [6] B. S. Cherkauer and E. G. Friedman, “A unified design methodology for CMOS tapered buffers,” IEEE Trans. Very Large Scale Integration (VLSI) Syst., vol. 3, pp. 99–111, Mar. 1995. [7] C. Prunty and L. Gal, “Optimum tapered buffer,” IEEE J. Solid-State Circuits, vol. 27, pp. 118–119, Jan. 1992. [8] T. Sakurai, “A unified theory for mixed CMOS/BiCMOS buffer optimization,” IEEE J. Solid-State Circuits, vol. 27, pp. 1014–1019, July 1992. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 4, APRIL 2002 433 Charge-Based Analytical Model for the Evaluation of Power Consumption in Submicron CMOS Buffers José Luis Rosselló, Member, IEEE, and Jaume Segura, Member, IEEE Abstract—The authors present an accurate analytical method for analyzing the power consumption in CMOS buffers. It is derived from the charge transferred through the circuit and makes use of the physically based MM9 MOSFET model (Velghe et al., 1994), (Foty et al., 1997) as well as a modified Sakurai alpha-power law model. The resulting analytical model accounts for the effects of input slew time, device sizes, carrier velocity saturation effects, input-to-output coupling capacitance, output load, and temperature. Results are compared to HSPICE simulations (level 50) and to other models previously published considering a large set of parameters for a 0.18 and 0.35 m technologies, showing significant improvements. Index Terms—Closed form expressions, deep submicron, power modeling and estimation. NOMENCLATURE A) Input Parameters to the Model zero bias low field mobility; gate field mobility reduction coefficient (MM9 parameter); nMOS, pMOS gate field mobility reduction coefficient (MM9 parameter); drain field mobility reduction coefficient (MM9 parameter); nMOS, pMOS drain field mobility reduction coefficient (MM9 parameter); buffer output load; gate oxide capacitance; frequency; substrate sensitivity when depleting bulk doping (MM9 parameter); substrate sensitivity when depleting surface doping (MM9 parameter); channel length; channel length of nMOS; channel length of pMOS; gate source/drain underdiffusion (MM9 parameter); nMOS, pMOS gate source/drain underdiffusion (MM9 parameter); Manuscript received July 20, 2000; revised August 3, 2001 and December 15, 2001. This work was supported by the Spanish Comisión Interministerial de Ciencia y Tecnología under Project CICYT-TIC98-0284. This paper was recommended by Associate Editor K. Mayaram. The authors are with the Physics Department, Balearic Islands University, 07071 Palma de Mallorca, Balears, Spain (e-mail: [email protected]; [email protected]). Publisher Item Identifier S 0278-0070(02)02473-9. B) process bias on the channel length (MM9 parameter); normalization constant; surface potential for strong inversion (MM9 parameter); transition time of input voltage; voltage of transition between and (MM9 parameter); physical threshold voltage with no substrate or drain bias (MM9 parameter); nMOS, pMOS physical threshold voltage with no substrate or drain bias (MM9 parameter); channel width; nMOS, pMOS Channel width; isolation reduction of channel width (MM9 parameter); process bias on the channel width (MM9 parameter); Intermediate Parameters velocity saturation index; nMOS, pMOS velocity saturation index; MOSFET conductivity; nMOS, pMOS conductivity; body effect coefficient; nMOS body effect coefficient; overvoltage; maximum overvoltage; overvoltage at ; charge stored at the output node flowing through the nMOS transistor when the output is discharged; output voltage swing; effective carriers mobility; interconnect resistance per square; area capacitance; fringing capacitance to underlying conductor for single line; input to output coupling capacitance; input to output coupling capacitance value when the input voltage is high, low; minimum output capacitance allowed by the technology; total output capacitance when the input voltage is low; short-circuit energy; short-circuit energy dissipated in a falling, rising input transition; transient energy; 0278-0070/02$17.00 © 2002 IEEE 434 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 4, APRIL 2002 transient energy dissipated in a falling, rising input transition; nMOS, pMOS drain current; drain current at ; drain current at and ; nMOS, pMOS drain current at ; saturated drain current; nMOS, pMOS saturated drain current; drain current; maximum short-circuit current; maximum short-circuit current for heavily loaded buffers; maximum short-circuit current for unloaded buffers; short-circuit current; effective channel length; minimum lithographic channel length allowed by the technology; effective channel length of pMOS; total power consumption; charge stored at and ; overshoot charge transferred (OCT); overshoot charge transferred for a fast input tran); sition ( overshoot charge transferred for a slow input ); transition ( overshoot charge fraction transferred during the ; interval overshoot charge fraction transferred during the ; interval short-circuit charge transferred when ; short-circuit charge transferred for a rising input transition; effective resistance of nMOS; short-circuit current time interval when ; short-circuit current time interval; time; time at which the short-circuit current is maximum; time at which the short-circuit current is maximum for unloaded buffers; time at which the short-circuit current is maximum for heavily loaded buffers; mathematical limit of when ; time at which the nMOS transistor starts to conduct; overshoot time; time at which the overshoot current is maximum; time during which the pMOS device passes a negative current; saturation voltage at ; saturation voltage of pMOS at ; saturation voltage; saturation voltage of pMOS; supply voltage; drain voltage; smoothing function used by MM9 between limand ; iting values gate voltage; input voltage; output voltage; short-circuit input voltage swing for ; threshold voltage used by the alpha-power law MOSFET model; nMOS, pMOS alpha-power law threshold voltage; effective channel width; minimum lithographic channel width allowed by the technology; nMOS, pMOS effective channel width. I. INTRODUCTION P OWER dissipation emerged as an important concern in circuit design during the last decade due to heating problems in high-density/high-performance circuits and to power savings required for portable applications. A growing fraction of the power consumed by very large scale integration (VLSI) circuits is due to the clock distribution network, signal repeaters, I/O drivers, and busses all based on inverters. Moreover, the analytical description of the power dissipated in a CMOS inverter is the most important step in the description of more complex gates [3]. It is well known that power dissipation in CMOS circuits has a dynamic and a static component. The dynamic dissipation is due to the charge/discharge of the gate output load and to the short-circuit current due to the direct supply-ground conducting path created during the transition [4]–[6]. Many high-level approaches consider only the first contribution to compute power in large circuits [7], [8], given the complexity and computing cost of considering the short-circuit component. The static dissipation is mainly due to current leakage from transistors in the off state, although reverse biased diodes from the device diffusions and well regions also contribute to this current. The off-state current, referred to as subthreshold leakage, is becoming more important with technology scaling since the device threshold voltage ( ) is reduced to maintain circuit performance. This term is usually neglected since ( being the Boltzmann constant, the temperature in Kelvin, and the electron charge) [9]. Several works model the short-circuit power consumption. Veendrick [4] obtained an expression for unloaded buffers although the short-circuit component has a strong dependence on the output capacitance. Hedenstierna et al. [5] calculated the short circuit current using the Shockley MOSFET model for loaded buffers. This model cannot be applied to short-channel devices since they exhibit a linear dependence of saturation current versus the gate voltage, rather than the traditional square-law model used for long-channel devices [6]. Sakurai et al. [6] derived a model for long and short channel devices using their -power law MOSFET model for unloaded buffers. This model, as the model in [4], is useful to estimate the short-circuit component upper bound but cannot be used for a detailed power dissipation description since the output load effect must be included. Turgis et al. [10] derived an expression ROSSELLÓ AND SEGURA: CHARGE-BASED ANALYTICAL MODEL FOR EVALUATION OF POWER CONSUMPTION for the short-circuit dissipation assuming that carriers were always moving at the saturation velocity and took into account overshooting effects. This model is valid only for deep submicron technologies and introduces the concept of equivalent capacitance, thus allowing a direct and frequency-independent comparison of the various power components. Hamoui et al. [11] obtained an expression for the short-circuit power dissipation using a modified version of the th power law MOSFET model in [12]. This approach requires numerical computing in a three-step process to determine the time when the short-circuiting transistor changes its mode of operation. Nikolaidis et al. [13] obtained an expression of the short-circuit dissipation for buffers driving long interconnect lines using the -model of an RC load and the -power law model for submicron devices. They took into account the input–output capacitance effects while the short-circuit current contribution was neglected when computing the output waveform. Recently, Nose et al. [14] derived a closed-form expression for the short-circuit power dissipation of CMOS gates taking into account short-channel effects, but not overshooting effects of increasing importance in submicron CMOS circuits. The work concluded that the ) will not short-circuit power to total power ratio ( is kept constant. change with scaling if the ratio In this work, we propose and evaluate a model to compute accurately the power consumption of CMOS buffers accounting for the main effects in submicron technologies as the input–output coupling capacitance and carriers velocity saturation effects avoiding time-consuming numerical procedures. The energy is computed from a detailed description of the various charge transference mechanisms involved during transitions. The final expression is the sum of the power dissipated when charging/discharging the output capacitance plus the short-circuit component that is accurately computed describing the impact of overshooting effects. The modeling process is described in detail providing a deep insight into the energy mechanisms involved as well as their interrelationship. The model is compared to HSPICE simulations (level 50) and to other models previously published considering a large set of parameters for a 0.35- and 0.18- m technology, showing significant improvements over previous works. The paper is organized as follows: in Section II we describe the energy components and the method used to derive each contribution. Section III presents the MOSFET models used, while Sections IV and V derive the short-circuit and transient energy components, respectively. Section VI presents the results and Section VII concludes the work. II. ENERGY COMPONENTS We derive the energy consumption of a CMOS buffer (Fig. 1) describing the charge transfer mechanisms in the circuit when an input ramp is applied. The dynamic behavior of the circuit in Fig. 1 is described by (1) is the output load that includes the gate capacitances where driven by the buffer, the interconnect wiring capacitance, and is the input–output the diffusion capacitances of the buffer. Fig. 1. 435 CMOS buffer model used to compute the energy dissipation. capacitance, the output voltage, and the pMOS the input and nMOS transistors current, respectively, and voltage. Fig. 2 illustrates the time evolution of the output voltage and the current through the nMOS and pMOS devices when a rising input voltage is applied. The input voltage is described with a linear ramp as (2) . From Fig. 2 it follows that (the short-circuit current time interval . when overshooting is neglected) and We compute separately the short-circuit energy dissipation component ( ) and the energy associated with the output node discharge ( ). The short-circuit energy is obtained from the short-circuit charge, while the expression of the transient energy is derived computing the charge that flows from the output node and ) to ground. We use (i.e., the charge stored at and for the short-circuit and transient energy components, respectively, for a rising input, while and refer to these energies for a fall input transition. The power dissipation in one period is computed as where (3) is the frequency of the input signal. where The current through the pMOS transistor ( in Fig. 2) has two components clearly distinguished by its sign. The negative pMOS current is due to a partial discharge of the output capacitance from the output node to the supply rail. This effect appears when the input–output capacitance drives the output voltage be) at the beginning of the transition yond the supply value ( [15]. When the nMOS device starts to conduct, it pulls the output voltage down. This effect is known as overshooting, and the time during which the output voltage is beyond the supply value . Once the output voltage goes is called the overshoot time , the pMOS current is positive corresponding to the below short-circuit component due to the simultaneous conduction of both devices. From this picture it is clear that the overshoot and short-circuit current components are related and their relative contribution is determined by the input transition time. If the input voltage is (the input voltage value at which the pMOS below 436 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 4, APRIL 2002 Fig. 2. Output voltage and current evolution in the nMOS and pMOS transistors for a rising input linear voltage. turns off; is the pMOS threshold voltage) at , then there will be a short-circuit current period from this time until the pMOS is turned off. This case will be referred to as a slow input transition. In the case of a fast input transition the output when the input reaches . voltage is still beyond ( being the time at which the nMOS In this case, is the short-circuit current transistor starts to conduct and time interval when there is no overshooting; see Fig. 2) and there is no short-circuit period. For a fixed input transition time, the greater the overshoot time (i.e., the greater the input-output coupling capacitance), the shorter is the duration of the short-circuit current contribution. The overshoot time depends on the relationship between the input–output capacitance (that drives ) and the driving strength of the the output voltage beyond nMOS transistor (that pulls this output voltage down), while the short-circuit period termination is determined uniquely by the input transition time. This effect is illustrated in Fig. 3, obtained from simulation, showing a set of pMOS current curves for a fixed input rise time and different coupling capacitance values. The short-circuit current contribution tail end is independent of the time at which short-circuit starts (since it is determined by ), while its negthe time at which the input voltage is ative slope does not vary significantly in all cases because the pMOS transistor is saturated. Note that overshooting does not only impact short-circuit duration, but also decreases its maximum value. We included the overshooting effects on the short-circuit expression through the overshoot time using a geometrical approach following the behavior reflected in Fig. 3. This process is detailed in Section IV. The short-circuit energy ( ) will be computed from the pMOS current since this component can be clearly identified. The energy associated with the overshoot charge transferred will be neglected since this energy is proportional not only to the small amount of charge involved, but also on the voltage difference through which it flows, which is also very small when compared to the supply voltage. The transient energy ( ) corresponds to the energy dissipated when discharging the output capacitance. The energy of a Fig. 3. pMOS current shape variation for a fixed input rise time and different values of the input–output coupling capacitor. discharging constant capacitance is simply , where is the voltage swing and the charge initially stored in the capacitance and discharged through the nMOS transistor (defined as dynamic charge). The voltage swing of the output node in the but a higher one, say buffer circuit is not the supply voltage , due to overshooting. The dynamic charge will be derived using charge conservation by computing the charge at the beginning of the transition minus the charge at its end. It is important to remark that the overshoot charge (that is the charge transferred from the output node to the supply rail) must be subtracted from this term since it flows through a voltage difference and not through as occurs for the charge flowing from the output node to ground. Therefore, although the overshoot charge is small and its overall energy contribution can be neglected, this charge must be subtracted from the charge variation at the output node since only the dynamic charge is multi) when computing plied by a large voltage difference ( the transient energy. The output node charge is stored in both the input–output caand the load capacitance . Since the transient pacitance energy is derived from the computation of the charge at the beginning and the end of the transition, we require an expression of the input–output capacitance (which is strongly dependent on the input–output voltage) only for these two static operating in the static input low state ( ) conditions. The value of considering the side-wall capacitance of both transistor drains and the gate to drain overlap capacitance of the pMOS transistor in the linear region is given by (4) and being the gate source/drain underdiffusion with and for the pMOS and nMOS transistors, respectively. are the nMOS and pMOS effective channel width, while is the effective channel length of the pMOS transistor. The effective channel length and width are [2] (5) ROSSELLÓ AND SEGURA: CHARGE-BASED ANALYTICAL MODEL FOR EVALUATION OF POWER CONSUMPTION 437 where and are the process bias on the channel is the isolation rewidth and length, respectively, while duction of channel width. For a static input high the capacitance can be obtained similarly. III. MOSFET MODEL USED Equation (1) cannot be solved in a closed form even when the simple Shockley MOSFET model is considered. Moreover, since carrier saturation effects become important with technology scaling, more advanced MOSFET models accounting for such effects must be considered. The alpha-power law MOSFET model [16] is a simple shortchannel MOSFET model expressed as (6) with (7) The saturation voltage Fig. 4. Comparison of the saturation voltage provided by MM9 with the linear description of (8) (with n = 1) for a 0.35-m technology. the carriers mobility, while and are the effective and channel width and length, respectively. The parameters are the gate field and drain bias mobility reduction coefficients and is given by is given by [16] (8) instead of the traditional dependence We took of the saturation voltage [6] to simplify Sakurai’s equations in the linear region. A comparison of (8) with the physically based saturation voltage for an nMOS transistor with dimenm and m is plotted in Fig. 4. sions The parameter is the velocity saturation index that takes a value between two (long-channel devices) and one (shortand are the drain curchannel). The two parameters , while rent and the saturation voltage for and are fitting parameters [6]. parameters and can be computed using any physically based MOSFET model. We used the MOSFET model 9 (MM9) to compute these parameters (see [1] and [2] for a detailed description of the MM9 structure). The MM9 is a short-channel model that is being included in many widely used general-purpose circuit simulators and thus is drawing a significant amount of attention. A relatively small number of model equations and parameters are used when compared with many other models [2]. MM9 basic equation is (9) is a smoothing function being equal to the drain where to source voltage when the transistor is in the linear region is the and to the saturation voltage when it is saturated. is the threshold voltage. gate to source voltage and with being the gate oxide capacitance, (10) is the substrate sensitivity when depleting surface where is the substrate sensitivity when depleting bulk doping and is a voltage of transition between and doping. . is the surface potential for strong inversion while and are MM9 constants from [1] and [2]. A detailed description of parameter extraction for this model from the device I-V current characteristics can be found in [17]. in (7) is computed using (9) while in The value of (8) is obtained from [2] (11) Alpha-power law model equations are mathematically simpler than physically based MOSFET models like MM9 with the disadvantage that the relationship between the empirical paramand the foundry supplied process parameters is not eters , developed directly. We use the following relationship [18] to relate to physical parameters: (12) The expression for in the MOSFET Model 9 is [2]: (13) To obtain a better fitting of the transistor characteristics we by adjusting this threshold voltage to fit derive a value of . We obtain this the drain saturation current at 438 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 4, APRIL 2002 current value (denoted as ) from (9) and equate it to the predicted value of the alpha-power law The short-circuit charge transferred (SCCT) is the integral of from the time at which the nMOS is turned on, , up to the (see Fig. 2) time at which the pMOS turns off, (14) (18) with given by (12). We use (14) to get value leading to from the predicted That leads to the following: (19) (15) , , , and The parameters can be obtained using any physically based MOSFET and model since . analytically to Equations (12) and (15) relate and physical parameters without the need for time-consuming numerical computations. IV. SHORT-CIRCUIT COMPONENT We derive the short-circuit charge in a first step, neglecting overshooting effects which are included in a second step through the overshoot time. ), the short-circuit In the case of unloaded buffers ( current is equal to the nMOS saturation current for the interval and to the pMOS saturation current when , where is the time at which the short-circuit current is maximum. Therefore, using the alpha-power law MOSFET model, the short-circuit current for an unloaded buffer is (16) This current dependence is taken as a reference to obtain an expression for the short-circuit current for loaded buffers using ) and the time at which the values of the maximum current ( ) derived in Appendix A. and have it occurs ( been derived considering the limit of unloaded buffers (i.e., paand ) and heavily loaded buffers (rerameters , ). ferred to as As an analogy to (16), the short-circuit current is shown in (17) at the bottom of the page. The value of is selected to set the value of (19) equal to the . This parameter is required to adjust HSPICE simulation of the charge and accounts for deviations mainly due to differences (from the -power model) and the physical , between as well as other second-order effects not considered similar to channel length modulation. This value has been found to be close to 1.5 and 1.7 for 0.35and 0.18- m technologies, respectively, for a large range of parameters values, including variation of the channel length (and therefore ), the buffer symmetry (which has a strong effect on the short-circuit current shape), input rise/fall time, output capacitance, input–output capacitance, etc. The value of is the same for rising or falling input transitions and must be adjusted only once for the technology since its value remains constant for all the parameters considered in the model. Fig. 5 compares (17) to HSPICE simulations for various to 50 ). When values of the output capacitance (from is small, the maximum current time is close to while HSPICE results are close to the current shape predicted by (16). As the output capacitance increases, the time at which the short-circuit current is maximum also increases and is close for large values of . The areas under the curves to described by (17) and HSPICE simulations (i.e., the charge) are nearly the same. Overshooting effects are included through the overshoot time . Simulations in Fig. 3 showed that overshooting displaces the short-circuit current to the right, maintaining the current slopes invariant. This can be described analytically using a geometrical approach as shown in Fig. 6. The short-circuit current curve displacement is approximated with straight lines of conis the area of the triangle , while the restant slope. ) is the area within the duced SCCT due to overshooting ( . With this geometrical analogy, is derived triangle using as from (20) given by (19). Equation (20) is an approximation obwith tained assuming that the short-circuit current is linear with time (17) ROSSELLÓ AND SEGURA: CHARGE-BASED ANALYTICAL MODEL FOR EVALUATION OF POWER CONSUMPTION Fig. 5. Short-circuit current versus C for a 0.35-m technology. The maximum short-circuit current and the time at which such a maximum takes place are fitted by the model proposed. and it does not vanish for is lation for any Fig. 6. Geometrical derivation of Q 439 from Q using t . . A more accurate re- (21) The mean deviation of (21) with respect to (20) is less than and provides negligible values for . 10% of We plot a comparison of (21) to HSPICE in Fig. 7 showing for different values of , with good accuSCCT versus is given in Appendix B. racy. The mathematical derivation of Finally, the energy associated with SCCT for a rising input is computed as (22) Fig. 7. Short-circuit charge transfer versus coupling capacitor for various values of C in a 0.35-m technology. V. TRANSIENT DISSIPATION The transient energy is dissipated when the output node is discharged. Conceptually this contribution can be subtracted from the short-circuit energy given that only the short-circuit charge flows through the short-circuiting transistor (that is the pMOS (nMOS) transistor for a low to high (high to low) input transition). In the buffer model of Fig. 1 the charge at the output node is stored in both the output and coupling capacitances, leading . to As discussed in Section II, overshooting has two main effects: first, it raises the voltage from which the output is discharged (say ), and second, part of the charge beyond through initially stored at the output node is transferred to the pMOS (this charge was referred to as the overshoot charge ). The overshoot charge does not contribute to the transient energy in the same way as the charge that goes to ground since the overshoot charge flows through a smaller voltage drop (see Fig. 2). Therefore, the energy expression associated with the discharge of the output node must contain only a fraction of the charge initially stored in the output capacitances. The energy dissipated by the nMOS transistor for a high-to-low output tran(energy dissipated for sition is given by a constant discharging capacitance). is the charge transferred from the output node to ground through the nMOS tranis the voltage swing given by . sistor and Thus, the discharging energy is expressed as (23) is the charge at the output node at time (when where is the charge the nMOS transistor starts to conduct), stored at the output node when the output transition is finished, is the overshoot charge transferred from the output and node capacitances through the pMOS transistor (and therefore not dissipated in the nMOS transistor) during time that both ). The output voltage swing transistors are conducting ( is We write considering at the output node is equal to the that the charge for charge at that node at the beginning of the input transition ) minus the charge that has ( through the pMOS been transferred from the output to transistor until the nMOS transistor starts to conduct (defined 440 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 4, APRIL 2002 as ). Since charge transferred is and the total overshoot , (23) takes the form with (30) (24) If the parasitic input–output capacitance is neglected ( ), the overshooting and overvoltage vanish ( and ) and the well-known expression for the transient energy is obtained as (25) To compute the transient energy in (24) we derive an expresand the overvoltage . sion for the overshoot charge A. Overshoot Charge Transfer The overshoot charge transfer differs for fast and slow input transitions since in the first case the pMOS transistor is off when overshooting ceases and in the second case this device is still conducting. We compute the overshoot charge for the slow and and , respectively) and then comfast input transitions ( bine both equations in a unified expression. , i.e., the 1) Slow Input: In this case has not reached at . The input is given charge stored at the output node at time , while at the by beginning of the transition the charge stored at the output . The difference node is is the overshoot charge plus the charge . Therefore, the that passed through the nMOS until overshoot charge expression is where the parameter defines the transition between the two regions. 2) Fast Input: For a high-speed transition the pMOS is off (i.e., ) and the overshoot charge is before calculated from the current passed through the pMOS. We use (9) neglecting the velocity saturation effect of the gate voltage ) with neither of the quadratic or higher order terms ( (the drain voltage of the pMOS during overshooting is of small) leading to (31) Given that (32) is computed from (1) At the beginning of the transition ), neglecting the nMOS and the pMOS current ( which are negligible with respect to the current injected through that is proportional to which is large for fast inputs). So in this case (1) simplifies to (33) from (33), the pMOS drain voltage takes the form , thus (32) leads to (26) is close to , therefore the For a slow input transition is still valid and the integral over the approximation nMOS transistor current can be neglected. The term into the parenthesis of (26) corresponds to the input voltage swing that determines the amount of charge flowing through the pMOS transistor during overshooting and cannot go since for these values the pMOS is off. The beyond can go beyond leading to an overestimation in time the input voltage swing. Therefore, we correct the expression of in (26) with a time . (27) must be equal to the overshoot time for Knowing that for large ones, we use small values and that saturates to the following expression: (28) is a function that saturates to where and is equal to when when , defined as (29) , we obtain (34) and : Equations 3) Combining Expressions for (27) and (34) are unified into a single analytical expression for high-speed for the overshoot charge that is equal to for slow inputs transitions and to (35) Fig. 8 shows the charge transferred through the pMOS tranfor sistor for a high-to-low output transition as a function of different nMOS channel widths. Squares are HSPICE simulations while solid lines correspond to the charge model developed ). The charge transferred for high-speed transitions is ( mostly due to overshooting (a total negative charge is obtained) while for slow-input transitions the short-circuit component is dominant (overall positive charge). The curves in Fig. 8 show a good fit to (35) and (21) to describe the charge through the pMOS. B. Overvoltage Evaluation computing the We obtain the maximum overvoltage . We adjust this expression to meet the output voltage at limit of an ideal step input using charge conservation. ROSSELLÓ AND SEGURA: CHARGE-BASED ANALYTICAL MODEL FOR EVALUATION OF POWER CONSUMPTION Fig. 8. pMOS charge transference versus input rise time for three different channel widths for a 0.35-m technology (Symbols: HSPICE simulations, solid lines: Model proposed). The derivation of 441 Fig. 9. Maximum overvoltage versus input rise time for various values of C for 0.35-m technology. requires solving (36) where Equation (36) is derived from (1) and is valid for is neglected since the nMOS is off. To get an analytical so, we take the pMOS curlution of (36) and compute rent expression with the approximations of small drain voltage and neglect gate saturation effects (31). We also take an average as leading to value of (37) We solve (36) using (37) and compute the overvoltage when the nMOS transistor starts to conduct ( ) obtaining (38) Equation (38) provides a partial description of the maximum output voltage. For an ideal step input, the maximum overvoltage is obtained from charge conservation as (39) . The maxThis result is not provided by (38) when imum overvoltage is also determined by the discharging nMOS current and the capacitance being discharged ( ). To account for these effects we define an effective resistance for the nMOS and incorporate an additional transistor as term to (38) to estimate the maximum overvoltage beyond (40) Equation (40) is an empirical expression that provides an excellent agreement with HSPICE simulations as shown in Fig. 9. The plot presents the overvoltage versus the input rise time for (from to 50 ). different values of Fig. 10. Power dissipation versus input-to-output transition time ratio for 0.18-m technology. Three different capacitance values (C , 3C , and 5C ) driven by three different buffers (I , 3I , and 5I ) are considered. VI. RESULTS We compare the model predictions versus HSPICE simulations for 0.35- and 0.18- m technologies considering energy versus input transition time, output capacitance, channel length, supply voltage, temperature, and the pMOS to nMOS channel width ratio. For each plot we include results from the models in [10], [11], or [14], depending on which best fits the energy consumption for the parameter considered. Fig. 10 plots the energy dissipated per cycle versus the input-to-output time ratio for the 0.18- m technology. The output time is taken from HSPICE simulations as an average value of the rise and fall times at the buffer output ), where and are proportional to the time ( at the output ( ) to 0.1 at the output ( ) from 0.9 ). Three different design scenarios (i.e., are considered: a minimum inverter driving a minimum sized m m ) inverter ( and 5 ) with output capaciand two scaled inverters (3 and 5 , respectively. The input time ranges tances of 3 from 20 ps to 1 ns (0.5 to 3.5 in the plot) covering both fast 442 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 4, APRIL 2002 Fig. 11. Power dissipation versus input time to output time ratio for three different inverter sizes in 0.18-m technology. Different W =W ratios are considered. Fig. 12. Power dissipation versus output capacitance for three different input rise times for 0.18-m process technology with W = 1 m and W = 2 m. The model is compared to HSPICE simulations and a recently published model [14]. and slow input transitions. Simulation results show that both models (the model proposed and the model in [10]) provide a good description of the energy for the whole design space considered. Fig. 11 plots the power dissipation versus the input-to-output and time ratio for five inverters, three with ratios m m m m and m m and two with and ratios m m and m m for 0.18- m technology. The input times range from 20 ps to 1 ns. The model presented reports better fitting with respect to previous works (we include results only from [14] as the model better describing the energy for this parameter) maintaining an accurate description of power . for different values of Fig. 12 shows the power dissipation dependence with the ps, output capacitance for three input rise time values ( ns, and ns) for a 0.18- m technology CMOS m m. The model proposed and inverter with the model in [14] are compared to HSPICE simulations showing similar accuracies, thus verifying the accuracy of the proposed model to describe the short-circuit and transient components. Fig. 13. Energy dissipation versus input-to-output time ratio for different ratios for 0.35-m technology. When t =t > 1 the short-circuit component is dominant while for t =t < 1 the overvoltage contribution increases the total power. W =W Fig. 14. Energy dissipation versus channel length for 0.35-m technology. This graph shows the behavior of the proposed model when varying the velocity saturation index () and the coupling capacitance. Fig. 13 plots the energy dissipated per one cycle period versus the input-to-output time ratio for 0.35- m technology. Four different inverters are considered with different values ratio and two values of the output capacitance of the (all the values specified in the graph). The input time ranges from 20 ps to 1.5 ns. Results show that the model presented describes correctly HSPICE simulations under all the parameter combinations considered representing an improvement over previous models. Fig. 14 compares the energy versus channel length with and a minimum channel HSPICE for different values of m). This graph shows good accuracy of the width ( model proposed for different velocity saturation index values ( ) since this parameter is strongly dependent on the channel length. As the device length decreases, the conductance of the transistors is reduced leading to lower values of SCCT; this is ns. The power contribution due to the the case for coupling capacitance increases with channel length for shorter input transitions. ROSSELLÓ AND SEGURA: CHARGE-BASED ANALYTICAL MODEL FOR EVALUATION OF POWER CONSUMPTION Fig. 15. Energy dissipated versus power supply for 0.35-m technology. The model developed provides a good description for the entire range considered. 443 Fig. 17. Energy versus temperature for three supply voltages for 0.35-m technology. Fig. 18. Energy versus pMOS width with W = 3 m and C = 10C for 0.18-m technology. This graph shows the behavior of the model when nonsymmetrical buffers are considered in the deep-submicron regime. Fig. 16. Energy dissipated versus power supply for 0.18-m technology. The model proposed describes the entire range considered. The energy variation with the power supply voltage is shown m, m, in Fig. 15 for a CMOS buffer with and different input rise an output capacitance of times (from 50 ps to 1 ns). HSPICE simulations are compared to the proposed model and the model in [11]. Energy models require good accuracy with supply voltage since it is one of the key parameters used to control power consumption. Simulations show that the model proposed represents a contribution in describing this dependence. The energy versus power supply for 0.18- m technology is shown in Fig. 16 for a CMOS buffer with m m, , and ps, 500 ps, and 1 ns. The model proposed provides a good description in all the range considered. Fig. 17 plots the energy versus temperature for three different supply voltages. The MOSFET Model 9 temperature dependence [2] is included in the basic parameter set. The model accuracy is maintained over the whole period considered ( 50 to 150C) showing that the low voltage regime is less sensitive to temperature variation. Fig. 18 plots the energy in one cycle versus the pMOS channel width for a fixed value of the nMOS channel width for 0.18- m technology. Different values of the are considered (from 50 ps to 1 ns). Fig. 18 reinput times flects the accuracy of the model to describe the time at which the maximum short-circuit current takes place as the maximum dc current location is dependent on the buffer symmetry. Fig. 19 shows the energy dissipated by a CMOS buffer driving a long interconnect line. We considered a 1- m width level model [20] for 0.35- m tech2 metal simulated using a nology. For this technology the metal 2 to well capacitance per m its fringing caunit of area is m, and its square resistance is pacitance is m sq. The total output capacitance (used in the , where model) was computed as is the output capacitance of the buffer, is the parais the input capacitance sitic interconnect capacitance, and of the driven gate. We compared HSPICE simulations (squares) to the model developed and a specific model for long interconnect lines [13] for two different input times of 50 ps and 1 ns. The model derived in this work reports good fitting for interconnect lines lengths below 5 mm, leading to energy underestimation for higher wire lengths. This underestimation is 444 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 4, APRIL 2002 TABLE I AVERAGE ERROR OF ENERGY ESTIMATION VERSUS HSPICE FOR 0.18- AND 0.35-m TECHNOLOGY TABLE II PERCENTAGE OF ENERGY DUE TO COUPLING CAPACITANCE EFFECTS ( E ) AND TO SHORT-CIRCUIT CURRENTS ( E ) WITH RESPECT TO THE TOTAL POWER % Fig. 19. line. % Power consumption for a CMOS buffer driving a long interconnect due to the increase of the line resistance with its length. When the line resistance becomes comparable to the buffer output resistance, part of the output capacitance is shielded from the buffer, thus decreasing the gate delay and increasing the short-circuit dissipation [21], [22]. We compare this result with the model developed by Nikolaidis et al. [13] (dashed line in Fig. 19). That model provides an accurate description for the delay of an inverter driving an RC line but uses a fixed value for the time at which maximum short-circuit takes place (set ). Therefore, the dependence of this time as with the output capacitance increase (Fig. 5) is not described, leading to a underestimation of the energy dissipated as shown in Fig. 19. We calculated the mean deviation of the Energy versus input time, channel length, supply voltage, output capacitance, and pMOS channel width from HSPICE simulations for the models in [10], [11], and [14] and the model proposed for the 0.18- and 0.35- m technologies considered. The percentage deviations are reported in Table I showing the improvement achieved by the model proposed with an overall accuracy within 5% of HSPICE simulations, thus representing an improvement over previous works. The model in [10] provides the better agreement with HSPICE simulations for the 0.18- m technology rather than the 0.35- m technology since it was developed for deep-submicron technologies. Table II reports the percentage of energy due to coupling ca) and short-circuit currents ( ) with pacitance effects ( is kept constant respect to the total power. The ratio for the two technologies considered and the input time is se). The percentage lected to be equal to the output time ( of the short-circuit power is nearly the same for the two technologies (as predicted in [14]) while the influence of the coupling capacitance on the total power increases for the 0.18- m technology. Finally, we computed the power dissipation for 10 transitions with HSPICE and the analytical models on a Pentium III processor-based computer. Simulation times are reported in Table III showing that the models in [5], [6], [10], [14], and the proposed model are up to three orders of magnitude faster than HSPICE, while the models in [11] and [13] are two orders of magnitude faster than the simulator. The numerical approaches TABLE III COMPUTATION TIME FOR 10 TRANSITIONS used in [11] to obtain the time at which the maximum short-circuit current takes place (using the bisection method) and the complex equations in [13] to model the RC line at the output of the buffer increase computation considerably. VII. CONCLUSION We have developed an analytical expression for the energy dissipation in CMOS buffers by solving the dynamics of the circuit and considering a physically based -power law MOSFET model. The various energy components are discussed and modeled in detail highlighting the parameters involved and their interrelationship. Several nonlinear problems are solved with simple and accurate formulas to avoid time-consuming numerical procedures. Exhaustive comparisons to HSPICE results are provided to demonstrate the validity and accuracy of the model for both submicron (0.35 m) and deep-submicron (0.18 m) technologies. This model is expected to remain valid for scaled technologies as long as the subthreshold leakage component does not dominate active power, since the main submicron effects are accounted at the device level. It represents an improvement over previous models since results show an overall high accuracy in describing the energy for all the parameters considered (Figs. 10–19), while previous models maintain accuracy only for some parameters or technologies. The model proposed has an average error within 5% of HSPICE simulations for a wide range of parameter variation. ROSSELLÓ AND SEGURA: CHARGE-BASED ANALYTICAL MODEL FOR EVALUATION OF POWER CONSUMPTION 445 The model presented underestimates energy when the resistance of the line driven by the buffer is comparable to the effective resistance of the transistors in the buffer. Additional efforts are required to account for these resistive effects [22]. APPENDIX A COMPUTATION OF THE MAXIMUM SHORT-CIRCUIT CURRENT Maximum Current for Unloaded Buffers When the output capacitance is small (i.e., when the shortcircuit current has a greater impact [4]) the circuit behavior is . close to the inverter dc operation in the sense that At the beginning of the transition, the pMOS transistor drives a current equal to the nMOS saturation current, while at the end of the transition the pMOS is saturated. In this particular case, the . Using (7) and maximum current takes place when for the nMOS and (2) and using for the pMOS, leads to (A1) is the time at which the short-circuit current is where is maximum for unloaded buffers and Fig. 20. HSPICE and (A3) comparison for 0.35-m technology of the time at which the short-circuit current is maximum for lightly loaded buffers. Different inverters with different W =W ratios are considered. taken as while the input voltage is described with a linear ramp [see (2)]. Under these assumptions and neglecting overshooting effects (that will be included later), (1) becomes (A6) (A2) We found a good approximation to the solution of (A1) for (which is the range for these parameters) as given by (7) and with using (7) and (2) obtaining . We solve (A6) (A7) (A3) where (A8) where (A4) Equation (A7) is used for the linear expression of the pMOS ) in the alpha-power law MOSFET model current ( (6) with Equation (A3) leads to the exact solution of (A1) when , or , or , . Equation (A3) also . A comgives an accurate description for the case parison of (A3) to HSPICE simulations is shown in Fig. 20 for ) ratio for various buffers with different values of the ( 0.35- m technology. Once the maximum time is obtained we derive the maximum short-circuit current for unloaded buffers from (7), using (2) and (A3) as (A9) (A5) that are obtained from (A7), (2), and (8), respectively, leading to Computation of the Maximum Current for Heavily Loaded Buffers values. In this case, Equation (A3) is inaccurate for large the current through the pMOS transistor can be neglected and (A10) 446 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 4, APRIL 2002 with (A11) The time at which the maximum current takes place for is obtained solving heavily loaded buffers (A12) where and take the form (A13) Fig. 21. HSPICE simulations of t and t in 0.18- and 0.35-m process technologies for a minimum-sized inverter driving another minimum-sized inverter. Different input rise times are considered. Now we obtain the maximum short-circuit current for heavily given by (A13). loaded buffers computing (6) at We take into account only the linear dependence of on to simplify the expression. This approach is justified since the drain voltage swing during the input transition is not large for heavily loaded buffers. The result is (A14) Combining Both Expressions and , respecEquations (A12) and (A14) diverge to . We construct an expression for the maximum tively, for and time that leads to short-circuit current and for large values of and to and for . function must be a constant for small output loads The is load independent) while for large loads it must (since , i.e., a function of the show the same dependence as form (A15) where is load-independent. An asymptotic function that follows the required limits is Fig. 22. Overshoot time variation with input rise time for various values of the output capacitor. The parameter t is nearly independent of C as predicted by (B5). The function for the time at which the short-circuit is maximum must lead to (A12) for heavily loaded buffers and to (A3) for unloaded buffers. Equation (A12) is a function of the form (where both and are load-in(independent). We define the linear transformations and and version and translation) as and the linear transformation (a translation followed by an inversion). With this transformation we obtain a function similar to (A15) from (A16) (A18) is the constant value of where fore, the equivalent expression for is for in terms of Thereand (A17) is applied to (A3). We define The same transformation and and then obbetween in (A18) and tain a smoothing function using (A16). Then we transform with the inverse of ROSSELLÓ AND SEGURA: CHARGE-BASED ANALYTICAL MODEL FOR EVALUATION OF POWER CONSUMPTION 447 (B4) transformation function between ( and ) to obtain a smoothing Since , we then have (B4), shown at the top of the page. The solution of (B4) is (A19) (B5) as with , and Given that for the maximum current time, (A19) leads to (B6) (A20) APPENDIX B OVERSHOOT TIME COMPUTATION with HSPICE for different Fig. 22 is a comparison of . It is shown that this time is almost independent values of of the load capacitance as predicted by (B5). ACKNOWLEDGMENT An accurate description of the overshoot time requires a detailed modeling of the device behavior; for this reason we use the MOSFET Model 9 (MM9) [1], [2] to calculate the overshoot used in (21) and (26). time is a nonlinear problem. To avoid The solution of (1) to get numerical procedures we compute the time at which the overand relate to this value. shoot current is at maximum and for a 0.18Fig. 21 shows HSPICE simulations of and 0.35- m process technology obtained from a minimumsized inverter driving another minimum-sized inverter showing a linear relationship. The different simulations correspond to different input rise time values. This relationship can be expressed as (B1) since its analytical derivation is simWe will compute pler than the derivation of The maximum overshoot time is obtained from (1) neglecting the nMOS transistor the short-circuit current. Since at , (1) is reduced to is saturated and (B2) Using the long-channel approximation of the saturation voltage [2], [19] and neglecting the in the denominator of (9) as a first product term approximation, the drain saturation current of the nMOS is (B3) The authors wish to thank the anonymous reviewers for their constructive comments. REFERENCES [1] R. Velghe, D. Klaassen, and F. Klaassen, “MOS Model 9,” Philips Electronics, N.V., Unclassified Report NL-UR 003/94, 1994. [2] D. Foty, Mosfet Modeling With SPICE. Principles and Practice. Upper Saddle River, NJ: Prentice Hall, 1997. [3] J. L. Rosselló and J. Segura, “Power-delay modeling of dynamic CMOS gates for circuit optimization,” in Proc. Int. Conf. Computer-Aided Design. ICCAD 2001, San José, CA, Nov. 4–8, 2001, pp. 494–499. [4] H. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits,” IEEE J. Solid-State Circuits, vol. SC-19, pp. 468–473, Aug. 1984. [5] N. Hedenstierna and K. O. Jeppson, “CMOS circuit speed and buffer optimization,” IEEE Trans. Computer-Aided Design, vol. CAD-6, pp. 270–281, Mar. 1987. [6] T. Sakurai and R. Newton, “Alpha-power law MOSFET model and its applications to CMOS inverter delay and other formulas,” IEEE J. SolidState Circuits, vol. 25, pp. 584–594, Apr. 1990. [7] A. P. Chandrakasan, S. Sheng, and R. W. Brodersen, “Low-power CMOS digital design,” IEEE J. Solid-State Circuits, vol. 27, pp. 473–484, Apr. 1992. [8] R. Rogenmoser and H. Kaeslin, “The impact of transistor sizing on power efficiency in submicron CMOS circuits,” IEEE J. Solid-State Circuits, vol. 32, pp. 1142–1145, July 1997. [9] R. X. Gu and M. I. Elmasry, “Power dissipation analysis and optimization of deep submicron CMOS digital circuits,” IEEE J. Solid-State Circuits, vol. 31, pp. 707–713, May 1996. [10] S. Turgis and D. Auvergne, “A novel macromodel for power estimation in CMOS structures,” IEEE Trans. Computer-Aided Design, vol. 17, pp. 1090–1098, Nov. 1998. [11] A. Hamoui and N. Rumin, “An analytical model for current, delay and power analysis of submicron CMOS logic circuits,” IEEE Trans. Circuits Syst.—II: Analog and Digital Signal Processing, vol. 47, pp. 999–1007, Oct. 2000. [12] T. Sakurai and R. Newton, “A simple MOSFET model for circuit analysis,” IEEE Trans. Electron. Devices, vol. 38, pp. 887–894, Apr. 1991. [13] S. Nikolaidis, A. Chatzigeorgiou, and Kyriakis-Bitzaros, “Delay and power estimation for a CMOS inverter driving RC interconnect loads,” in Proc. IEEE Int. Symp. Circuits Systems, vol. VI, Monterey, CA, May 1998, pp. 368–371. [14] K. Nose and T. Sakurai, “Analysis and future trend of short-circuit power,” IEEE Trans. Computer-Aided Design, vol. 19, pp. 1023–1030, Sept. 2000. 448 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 21, NO. 4, APRIL 2002 [15] K. O. Jeppson, “Modeling the influence of the transistor gain ratio and the input-to-output coupling capacitance on the CMOS inverter delay,” IEEE J. Solid-State Circuits, vol. 29, pp. 646–654, June 1994. [16] T. Sakurai and R. Newton, “Delay analysis of series-connected MOSFET circuits,” IEEE J. Solid-State Circuits, vol. 26, pp. 122–131, Feb. 1991. [17] U. Weidenmueller, E. O’hAnnaidh, S. Healey, and K. McCarthy, “Implementation of direct extraction methods for compact model parameters. Part I: The FORTRAN code,” Philips Research, Nat. Lab., Unclassified Report 010/97, 1997. [18] J. L. Rosselló and J. Segura, “A physical modeling of the alpha-power law MOSFET model,” in Proc. 15th Design Circuits and Integrated Systems Conf., Montpellier, France, Nov. 21–24, 2000, pp. 65–70. [19] Y. Tsividis, Operation and Modeling of the MOS Transistor, 2nd ed. New York: McGraw-Hill, 1999. [20] H. B. Bakoglu, Circuits, Interconnections and Packaging for VLSI. New York: Addison-Wesley, 1990. [21] J. Qian, S. Pullela, and L. Pillage, “Modeling the effective capacitance for the RC interconnect of CMOS gates,” IEEE Trans. Computer-Aided Design, vol. 13, Dec. 1994. [22] J. L. Rosselló and J. Segura, “A simple power consumption model of CMOS buffers driving RC interconnect lines,” in Proc. XI Int. Workshop Power and Timing Modeling. Optimization and Simulation PATMOS 2001, Yverdon-Les-Bains, Switzerland, Sept. 26–28, 2000, paper 4.2. José Luis Rosselló (M’02) received the M.S. and Ph.D. degrees in physics from the Balearic Islands University, Spain, in 1996 and 2002, respectively. He is a Teaching Assistant in the Physics Department, Balearic Islands University. His research interests include device and circuit modeling, CMOS IC testing, and low-power design. Jaume Segura (M’94) received the M.S. and Ph.D. degrees from the Balearic Island University and the Polytechnic University of Catatonia in Spain, respectively. Since 1993, he has been an Associate Professor in the Physics Department, Balearic Islands University (UIB), Palma de Mallorca, Spain. He was on leave from UIB in 1994 and 2001 as an Invited Reasearcher at Philips Semiconductors, USA, and Intel Corporation, respectively. His research interests include device and circuit modeling and VLSI design and testing. Dr. Segura has served on the technical program committee of a number of conferences including the Design and Test in Europe (DATE), the International On-Line Testing Workshop (IOLTW), and the International workshop on current and Defect Based Testing (DBT). He is also member of the organizing committee of the VLSI Test Symposium (VTS) and served as General Co-Chair of the IOLTW in 2000. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 7, JULY 2004 1301 An Analytical Charge-Based Compact Delay Model for Submicrometer CMOS Inverters José Luis Rosselló and Jaume Segura Abstract—We develop an accurate analytical expression for the propagation delay of submicrometer CMOS inverters that takes into account the short-circuit current, the input–output coupling capacitance, and the carrier velocity saturation effects, of increasing importance in submicrometer CMOS technologies. The model is based on the th-power-law MOSFET model and computes the delay from the charge delivered to the gate. Comparison with HSPICE level 50 simulations and other previously published models for a 0.18- m and a 0.35- m process technologies show significant improvements over previous models. Index Terms—Analytical model, circuit modeling, delay estimation, submicrometer MOSFETs. I. INTRODUCTION T IMING analysis is one of the most critical topics in very large-scale integration (VLSI) design. The nonlinear behavior of CMOS gates requires numerical calculations for accurate timing analysis at the expenses of large computation times. Moreover, the impact of design parameters such as fan-in, fan-out, or transistor sizes on the propagation delay are difficult to understand and optimize using numerical procedures. The dynamic behavior of submicrometer CMOS inverters depends on several nonlinear effects like the velocity saturation of carriers due to the high electric fields in submicrometer technologies, the short-circuit current appearing when both pMOS and nMOS transistors conduct simultaneously [1], and the additional effect of the input–output coupling capacitance [2]. Several methods have been proposed to derive the delay of CMOS inverters [2]–[8] as a first step to describe more complex gates [9], [10]. Cocchini et al. [3] obtained a piecewise expression for the propagation delay based on the Berkeley short-channel IGFET model (BSIM) MOSFET model [11]. The model included overshooting effects (due to the input-to-output coupling capacitance) while the short-circuit current was neglected. Jeppson in [2], and Bisdounis et al. in [4], presented a model for the output response of CMOS inverters using a quadratic current-voltage dependence for MOSFET devices which is not longer valid for submicrometer technologies. Daga and Auvergne [5] obtained an empirical expression for Manuscript received May 25, 2003; revised August 31, 2003. This work was supported in part by the Spanish Ministry of Science and Technology, in part by the Regional European Development Funds (FEDER) under EU Project TIC2002-01238, and in part by Intel Laboratories-CRL. This paper was recommended by Associate Editor A. I. Karsilayan. The authors are with the Physics Department, Balearic Islands University, 07071 Palma de Mallorca, Spain (e-mail: [email protected]; jaume.segura@ uib.es). Digital Object Identifier 10.1109/TCSI.2004.830692 the propagation delay taking into account both overshooting and short-circuit currents. Hirata et al. [6] derived a propagation delay model with numerical procedures based on the th-power-law MOSFET model [12] considering both short-circuit and overshooting currents. The model provides an accurate description of the propagation delay but the numerical procedures used in their analysis increase the computation time considerably. Bisdounis et al. [7] developed a piecewise solution with seven operation regions for the transient response of a CMOS inverter based on the -power-law MOSFET model [13] including both overshooting and short-circuit currents. Recently, Kabbani et al. obtained, in [8], a transition time model considering a quadratic relationship between the saturation current and the gate–source voltage (assumption only valid for micronic devices) without considering the effect of the input–output coupling capacitance. In [9], Sakurai and Newton obtained a simple expression for the propagation delay of CMOS gates based on their th-power-law MOSFET model neglecting both short-circuit and overshooting currents. In this paper, we propose an analytical model to accurately compute the propagation delay of a CMOS inverter accounting for the main effects of submicrometer technologies like the input–output coupling capacitance, carriers velocity saturation effects and short-circuit currents. The model is based on an accurate physically-based th-power-law MOSFET model [14] and on a previous power dissipation model for CMOS inverters [15]. The model can be applied to compute the propagation delay of CMOS inverters and represents a valuable approach for the evaluation of delay in complex gates as these can be collapsed to a single equivalent inverter for delay evaluation [10]. Comparisons with previously published models and HSPICE simulations using the Philips MOSFET Model 9 (MM9) for 0.18- m and 0.35- m process technologies show significant improvements in terms of accuracy. This paper is organized as follows. In Section II, we describe briefly the switching characteristics of CMOS inverters and introduce the MOSFET device model used in this work. In Section III, we derive an analytical charge-based expression for the switching response of a single pMOS/nMOS transistor charging/discharging a capacitor, that are generalized to CMOS inverters in Section IV by including overshooting and short-circuit effects. Section V presents an analytical model for the output transition time based on the delay model developed. The model proposed is compared to HSPICE simulations and other previously published models for a 0.35- m and a 0.18- m process technology in Section VI. Finally, in Section VII, we conclude the paper. 1057-7122/04$20.00 © 2004 IEEE 1302 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 7, JULY 2004 dependence of the propagation delay with design parameters is nonlinear and difficult to model given that (1) cannot be solved in a closed form even using the simple Shockley MOSFET model [17]. Moreover, carrier saturation effects become important with technology scaling, thus requiring more complex MOSFET models accounting for such effects. The th-power-law MOSFET model [12] is a widely used short-channel drain-current model, and will be used in this work to derive the propagation delay and the output transition time of CMOS inverters. The drain current is given by Fig. 1. CMOS inverter model. (3) II. ANALYSIS OF CMOS INVERTER SWITCHING CHARACTERISTICS The dynamic behavior of the CMOS inverter in Fig. 1 is described by with (4) (1) where is the output capacitance that is composed by the drain capacitances of both nMOS and pMOS transistors, the output node wiring capacitance, and the input capacitance of and are the the gates connected to the inverter output. are the output and input voltages, respectively, while and is the input-topMOS and nMOS currents, respectively. output coupling capacitance, which is strongly voltage depenwhen the input is low ( ) is comdent. The static value of puted considering the overlap capacitances of both transistor drains and the gate-to-drain capacitance of the pMOS transistor that operates in the linear region [16] (2) with and being the effective channel width of is the effective channel pMOS and nMOS, respectively, length of pMOS, while and are the gate–drain underdiffusion for the nMOS and pMOS transistors, respectively. For is obtained similarly. a static input high, the capacitance Fig. 2 illustrates the input and output voltages evolution of the inverter along with the current through the nMOS and pMOS transistors for a low-to-high input transition. The current through the pMOS transistor ( in Fig. 2) has two components clearly distinguished by the sign of the current. The negative pMOS current is due to a partial discharge of the output capacitance from the output node toward the supply rail and appears when the input–output capacitance drives the ) at the beginning output voltage beyond the supply value ( of the transition [2]. This effect is known as overshooting and the time during which the output voltage is beyond the supply . When the nMOS value is defined as the overshoot time, device starts to conduct, it pulls the output voltage down. , the pMOS current is Once the output voltage goes below positive corresponding to the short-circuit component due to the simultaneous conduction of both devices. for a high-to-low The propagation delay (defined as output transition) is typically defined as the time interval from voltage input to the 50% voltage output. The the 50% where , , and are the gate, supply, and saturation is the drain current at voltages, respectively, and . The parameter is the velocity saturation index that ranges between 2 (long-channel devices) and 1 (shortchannel) [12], and describes the channel length modulation. is given by The saturation voltage (5) is the saturation voltage at , The parameter and are empirical parameters [12]. These while equations are mathematically simpler than physically-based MOSFET models such as BSIM3v3 or MM9 with the disadvantage that, in the original model developed by Sakurai and Newton, the relationship between the empirical parameters and the process parameters supplied by manufacturers is not provided. Therefore, the variation of th-power-law model predictions with key parameters like the supply voltage are not taken into account in the original formulation performed by Sakurai and Newton, where each parameter must be recomputed if the supply voltage or any device dimension change. In this paper, we use the physical formulation for the th-power-law MOSFET model proposed in [14] and used in [15]. This physical formulation provides an analytical relationship between the th-power-law parameters and the foundry-provided MOSFET parameters. III. CHARGE-BASED PROPAGATION DELAY OF SINGLE nMOS DISCHARGING TRANSISTOR The analysis of discharging a capacitor through a nMOS transistor is developed in Appendix A (for a pMOS charging a capacitor the analysis is equivalent). Four cases are considered depending on the input voltage state (rising or static high) and the nMOS region of operation (ohmnic or saturation). In this section we use the output voltage expressions obtained in Appendix A to evaluate a charge-based expression for the propagation delay. We state initially some definitions that will be used extensively during the development of the model. ROSSELLÓ AND SEGURA: ANALYTICAL CHARGE-BASED COMPACT DELAY MODEL Fig. 2. 1303 Output voltage and current evolution in the nMOS and pMOS transistors for a rising input linear voltage. In the context of this work, a fast-output transition refers to the cases were the nMOS transistor enters in its linear region while the input is changing. Otherwise (if the nMOS is saturated ), the output transition is considered to be slow. while We also define the discharging time up to a given voltage as the time interval from the beginning of the input transition until the instant at which the output is discharged at (an arbitrary voltage value between 0 and ). Finally, the propagation delay ( ) is defined as the time to (See Fig. 2). If interval from is defined as the input transition time, the propagation delay as is related to for (6) In this section, we first obtain an analytical expression of the discharging time for slow outputs, and then, we correct this expression to account also for fast outputs. The discharging time will be expressed in terms of the charge transferred through the and equal to ). nMOS transistor (defined as This charge is expressed in terms of four components (7) where and are the charges transferred while the input is rising and the nMOS is in saturation and linear region, respecand are defined similarly but when the input is tively. static high (i.e., ). The discharging time expression will be given in terms of these four charge components. A. Slow-Output Transitions For a slow-output transition, the nMOS transistor is saturated during the whole input transition and the output voltage evolution is given by (A6) (see Appendix A). Once the input is high, the output voltage is described by (A2) and (A4) since the nMOS is initially saturated and enters the linear region at the end of the output transition. We express the time needed to discharge the until (discharging time) as a funcoutput from , , tion of the charge transferred during each region ( and ) using (A2), (A6), and (A4) (8) where , and is the velocity saturation index of nMOS [in general, a subindex denotes a parameter for the nMOS(pMOS) ]. , , and , we define the saturation To obtain , and the linear charge as the total charge charge transferred when the nMOS transistor is in the saturation and in the linear region respectively. From these definitions, it follows that (9) where is the maximum charge that can be transferred through the nMOS transistor operating in the saturation region, given by where as is the output capacitance. We obtain from (10) where is given by (9) and is the maximum charge that can be transferred through the saturated nMOS transistor during the input transition. The value of this maximum charge 1304 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 7, JULY 2004 is obtained integrating the nMOS current during the rising input transition is obtained by computing the discharging The value of time (14) at the end of the input transition (that is, when ). For this special case, we can set that (11) Therefore, part of the saturation charge ( ) is transferred ), and the other part is transferred while the input is rising ( while the input voltage remains high (defined as ) (16) (12) After some algebra, (16) leads to Finally, for the slow-output ramp case we have that , since by definition, the input is high when the device enters the linear region. B. Inclusion of Fast-Output Transition Range Equation (8) is valid only if the nMOS transistor is saturated during the whole rising input period (for this case, the term is zero). For fast-output transitions, the case in which the nMOS enters in its linear region while the input is rising has no analytical solution (see Appendix A), and an approximation is required for an analytical description of the discharging time. The delay components of in (8) show mathematical analogies among the terms corresponding to the period during which the input is rising (the two first terms), and those corresponding to the input being static high (the two last). The time during which the nMOS is saturated and the input is high is given by ) while the time during the third term in (8), (that is, which the nMOS is saturated but the input is rising also contains ) but corrected with the same charge to current ratio ( an expression that depends on the transition time and the saturation velocity (13) When the output transition is fast, the linear charge is nonzero ), and must appear in the when the input is rising (i.e., in assuming delay expression of . We include the term that the charge component due to the static and dynamic input periods are of the same form (17) In (17), we use because the input transition is ) and achieves its maximum value. The finished ( is obtained solving (17) value of (18) where is given by (11). Finally, is obtained from (19) In Fig. 3, we plot HSPICE simulations of the output response of a single discharging nMOS transistor for a 0.35- m technology showing very good accuracy. Both slow- and fast-output transitions are simulated for various output capacitance values to , where is the input capacitance of (from a minimum sized inverter). From (14), the propagation delay is obtained applying (6). IV. PROPAGATION DELAY FOR CMOS INVERTER In this section, we consider a whole inverter (and not only a charging/discharging transistor) and include the effect of the short-circuit (due to the pMOS/nMOS transistor during the discharging/charging process) and overshooting currents ). Their (due to the input–output coupling capacitance contribution is included as additional charges to be transferred through the charging/discharging transistor. We develop only the discharging case as the charging case is equivalent. A. General Equation (14) From (14), we must evaluate the parameters and . Similar to the previous analysis of the saturation charge, the ) linear charge transferred during the rising input transition ( that is the maximum is bounded by a maximum value charge that can be transferred through the nMOS transistor operating in the linear region while the input is rising (15) The charge transferred from the output capacitances (both and in Fig. 1) through the nMOS transistor ( ) is computed from the difference between the charge initially stored at and the charge remaining in the output node this node when the output voltage reaches the desired value . , we have Assuming that (20) where and are the sum of the output capacitances when the input is low and high, respectively. and , while, when , we Initially, ROSSELLÓ AND SEGURA: ANALYTICAL CHARGE-BASED COMPACT DELAY MODEL Fig. 3. Falling transition for a W=L assume that is charge 1305 =2-m/0.35-m nMOS transistor with different output loads (the input rise time is fixed to 200 ps). . From (20), the maximum saturation (21) For the evaluation of the propagation delay, we are interested in the charge transferred only from the output capacitances and through the nMOS transistor. Therefore, we use the same terms defined in the previous section for charges , , , and . It is important to remark that, by definition, these charges come from the capacitances connected to the output node and therefore do not include short-circuit con, the maximum value of saturation tribution. Therefore, charge during the rising input, is obtained from (11) by substracting the short-circuit charge transferred (SCCT) (22) where is the SCCT for a rising input transition. The expression of this component is taken from [15]. The charge transferred through the nMOS transistor comes from the output capacitances ( ) and the power supply through the pMOS transistor (SCCT). The propagation delay is computed considering both contributions by including an additional charge (a fraction of the SCCT) to the charge transferred from the output capacitances. Therefore, from (6) and (14), the propagation delay expression is given by is a fraction of the SCCT ( ) and is defined as where . the SCCT during the time interval such that This short-circuit charge is added to the saturation charge for simplicity. The expression used for the evaluation of is , , computed in the Appendix B while parameters and are computed at . V. OUTPUT TRANSITION TIME COMPUTATION ( ) The effective output transition time can be related to a percentage of the derivative at the half point. Using from the 70% of this property, Sakurai et al. approximate derivative [9]. From SPICE simulations, we observed the that the output voltage shape is different depending on the relative switching speed between the input an the output voltages. For fast-output transitions (see Fig. 4), the output voltage evolution is close to the dc voltage characteristics of the inverter and (since the the output transition slope is strongly dependent of ). For slow-output nMOS conductance mainly depends on transitions (see Fig. 5), the output voltage slope is nearly conalmost from the stant since the nMOS gate voltage is at beginning of the output transition. Therefore, the percentage of derivative at that must be used to compute the depends on the relative switching speed of and , varying from 90% to 40% for a slow or fast-output transitions respectively. We use an empirical expression for the output transition that takes into account this effect time (24) (23) ratio provides the information of the relawhere the tive switching speed between the two nodes. This ratio is close to 0 or greater than 1 for fast and slow output transitions reand is given in Apspectively. The exact definition of used in (24) shows an expendix B. The expression for cellent agreement with respect to HSPICE simulations for both 1306 Fig. 4. and t IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 7, JULY 2004 Comparison between HSPICE simulations of inverter output switching characteristics and model predictions for a fast-output transition (C = 600 ps). Fig. 5. Comparison between HSPICE simulations of inverter output switching characteristics and model predictions for a slow-output transition (C and t = 50 ps). slow and fast-output transitions. In the analysis for the evaluaderivative at the short-circuit and overtion of the shooting currents are neglected for simplicity. is obtained from the discharging time The derivative as =C = 100C depending on the transistor state at . For the special case in which the input is high, the discharging time derivative is (25) where . The derivative must be . At this time point, the transistor computed for can be in the linear or saturation region and the input can be rising or already at the high value. Therefore, Note that when , we obtain the case in , see (14)], and which the nMOS is saturated [that is, the device is in the linear region when when and (25) leads to . ROSSELLÓ AND SEGURA: ANALYTICAL CHARGE-BASED COMPACT DELAY MODEL Fig. 6. 1307 Propagation delay versus input rise time for different values of the configuration ratio. If the input voltage is rising when the output is at can be simplified to discharging time at , the (26) where is given by (27) Therefore, is given by (28) Since is similar to (25), then We use the following expression for (25) and (29) for each case: (29) that leads to (30) Note that the power term in (30) is equal to 1 when and (25) is recovered. Finally, the derivative at is of (31) This expression is valid for both fast- and slow-output transitions. VI. RESULTS We plotted model results versus HSPICE level 50 simulations for a 0.35- m and for a 0.18- m technology. Results show that the propagation delay versus the input transition time, the supply voltage, and the ratio. In Figs. 4 and 5, we show the output waveform of a CMOS inverter driven by a slow and a fast input transition, respectively (with parameters fF, 600 ps and 500 fF, 50 ps, respectively). Both figures show that the model developed for the propagation delay and the output time approximate the output response of the inverter with very good accuracy. In Fig. 6, we plot the propagation delay versus the input time for different values of the ratio for a 0.35- m technology. HSPICE simulations (dots) are compared to the model proposed and to a previous model [3]. Since the short-circuit current is not taken into account in the model in [3], the propagation delay is underestimated. The model in [3] proposes a piecewise solution of the propagation delay, i.e., depending on the input transition (fast or slow input transitions) it uses an approximated or an exact expression. The approximated propagation delay is used when the nMOS transistors change from the saturation to the linear region and the input is rising [3, eq. (11)]. Otherwise, an exact expression for the output response is used. This leads to a discontinuity in the propagation delay when changing between regions (see Fig. 6). Fig. 7 plots the propagation delay versus the input rise time for a 0.18- m technology. When the ratio is small the propagation delay decreases for increasing input rise times. The model in this work (solid lines) provides an excellent approximation to HSPICE simulations (dots) while previously published models [6], [7], that account for both overshooting and short-circuit currents, lead to underestimations. 1308 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 7, JULY 2004 Fig. 7. Propagation delay versus input rise time for different values of the configuration ratio for a 0.18-m technology. Fig. 8. Propagation delay versus supply voltage for a 0.18-m technology. Fig. 8 is a plot of HSPICE simulations (dots) and model predictions of the propagation delay versus the supply voltage. The model proposed in this paper provides a much better fit of the delay than the models in [6] and [7], especially for the low-voltage regime. The model in [7] shows discontinuities because it uses different expressions (Taylor series expansions) for the output response depending on the operation region of transistors. In Fig. 9, we show the propagation delay variation with temperature for three different supply voltage values. Different trends can be appreciated for each supply voltage value when increasing temperature. The propagation delay increases for 1.8 V, while for 0.9 V, the propagation delay decreases. This effect is described properly by the proposed model since we are using the physically-based th-power-law MOSFET model developed in [14] that relates the th-power-law parameters to physical parameters (that are temperature-dependent) as the carrier mobility. For a more detailed description of this model, the reader is referred to [14], [15]. Fig. 10 plots the output switching response of a CMOS in, verter for different output loads ( and ) for a 0.18- m technology. It is shown that the model provides an excellent description of the gate delay, as the deviation of the output voltage with respect to the simulais very small. tions at Table I compares the model with HSPICE simulations of the propagation delay for a 60-CMOS inverters chain with ROSSELLÓ AND SEGURA: ANALYTICAL CHARGE-BASED COMPACT DELAY MODEL Fig. 9. Fig. 10. 1309 Propagation delay versus temperature. Different delay trends versus temperature can be appreciated at different supply voltages. Comparison between HSPICE simulations of inverter output switching characteristics and model predictions. TABLE I DELAY VALUES OF 60-INVERTER CHAIN FOR 0.18-m TECHNOLOGY AT DIFFERENT SUPPLY VOLTAGES 10 m 5 m and m for different power supply values. A 1-GHz input signal drives the first inverter input. This experiment is used to check both the output transition time and the propagation delay model developed since the propagation delay of each stage is dependent on its of input rise time , that is, the output transition time the previous stage. The proposed model provides very good accuracy with respect to HSPICE. In Table II, we show the mean error of the model proposed and the models in [6] and [7] with respect to HSPICE simulations performed in Figs. 6–8. As can be appreciated, the model proposed provides a better accuracy than previously published models for scaled technologies. Table III compares the comcalculations of the propagaputation time used to perform tion delay of one single inverter with different analytical models and HSPICE simulations using a Pentium-III 500-MHz pro- 1310 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS, VOL. 51, NO. 7, JULY 2004 TABLE II MEAN ERROR FOR PROPOSED MODEL AND PREVIOUSLY PUBLISHED MODELS FOR 0.35-m AND 0.18-m TECHNOLOGIES subindex that is referring to the nMOS value of ). Assuming , then, the solution of (A1) leads to (A2) CASE 2: nMOS in the Linear Region and : This case is more complex since the nMOS current depends on the output voltage. Using the linear expression for the nMOS current (3), then (A3) We solve (A3) with the initial condition obtaining TABLE III COMPUTATION TIME OF 10 TRANSITIONS WITH PENTIUM–III PROCESSOR@500 MHz (A4) CASE 3: nMOS Saturated and the Input is Rising: We model a rising input transition as a linear function of the form (A5) cessor. As expected, analytical models are much more faster than HSPICE (about three orders of magnitude). The model in [6] leads to a greater computation time due to the use of numerical procedures. VII. CONCLUSION An accurate analytical expression to compute the propagation delay and the output transition time of CMOS inverters based on charge analysis has been presented. The main effects present in current submicrometer CMOS technologies like the input–output coupling capacitance, carriers velocity saturation effects and short-circuit currents are taken into account in a single analytical expression. The model is compared to HSPICE simulations (using the MM9 model) and to other previously published works for a 0.18- m and a 0.35- m process technology reporting a high degree of accuracy. It provides an analytical relationship of the delay to design parameters (device dimensions), input transition time, supply voltage, and temperature. The model is an accurate tool to compute the propagation delay and the input rise/fall time. It provides up to 15% and 100% of improvement in computing time with respect the models presented in [7] and [6], respectively, and a 1000 factor with respect to HSPICE simulations. APPENDIX A DERIVATION OF OUTPUT RESPONSE OF SINGLE nMOS DISCHARGING TRANSISTOR The differential equation to be solved is derived from (1) (A1) The output voltage evolution depends on the nMOS current expression and the initial condition at . Therefore, there depending on the input will be different solutions for voltage evolution and the operation region of the transistor (linear or saturation). We derive the analytical solution for each case. CASE 1: nMOS Saturated and : For this case, the nMOS current expression is fixed at (where the where is the input rise time. At the beginning of the . When the transition, the nMOS is off and input voltage goes beyond the nMOS threshold voltage (i.e., ), the nMOS transistor starts to conduct in the saturation region. The initial condition is given . We solve (A1) using (4) and (A5) and by neglecting channel-length modulation as a first approach (A6) is the velocity saturation index of nMOS. where CASE 4: nMOS in the Linear Region and the Input is Rising: For this case, the differential equation (A1) has no analytical solution. APPENDIX B DERIVATION OF SHORT-CIRCUIT CHARGE TRANSFERRED AT The propagation delay, defined as the time interval between the time points at which the input and output voltages are at , depends on the SCCT during this interval. This charge (for a rising input transition, for a falling input is defined as transition we use the notation ) and is a fraction of the total SCCT during the transition. We obtain an empirical expression as a function of the total SCCT ( ) developed in [15]. of This empirical relationship is developed considering both fast and slow-output transitions. For slow-output transitions, the input is high before and can be considered to be equal to . For fastoutput transitions the short-circuit current is maximum when and the SCCT at this time point ( ) can be ). approximated to the half value of the total SCCT ( is dependent on the relative switching Therefore, since as speed of the input with respect to the output, we express a function of the ratio , where parameters and depends on the output and the input transition time and and . are defined as the input is considered slow and the SCCT If is taken as . If we consider that ROSSELLÓ AND SEGURA: ANALYTICAL CHARGE-BASED COMPACT DELAY MODEL the input is fast and the expression for the short-circuit charge is . The parameter is derived from at (14) (considering the nMOS transistor in saturation, neglecting for the short-circuit charge and assuming that simplicity) (B1) Therefore, the relative switching speed is (B2) An empirical expression is used for as a function of . A linear relationship of with respect to the ratio is used for an output response with a value of lower than a threshold time . Otherwise, we take constant and equal to (B3) Parameter is taken such that is the time at which the pMOS transistor enters in the off state (that is, when , the short-circuit current ceases and we can consider that ). From this restriction, we find parameter to be (B4) and expressed The empirical relationship between in (B3) is found to be with a good agreement with HSPICE simulations over a wide variation of inverter configurations and transistor sizes. The total SCCT is obtained from the model in [15] (B5) is the overshoot time (see Fig. 2), is the time where at which the short-circuit current is maximum, is the time is the maxduring which the short-circuit takes place and imum short-circuit current. The input–output coupling capacitance is taken into account in the exponential term while the maxthrough parameter takes into account both slowimum short-circuit current and fast-output transitions. The detailed description of all parameters involved are extensively explained in [15]. REFERENCES [1] H. Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits,” IEEE J. Solid-State Circuits, vol. SC-19, pp. 468–473, Aug. 1984. [2] K. O. Jeppson, “Modeling the influence of the transistor gain ratio and the input-to-output coupling capacitance of the CMOS inverter delay,” IEEE J. Solid-State Circuits, vol. 29, pp. 646–654, June 1994. 1311 [3] P. Cocchini, G. Piccinini, and M. Zamboni, “A comprehensive submicrometer MOST delay model and its application to CMOS buffers,” IEEE J. Solid-State Circuits, vol. 32, pp. 1254–1262, Aug. 1997. [4] L. Bisdounis, S. Nikolaidis, and O. Koufopavlou, “Propagation delay and short-circuit power dissipation modeling of the CMOS inverter,” IEEE Trans. Circuits Syst. I, vol. 45, pp. 259–270, Mar. 1998. [5] J. M. Daga and D. Auvergne, “A comprehensive delay macro modeling for submicrometer CMOS logics,” IEEE J. Solid-State Circuits, vol. 34, pp. 42–55, Jan. 1999. [6] A. Hirata, H. Onodera, and K. Tamaru, “Estimation of propagation delay considering short-circuit current for static CMOS gates,” IEEE Trans. Circuits Syst. I, vol. 45, pp. 1194–1198, Nov. 1998. [7] L. Bisdounis, S. Nikolaidis, and O. Koufopavlou, “Analytical transient response and propagation delay evaluation of the CMOS inverter for short-channel devices,” IEEE J. Solid-State Circuits, vol. 33, pp. 302–306, Feb. 1998. [8] A. Kabbani, D. Alkhalili, and A. J. al-Khalili, “Technology portable analytical model for DSM CMOS inverter transition time estimation,” IEEE Trans. Computer-Aided Design, vol. 22, pp. 1177–1187, Sept. 2003. [9] T. Sakurai and R. Newton, “Delay analysis of series-connected MOSFET circuits,” IEEE J. Solid-State Circuits, vol. 26, pp. 122–131, Feb. 1991. [10] J. L. Rosselló and J. Segura, “Simple and accurate propagation delay model for submicron CMOS gates based on charge analysis,” Electron. Lett., vol. 38, no. 15, pp. 772–774, 2002. [11] D. Foty, MOSFET Modeling with SPICE. Principles and Practice. Englewood Cliffs, NJ: Prentice-Hall, 1997. [12] T. Sakurai and R. Newton, “A simple MOSFET model for circuit analysis,” IEEE Trans. Electron Devices, vol. 38, pp. 887–894, Apr. 1991. , “Alpha-power-law MOSFET model and its implications to CMOS [13] inverter delay and other formulas,” IEEE J. Solid-State Circuits, vol. 25, pp. 584–594, Apr. 1990. [14] J. L. Rosselló and J. Segura, “A physically-based nth power-law MOSFET model for efficient CAD implementation,” in Proc. 18th Design of Circuits and Integrated Systems Conf. (DCIS’03), Ciudad Real, Spain, Nov. 19–21, 2003, pp. 380–383. [15] , “Charge-based analytical model for the evaluation of power consumption in submicron CMOS buffers,” IEEE Trans. Computer-Aided Design, vol. 21, pp. 433–448, Apr. 2002. [16] J. E. Meyer, “MOS models and circuit simulation,” RCA Rev., vol. 32, pp. 42–63, 1971. [17] W. Shockley, “A unipolar field effect transistor,” Proc IRE, vol. 40, pp. 1365–1376, Nov 1952. José Luis Rosselló received the M.S. and Ph.D. degrees in physics from the University of the Balearic Islands, Palma de Mallorca, Spain, in 1996 and 2002, respectively. He is currently an Associate Professor at the same university. His research interests include device and circuit modeling, very large-scale integration design and test, and low-temperature CMOS design. Jaume Segura received the M.S. and the Ph.D. degreed from the University of the Balearic Islands (UIB), Palma de Mallorca, Spain, in 1989 and 1992, respectively. He has been an Associate Professor at UIB since 1993. He was an Invited Researcher at Philips Semiconductors, Hilsboro, OR, in 1994, and Intel Corporation, Hilsboro, OR,, in 2001, on sabbatical from the UIB. His research interests include device and circuit modeling and very large-scale integration design and test. Prof. Segura is the Chairman of the IEEE Circuits and Systems Spanish Section. Transient Current Testing Based on Current (Charge) Integration I. de Patil, R. Picas, J.L. Rossell6, M. R.oca, E. Isern, J. Segura and C. F. Hawkins* Physics Depa.rtment, Balearic Islands University, 07071 Palma de Ma,llorca,, SPAIN * EECE Dept., The U niversity of New Mexico and Sandia. Na.tional Labs., Albuquerque, NM 57131, ‘IISA Abstract We present experimental data from a. test, chip where several defects can be activated. The transient current was measured and t,he integrated value of the charge computed. ‘This work analyzed the sensitivity of the met.hod t.o defect location, circuit topology, and input stimuli. The next sect,ion describes the experimental met,hods. Section 3 discusses result,s, while Section 4 summarizes the work. We evaluated a technique that uses power supply charge as the test observable. Charge was c o m p u t e d from the measured supply transient current waveform. Data shorn that this method is eficient to detect those defects that prevent current elevation (mainly “hard” opens) and therefore represents a valid extension of IDDQ 1 2 Introduction The experiments used an &bit shift, register in which several mask defects were designed. We evaluated the charge based test, technique to detect hard opens (i.e. those t#hat prevent current elevation). Transmission gates were connected to selected nodes of the circuit to emulate t,he presence of open defects, and were controlled with a 5 to 132 decoder t,o reduce circuit PIN count. Each decoder input, combination activated a unique open defect by turning off a given transmission gate. When a t,ransmission ga.te is off (i.e. it does not propa.gate signal), we say that its corresponding open defect is activated. The code 00000 does not activat,e any defect and was used t,o obt,a.in a reference measure from the fault. free circuit. Fig l(a) is a schematic of t.he 8 bit shift register with the t,ra.nsmission gates labeled for ea.ch defect,. Fig l(b) shows a detailed design of the single flip-flops composing the shift register. The circuit was designed with ES2 n-well dual metal 1.0 p m technology. Separate PADS were used for the B-bit. shift register core I,,>0 supply, the decoder and the input/output PADs. Measurements were taken at the 1’0~ circuit pin to avoid ground noise from input/output PADS and decoder switching. Current was measured by sensing the voltage drop at) a very-low inductive MP930 Caddok 300 R resistor with a Tektronix P6247 1 GHz bandwidth differential probe connected to a TDS640 ‘Tektronix scope with a 2 Gs/s sampling rate. A dedicat,ed board with differ- Current testing (or IDDQ testing) is a widely used method to verify digital CMOS ICs. The main advantage of IDDQ is the high observability that allows a high defect coverage with a relatively small set of test, vectors. Opens can leave internal nodes at intermediate voltages, and cause quiescent current elevation that is easily detected with this technique. Despite this, IDDQ has limitations in detecting those defects that prevent current elevation (mainly certain opens). Several techniques are under development. to overcome these limitations and extend the use of current monitoring. Most of t#he t,echniques point toward dynamic current testing that monitors the power consumption not only during the quiescent periods, but also during the transients. Different transient techniques have been proposed. Beasley et al. [l] analyzed the idd signature when pulsing both VDD and GND levels from an intermediate value to their nominal values. Maki et al. [2] analyzed the change in the transient current peaks to detect defect,s in the circuit, while Plusquelic [3] and Vinnakota [4] considered both time and frequency domains while monitoring the signal. Cole et al. [5] measured the transient 2100 signature to detect defects. Our work used the power supply charge driven into the circuit during a single transition or a set of transitions as the observable for test. This parameter is directly related to the transient current. The principles of this technique were given in [6]. 26 O-8186-9191-3/98 $10.00 0 1998 IEEE Experimental Methods STTV Shift-In K2 FF8 D8 K4 K3 FF7 Dl FF6 D6 Kf FF5 Loaded value STTVHI 0 ~~l~O~l~O~l~~~l~0~ STTVDZ 0 +(o~l~ollfo~l~o~l~ STTVD3 0 -+~0~0~1~0f1~0~1~0~ STTVD4 0 +[o(o~oll~ollloll~ STTVDS 0 +[ololololllolllo] STTVD6 0 +(o~o~olo~o~llo~l STTVD, 0 + o~ololo~ololl~o MASTER : SLAVE STTVD8 0 + o~o~olo~ololo~l~ STTVK 0 +~o~o~o~o(o~olo~o~ Figure 2: S T T V s u s e d lo detect each defect. The charge is measured at the rising or falling clock edge - Class-a. Opens preventing data propagation at the output of one flip-flop (t,ransmission gates labeled as Oi). - Class-b. Opens preventing clock propagat,ion from the defect site t,o the end of t,he regist,er (transmission gates labeled as Ki). Figure 1: &bit shift register used to measure the charge (a). The flap-flop d esign is reported in (b). - Class-c. Opens preventing clock signal t,o a single latch wit,hout, affecting clock propagation to ot,her cells of the register (transmission gates labeled as Hi or 1i) ent supply planes for core and PADS, and two ground planes connected with a low frequency bridge to avoid loop currents [7] was designed to minimize switching (high frequency) noise. Measurements were compared to HSPICE simulations from the extracted layout to evaluate the noise contribution. 50 waveform currents were measured and averaged for each test, vector. The charge was computed by numerical integration of the current waveform. The appropriate test vectors for each defect were generated following the procedure in [6]. Since this technique monitors the transient current, the test vectors were calculated to induce a given transition rather than setting a static input. For this reason we refer to State Transition Test Vectors (STTV) instead of static test vectors. STTVs were chosen to induce a current path in the fault free circuit that is missing in the defective one because of the defect. This depends on the defect site and its effect on the circuit. The mask generated defects shown in Fig l(a) can be put into three classes: The charge difference bebween the faulty and t,he fault-free circuit can be maximized by shifting a STTV into the chain that: 1. Does not change the stat,e of the flip-flops located between the chain input and the defect site, and 2. Induces a state transition t,o all the flip-flops between the defect site and the output. This maximizes the charge difference between the fault, free and faulty circuit. Following this rule we derived one STTV for each defect (Fig. 2). The STTV derived for defect d (STTL’~) was used to measure the transient current at the rising and falling edge of t#he clock transition with data settled (Fig. 2).The STTV that complements all bits of each STTl/d (referred to as STTVd) was also used following rules 1 and 2 described before. We measured the transient current through the circuit power supply. A difference bet,ween idd(t) a.nd 27 0. I m/div 0 t (SW) I eon lOn/div Figure 3: Transient current waveforms for circuit of Fig.1 measured at the rising and falling clock edges when no defect activated. b) IDDQ is that, for a given vector, the current signature differs if it is measured at the power supply or at the ground rail, because of the charge contribution coming from the logic gate output capacitor loads. Additionally different charge values will be obtained when sensing the current at the rising or falling edge of the clock. This is shown in Fig. 3 where two waveform currents measured at the rising and falling edges of the clock for the same STTV are reported. 3 / i ’ I’ _. K7 K4 0 IOon I Onfdiv t (see) Figure 4: Transient current waveforms measured for the same STTV at the good circuit and activating def e c t s Ii’2 to I& ( a ) , and their corresponding charge values with time (b). Results and Discussion Figure 4(a) shows eight current waveforms measured for STTVK (Fig 2) when Ka, . . , Ii’s are activated and for the fault free configuration. Current contributions are due to switching of the flip-flop clock inverters (Fig. 1.b) since STTVK does not, change any register data values. The largest current peak was obtained for the fault free configuration because all flipflops are driven by the clock. A smaller current, peak was obta.ined when defect 1<s was activated. This defect isolates the last flip-flop (FF8 in Fig. l(a)) from the clock signal, so tha.t the corresponding inverters do not change, and therefore do not contribute to the transient current. Defect I<7 isolates flip-flops FF7 and FF8 from the clock further reducing circuit activity that leads to a smaller current peak (Fig. 4). Less activity is observed when the active defect is closer to t,he input clock signal which is consistent wit,h the successively smaller current waveforms. Figure 4(b) shows the charge variation with time for each current waveform in Fig. 4(a). The charge corresponds to the area produced by each current waveform. The stable cha.rge value as an observable for test provides an efficient way of comparing current peaks, as current waveform shapes can vary significantly even for the same STTV (Fig 3). The values of the charge used to distinguish good and bad circuits were estimat,ed taking int,o account the charge resolution of the measurement system and fabrication process parameter variations. The resolution measurement is given by the instrumentation as AQmeas = to, AK,, + Vau At,,, R SenS (1) where t,, is the average width of the current peak, V,, is tha average voltage drop at the resistor, At,,, is the minimum time resolution of the oscilloscope, and AV,,, its minimum vertical resolution. R,,,, is the resistor used for the measurement.. In our case t,, = 40 ns, V,, = 150 mV, At,,, = 500 ps, AV,,, = 5 mV, and R,,,, = 300 R f l%, giving a resolution of 916.6 fC. 28 Table 1: Charge values fin pC) for class a) defects. Clock transition Q (DC1 11 s ” - Active Low -+ High defect QnO def 1 Qdej L ,- , Table 2: Charge values (in PC) for class b) deft ” Q Q no dej 13.2 12.7 D4 D5 12.0 12.4 Ds 11.7 D7 11.1 D8 10.8 12.9 D3 12.6 II 11.8 ‘TVI< - 0.3 11.8 - 0.3 11.8 - 0.1 2.8 13.1 0.6 3.8 11.8 10.4 11.8 10.1 19.9 12.1 10.1 17.5 12.0 11.6 1.2 1.9 1.7 5.0 3.7 6.8 7.1 9.2 -ll 11.8 “TVI; - 0.5 STTVD, D2 Clock transition Qdej STTV:, D2 D3 (PC) I/ High -+ Low 12.2 1.3 2.0 D4 12.2 10.1 17.6 12.0 2.8 D5 11.8 13.1 15.7 14.5 3.9 Ds 11.3 10.0 15.4 12.1 5.3 D7 10.9 9.9 14.0 12.2 7.2 DS 10.4 10.0 13.8 12.2 I 9.7 ’ STTV~a as listed in Fig. 2 for each defect ‘* bit a bit complement of STTVs as listed in Fig. 2 difference in this case required minimizing circuit activity from FFl to FF7, while maximizing activity of FF8. The results are consistent because: The second factor to account for is current variation with process deviations. We estimated this variation by simulation using corner parameters supplied by the manufacturer. We obtained AQpar = 0.83 PC, therefore we choose the charge resolution AQfes = 1 PC. If Q iT;y, is the charge obtained for STTVi when no defect is activated, and Qz,‘,T:’ the charge obtained when defect j is activated, we consider such defect is detectable if IQ STTV, _ def j STTV1 Qno d e j (> AQ,.es Since the transient current was measured at r/bn, more charge occurrs when the output load capacitance is charged, i.e when the output changes from zero to one. Therefore we must know which is the largest output capacitance in the cell and induce such a transition at that node. The larger charge transference involved in FF8 will occur when the slave changes from zero to one, as its output capacitance is much larger than the output capacitance of the master cell. The output of FF8 changes from zero to one at the falling clock edge of STTVD, and the defect is only detected in this case. (2) Tables 1, 2, and 3 report the charge values measured for defect classes a, b and c respectively, and the fault free circuit. When a defect, is activated its corresponding STTV in Fig. 2 and STTV is used. In those cases where (2) did not hold, values are shown in bold indicating that the defect was not detected. For class-a defects we used a different STTV for each Di. Results showed that defects D5, D7 and Dg were not detected by their corresponding STTV at the rising clock edge. However 05 and D7 can be detected by the same STTV if current is measured at the falling clock edge. Detection of Dg can only be achieved by measuring the transient current at the falling edge of STTVD, (AQ = 1.6 PC). Defect Dg was initially expected to be hard to detect because the activity difference between the fault free and the faulty circuit is due only to a single flip-flop. A measurable charge All class-b defects were tested with the same STTV. Results show that all defects can be detected at the rising or falling clock transition while using STTVK or its complement. Charge differences are large for defects close to the clock input and decrease as the defect is close to the output as expected. Class-c defects were initially thought to be hard to detect, as they isolate the clock signal to a single latch of the chain without affecting the others. Results show that Hi defects are easier to detect than 4 defects, since most of them can be detected at the rising and t#he falling clock edge. Ha was interesting since it 29 !#"$ %'&)(*,+%-.& "./10 2- 354762478:9<; ; = > 95? @7A:47B ; = C DE@5FG478:9IH JKJ D7LM354ON<= PRQ5C J S5i ZT j:U Vk W VX V2e Y^ l Z jm[ \ ]5] ^ n _E] o ` ^ W a<p n]5p b nc qZ VS5dOe ce jrc Z ese f i V Ztme c k f X e g \ f e 7 ] O h e c S5T k ` Z u7v2w xry n qsq n wsz q q2{Re |Iu7v2w x:y n qsq n wx z }sZ jre W c uIi ~ V f V x [ V ] W I] Z V 5 R i Z a W X Z V s ] E ½ T s Z V T k f \ ¿ X W f X W s \ X f Z ` s \ E Á e V ` Z ¾ c Z X \ Z i f Z V R [ Z X r \ \ © k \ T m Z X f Z ` : \ ~ f k j \ T § Z Z | \ Z f R ` e 2 c X e R [ e X 2 ¤ R ¡: ¢R ¡ E : ¥ E¦ § m 5 ¡ O M ¡m ¨© ¡m ¢R : ¡ ¡ ¢ ¢ £ª WV \T k k f f ]×\rXÄ W Rf XX T¤ W \:e `¤ÁET e Z[ ` [ f W k\ |V:W jrX k e` \ \ W f k W ` k \ aW k Z `Kf Z VW V:\ W jrV W j:e \ WZ c Vre f\ T\ kZ¿ ¡ ¡ ¡§ ¨ ©¡ « ¬§ © R § ¢R ¨rR K¬ <¢ ¢ :R ¥G ¡:®7¯ ¡£ \Ä T e Zl X f e f WOZ Z ` \r\e ~ cf ]Kk ji Z \ fT W Z2a Z k i \\ [T Z§\V XT e k [Rf e\ ¿X X W W\ fk X f ] W \ri W V W [Re ¿ ¨ s ¡m Rr R ©¬ ¡ ¡s ¡::¡ ¢R¬ ¨K m ° ±5¡ ¥¦ 5¡r®² ¡§ ³ ¢ ¢R2 ´ ¡ s K £ \ÂV We kc j:[ `:TRZs~ e k ~¿ fEkSIf ck jsk ÁO` Z¾:cfIe:eØI`R~ e f irÁ©k jV j:T kkemf i \iZ WcX Ñ<TRÈZ eo f `É Z ^ `` ÁEZ\:c5T tmWi c Z©Z Ã2a ÈWÄ y X {5ÉZ ViÐ5Z ½ f VW aW j:` Z ¾:i2k i\\ TTZ cZZ ] E _ ` c k e i Z Ò i ¾ e \ Z V r ^ c W ` Z e f W ` [ \ \ f e ` V W \ W k ` e R ` G i e E ¹ º » R ¼ ¹ 7 µ m ¶ · ¸ ¸ Å R Ý Þ : ß R Z V U : j : j Z \ f W X X f Z ` E \ E Á e a Z ~ k f j e f k R ` m i Ù Ú Û ½EW `T \Z2T X Zrk `j:\ WW `X f k k Z c ZVEX i\ fZ kjr` eW X:`RisW `Rk i ~I T V W\ ¾ f T:Uf e Z `Rc Wi©e \ cT ZEZr[ Wf `Rk X i f RZ Xe \V V¿ WV `T ¾2k f \ \ T ¿ ZEX W Wf `X [ W \\5i \ Wf V e `W [RV We \ \ W Wk k `s`r\ ÁEW j:e VZ ÆIe2ÁO~ Z f `RZX e\ WV k `§ Ü j:k ~5Z i<V ]5[ ½E[ T c UZ¿ WV `W À ¾rZ V j:^RWj:` Wk e \ \W a ef W\ À Z e ir\ W ek `§`§Wk `R~OX fW `Z \e ZV ¾Zsf We ` \ \Z Z i©f Z X V W\f X W `§W \[RVk ~ÁOZ Ze fE\ Z fV Z¿ aV Wk \ cW \k e `©¾ Z\ W^ j:tmZ Ã2^5Äe `R{5imÐ5½¤~ k \ Tff ZZ j:V T [ k Wc fi§W X ae kc7c [R\ e e ¾ f Ze ^j:W `Z \[ Z f \EV\~ ff ek `j ¿ \jrW jre f e U\ W kj:`IZ ]2X TRÂe V2` WW V\2j:W VV:ÁO UZ c 7ÁEl T ` W kX T ÁE`m[Rk\ TÁOZ Z f f:ZrW eV:f Z:i W V\ ÁOW [Rkre [ \ fZ Wi ¿ \f Te j:ZÂZ \ cZ [ f TRVOe TR¿ eSIa k ZEÁO` Z kf`:ØI[e TÁ¤U Vj:W X k e i c Z j:c ]OZ ½Ee ` T W W` VE¾Z ej:`R[ isW f jsW X e VcI\7[RRe Z¿ ViX TTR kef ffW `\¾ ¿ ¾Z:X W kf\ TX~ Zm\ W T\2V Z:ÁEX WW `\f X\ TZZ f`W ``R\ ¾e^RcOe k `R` ~simk ei Å Z z gVsÆOtmX\ eT Ã2[RZeÄ X X TRW¾ \e ee f \`R¾ Z ZX uZ e]mÅ`Rq tmi§Æsie \ `TW V UZ¿ Z½E\ km| T \ Zif eZ XV \X ZfRWirRsZm~ f k e sj`R¡e ¨ Zc U| \ [RW ZX£ fe Wc j: U§ Z R` \2Z eX c7e ¡i V e Zr \¢ e k ]~E \ T ZrW VX k i j:W à§[ Xc Z | c \¿ \X Zk X` T V ` Wj:Ç [ Z\ V7W k TR`e a U2ZORV W Z js`s c [ e f\ kW k [R`¤k V ÈZ q isÉ ¿5\ Èkw É X ke fIc X V c We ` \ ¾2Z7[RX c kk ÁOV Z Z i f Wi \ ZU V X k f ~W R\ZT Z©\ T ` Zmk `V U ¿ cV W\ ` Z Zjme f§]Òi ÂW Ñ<Z X fc Zk `V Z\ WiKe c2~ k Z f Ç jáRe Z\ |W k [ ` f V§Z V \ TRW k e ` \ ~Z k e ffrjGW ` j:[ k i\rZ \c VMf e `È x V ÉW ¿O\ W Èk Ê `IÉ ]5^Ot§V k k j:V \7Zmj:k k~i \ ZT c ZVOjX k `X kV W` i V Z W fi Z e2fmc We ` ` ¿ ÁEV W j:W \ T[ kc W â<\sX e f \Z W i k R` XV W ^<` V¾[RZV XW ¾W e` c W â<UmX eÁE` T \ Zc U`KeV TX k f f\ ¿e X X W UKf X f ZW \:Ç X W k f `Z V¿ kV j:[ [ \W k c `rk e ÁEirW \e Tm`Rimi Z X a e W cX X Z c¾ e Z \ k Z2j:\ TZ \Zsf U i ] Z [RZ `Ri Z `RX Z:k ~OX k ` ¿ \X fk W j: [R\ k W k` `rZ ` W \VE] X k j:[Re f e c Z\ ks\ T Zi U `Re j:W XE\ f e ` V W Z ` \ h7\ T Z Z'`RiV T f Wk X f lË È x Wɲ\Gk[R k \ÁOe ZW `fZ iÌi W V e W `Ì[Re \ ZW |k `Í[ f Z V V WW k` `̾Î\ ~ Tk Zf ãi W VZsW [[Rf e Z \ V W Zk ` `©\sk e ~ `g e tm`Re Ã2c U Ä\ W X e c5Ñ<j:Z f Vsk i ¾ Z W cIa Z~ k`f2\ VTRT e k \sf \ e ¿ `KX W f e X `R eW \¿ \ ¿ X W f X Äe ¾X TZrÑ<W Z X~ fTk V fsjr]ReÐ7`k Ç \¿ RTMÏEe k c5tmi \ ¾Ã2f Ze ÄV7` {5tmV XÐ5kÃ2½²`RÄ i {5eR`RÐ5X i \½ e `Remj:X ZVk U ^<i j:\Z Tc j:f~ kZ Z Vf5\ T f Wk Xr` c imc Vk T ea kik f Zc \\ i ¿¿ cÁEX U e W\c\ WX TX e c \ce Z i\ X WZTk V `` X kfV5Wc \[k k\¾ W Wk X `R`se ic7W ZVI[Rf [eV f\f Zee ~`Rj:Z i:f Z e \\ ZT cf ZZOV:W[Re` k `RV ÁO\i©Z Z efO¾ iZ i k kZ j:~[R`ZZ `R\ fij:U Z ]§Z`Rf X Wb ZX\ WVX V©UW f j:Xk `j:W c\OUÒZ \X f eW fX[ ¿ [Zi `c Z W \7aX eWV XTRZ ceVOZ[R ZE\ k¤ÁOÑ<ZZc fkf ZV` ]7¾X k¿h7X` ZTRV eW`Ri` i Z` ff ZWZ Xc:i<l<]7iÓ V7Z½EaÁOT W kXZOZf j:l:V kX e k i `R` Z i ¿c eX Wc fV XkE [ W \f Vk a W i Z VI~ e V \ Z f7X e c X c e \ W k ` V<V [RZ X W e c U~ k fIc e f ¾ Z \Xe TRc`RReiri `Zk Vz p\\ TR[Ô²e \E\Ek ~EV\ Tf \ ekk `f\ \Ve ¿W c7\X WW[Rkf Xk`rÁO\W Z\W j:f[RiZk WÁOeV fZ WZ2f2[ReZi Ç\ W WVRk e`©W [Rc ] eÁE\ TW k Z `r`W WVE` c[ Z V \ ½ET Z~ k c äOk ¶mÁEåMW ` ¾:æ e V¼ ç7 Ij: [¼ ¹\ W ¸k ` VE¹5ère f Zé æ¤V Z i<ê u ¹Eº æIë ÏEX Z W i\sZ X` V f\ W ZZ f` `R\:eK ZV W\§` ¾§e c \]ET È Z§n ÉÄ X X eT c WX X T c jre \ e Z `iK¿ ÏE\ T k Zmi ¾ V ZT Vk fj:\§k X i W fZ ¿c q ]O½ET Z g tmÃ2Ärc k ¾ W XEW ` a Z f \ Z f\ f e ` V W Z ` \f Z V [Rk ` V Z [Å c k \O` ¾©X e X[RTRe e X `W \ ` k Z fOcEÕOi Ö§Z a e W `RX Z iV Æ` k ~ k`:fsV Ue§j: j: Ñ<Z Z\ ffsW X ÁEe WcR\ tmTKÃ2e `Ä {5k Ð5 ½\ ¿ WX V2k i ` \Z:VO\~ k§k fe e`©c <k \ T \ Z2[ ¾ \e \ X Z e V[Ri e f X W Wa \ Zk `§fÅ ÕOUrÖI\ ÆT Z\ TR e \Ñ<eZ Xf ¿] ì íOîEõ ô ïú ð©ò ø ññ òõ ñ ó ü ð òrô õ õ ð ñ ô§ý:ñðò þö ÿ ÷ í õ§ñ ørù ñ ò ð ú ôrûEñ õ ï×ú òMñ ò ö ÷ õ ðEøú ñ ï§ò õ ô õ úï ò ð ø ñ ø õ ü ôñ ø 5îMý:ü ð ù ñ ò Rõ ï ð ÷ ô ð ò õOü ò ñ²ñ ñ Mú õï ðsð ô ü ð ñ ð ú öRú ñ õ ü ôöRð ô2÷ ò ñ õú ô ð ú Kõ ï ð 2úñ ø5ô õ ñï ð ðô ý:ü ñ ù ñõ õ ï ð©ð <ð õ ñ ó õ ðï ðmïRð <ú òð ò õ ð ñ ù2ó ð ù ð ò ïRúõ ïIò òí ð ù2ûEñ õ ï¤múú òò õ ô úmò úø ñô ø ð:õ ü õ ôEï ðô ð ø öRú ðõ ð õ ñ ó ðô ùú mñ òKú òú ò m©õ ñï ø ô ð ø ð ï ø ü ôù ñ Rðó ü ù õ ú ðü ì ì Mñ ò ó ï ð ð ô ôø ðñ ü òrñ öRø7ü õ õï ð ð ò Rõ ñ üú ù5sú ò ð <ð õ ñ ø ú õ ü ô rñ ø5õ ï ðø ÷ ô ú ð îEð ï ö ð©ô ð ðø <ðð ×õ ñ úó øð ïRú ò ò ð ù2ù ð ò õ ï¤ú ò ÒMì ûEñ õ ï ú ò Rð ý:õ ï ððõ ôù ðñ ò ú ù õ ï§ïRMú ú ò òì sò ðûEù7ñ ù5ð õ òûEï ï õ ðï©ñô ú ð úøOò ×õ §ïRúú ûEõOò ñ ú õ Ìï ü ÷ òú ôõ ðrüúõ ô7òï ðýrú ðø ü ñõ òï 2ð ú ïRò ú2ò ð ò õ ð ïù ñ òô ü 2ý×ð <ø ðü ÷ õ ô ø ðú ò ñ ø5ù ôú úõ ñð ò ô ú ùú ò ñ <÷ ø Kñ ü òñ ø5ñ òõ ïõ üð ùîEú ïõ ðð§ô ú ð ù ÷Rñú <õ ÷ñ ü ø òñ ü ò§ð ñ øò õ ô ü ñ ñ ïRò úò òú ð ùIûEñ õ Kï ù ü ô ü ñý sñ ò ÷ ó ù ð<ô íõ ð ô ûEñ õ ïmú òrü ÷ õ ö ÷ õ ú öRú ñ õ ü ô Oñ ø õ ï ðð ô ð ÷ ô ð òsõ ømñ ørú õ ï ô ðmü ø ü:÷ õ õ þï ö ð§÷ õrö ó ü ù õ ú ð ú ò õ ú ï ò ðmò Mú ô ð õ òô úõ òð ø ñô øú õ õ ü ñ ôò ø2ú ø ð ø ü ôEô ñ úRð mð ô ñü:ò õ üü ò í ðñ ò ö ÷ õOõ ô ú ò ø ñ õ ñ ü ò ûOð2ü õ ú ñ ò MRü ïõ ï§ð ô öð múú òò rò §ú ôõ ð2ô ú õ ò ï ø ð ñ ø õ ïRü úô øô ô ð ð ø öRô ð ñ ó õð ñò ó ð ù õ üô úô:ò ú ø ñ ø õð ü ô Eôüú õ òô ü©ñ ó üð øòô üðrýïRñ úò ôõ ö ï ÷ ðð2õsö ô õ ü ô ý¤ú ò õø ïñrõ ðOñ õü üô òI÷ú í©òõ öø îEñ÷ ø õïõ ü ð§ô ú òöRøú ï üñ õ ô ü õ ô ñð ô ô ür÷ ññ õò ö ÷ïRõOú ôõ ô ðú ò í ø ñ õ ñò ü õ ò§ð ù ôð úú õ ñ øEü òõ ü ü ü ôsú§ü ò ðrõ ü ö ò×õ ï ñ Kø õ ôú úø òð sø ñ øöRõ úü ôô õ§ü ü :ð øsõ ï õ ðüõ ïRï úð ô úð öRú ô ññ óõ üð òôsü ÷ Mõ ö õ ÷ ï õ ð > 9 AK L P = Z 7 >J= V `9 V T& [ \ ] ]AU^ [ _ ` a ] Z P ) > ! b7 K H Q'N O OTcQ^U;d G & Q ef=fMN O OT MgU^d D & MSef= Q >^M < h ' > ,=>d G >d D > RK ' ih > P = Q e P >I ,= >RMSe , P R < 2K i j ^ K lkA ? G 9 ]9 ? Gm @ n " b7 o pf&)o q m : 1 @ n " =o p >bo q 7 h > h K 9 r ] 9, fs 7 K , 7 ? G e'eb!tfqu vIw &1tfp u vIw 9 : It qu vIw >St p u vIw f I S7 K x L K h > h L Ss h ' ? G e'e9 >I h h R 9 lr ] 9 7 s7 > 7 ? G e'eb!tIp w vfu &1tIq w vfu a9 r = ^ ) ;K L 7 h R = : X I h Ll 7H ! " # - + . 0 2* 5 3 4 9 $ % " '&)(*,/1 $ *,/ 3 + 4 2 6 * 3 4 587 5 : "'; &< " #>= $ !?A@ B CDG E F F = ?A@ B H I =JE F C F < K L =AMN O O P 1 > Q'N O O P ) 2 = > "# R = > L >S( K K LJ (T'UWV Y X Z ú øò ï mü ô õ õ ï ðsñ ôô ð ÷ø õñ õ ü ïRð ú ø2ô õ ïð ô íü ÷ ï©õ ï ð:ò mõ ô ú ò ø ñ ø õ ü ô îEð ï ö ðô ð ð ø ò ðð ômú ø ñ ø ñ öRú õ ð §ú ÷ <ð ô ú ò Rð þ ñ ø ü ô2ü ò ð ù ðröRð ô ñ ü ©õ ï ð:õ ü õ ú ù7ð ò ð ô ñ ø ñ öRú õ ð þ ø ÷ ÷ ý:øö õ õñ õñ ü÷ òrõ ñ òü Oú :ñ ò ÷ <ð ôõ ïñ ø ð©õ ü õ ú ùöRü ûOð ô ü ò õîEï ð ï ðOöRðrðø òï õ ðü ôôð ý:õò ø ñð©ô ü ÷ òMñ õ ø ð ü ó ò ð ø ô ÷ ú ý:ù2ú òööRõú ñ ôü ú òsý:ú ð ò õ 2ð ô ïRømú úó ørðOú úõô ïð ðmü ý:ñ÷ ò öðrö ù ð÷õ üõ ôöRñ úø ðô ú ý:ü ðô õ ð ú ô ùø2Oü õ ñ ý:ð ð§ü õý:ô úð òõ ôø ññ ø úõ üùOô ú øsò úmò õ§ð õ ïï òðü ü ù ü÷ õ öñ ÷ ú õ ù ùõ üï úð§ø ï úü öRô õú ñ ñõ ô ü ô ÷ í ñ õ üðrò ûEø ÷ ñ ùý:ö õð ñ ô ü ñ òó ð§üú ô:òKú ð ö ð ôô ðüø õ ñ ü©ü òKü ò ü ð ñõ òô úö ò÷ øõEñ õ õ ñ ôü ú ò ò ø ûOñ õ üñ ü ÷ òIù í5îERð2ï ð ð ÷ú ñø óðú üù ðOò úõ í ü ò ðõ ü ð ô ürñ ò ö ÷ õ îEõ ñ ý:ï ððEñ þò ÿ ö ÷ õEõ ô ú ò ø ñ õ ñ ü òmñ øEù ñ ò ð ú ô ûEñ õ ïmú òmñ ò ö ÷ õEô ñ ø ð þ ²ñññ IIþþ KKþþ ÿ Kþ ÿ õEï ú ð:ùí ü ÷ 7÷ ù úõð öõ üñ÷ üô õ2ò ð:ó õ üüï ù ð:õ ú ñ ò ðö ÷õ ïRõ2ú ôõ õðô ú ÷ò ú ñøòô ñ ðõ ømRñ ü ð:òmú ò¤ü õ ú ðõ ú ð ñöøò ô ðöð møù ú ñø üü ð òù <ó õñ òïü ðô üø ÷÷ ý:õ ö ö ÷ õ õrñ ü óò ü Rù õ ð ú ú ð§÷ ø ñ ðOø§õ úï õ ð7ò ú2ò õ Kô ú õò ï ø ðñ øô õðü ôIñ ørñ øIò ü ü 7í üò ð úô úù õ ÷ñ ò ù ú õ ðs:õ üï óð ð ôEñ ôõ ï ÷ ðñ õñ ò ö ïR÷ ú õOô õ ðsô ú õò ô ø ú ñ òõ ñ ø ü ò§ð ô ðõ ñò ý:ðð í §ñ ò õ ð þ þþ õsõ ï ð ð Ró ð ñ ñðrò òñ øsñ ò ñ mòüõ ï2ð§õ ï ù ð§ñ ò ðñ òú öô÷ ô õ:ð õ ñ ôü ú òò ø ûEñ õ ï ñ üñ ù òKðrõõ ïï ð§ðröò õõ ïï ôð ü M÷ ÷ ôñ ïørð õ øò ï úõ2ð7õ ÷õò ï ô úô üõ ð÷ <íïrõ õô ï ú ðøò ø ö÷ ñ øý:õ ü ñ òôIKñ §øIõýsú ïRò ÷ú :õ§ïø õ ÷ùï ú ð ô ø õ ðñ ÷õôI÷ ô õ õ ïRðñ òúò òõ Oñ ò OûOð2ïRú ó ð þ þÿ ì þ ì õø ôñ ðøú õõ ò ü ñøôò ñ øRõ òüþ :ôOñ ø ïøú õ ðò ú ø 2ô õ þøOüsòõ úü ø5÷ õ ü ï õò ñðEü õò§÷ ñ ý:ô õEð ðEøú öRúò õ5ð sûEõõ ñïï ó ðñ ð ùïsö rõ ûOï ððEòïR:ú õó ô ð ú ò 9 h SK L RkASK P f K y;!z e'eo p < L \9 m L1 7 y; z { e'eo p '; e'etfp u vIw Ub e'etIp w vfu m K a9 _9= IkA<K P 7 7 y;!? G e'/ e U^ e'etfp u vIw Ub e'etIq w vfu _9 7 h 9 < e'et p u vIw >) e'et q w vfu S 7 | ' > H > > 9 =J > AkA > 17 l: H < R 1 s I Rs ,= RK j = k ] 9 I } qR~ * "> e'ef It p u vIw Ab 'f A A6 j I lK K 9 H = ^ h P J: > <K L h i e'e > K h R f Ro p " tfp u vIw z o p } q 9 @ n " u 7 K 7 7 ) h > f h > 9 ]9 7 ? GA7 m @ n " ;& $ (,q q e'e &^ " # q m > p 7 I > > > > > 7 b 7 99 9 m K 7 h 9/ L h 1 h 9 h 7 h 1.2 Imax 1 0.8 > AA < ¡I¢ £ ¤ ¢ ¥I ¥ >¦ §> ' ¥ § ¨ § © ¥ ª £ « ¢A « ,¬ f £ ª, ¥ >¦ ¥ R ¥ ¤ ® ¢¯ ° ± ² ¯ ³'³I´ µA ® ª £ ¦ ¢A ¥>¶ ¯ ¸ ' ¯ ° ± ² ¯ ³'³ ;· º ³'» ³ ¼½> ¸ ¹ ¾ ¿,À ¨ £ >¦ « ¾ £ ¤f RÁR ¦ ¨ ¥ Â> £ >¦ ¥I Ã>¤ ¢ ¥ ¤ ¦ ¤ ¾ ª £ ¦ ¢A ¥>¶ ¯ ² È ¯f ¸ ¯° Ä ± Å ² ;2Æ · ¼ ½ ¯f» ¸ Ç;· ® ¾ ¯ » Ç) ¼½ ¯ ³'³ Ç ¯ ³'³ É Ê ¤ R¯ ¯ ³'³ ¯ ² È TË ¯ ² È Ë ´ §  ¢ § «<¯ ° Ä ± Å ² ¥ ¨ ¡S § ¤ ¤ À ¨ ¤ ¢ ¢ ¥ ¤ Ì § ¤ ¢)¦ ¤ ÁR «b ¨ ¡;¥ ¨ ¤ £ ¥ Í ¥ 1£ R lÁ<£ À Áf§ ÁÎ § ¤ ¤ ´TÏ¢ ¢ § ÁR «) >£ SÁ<£ À ÁI§ ÁÐ § ¤ ¤ < £ Ñ ¢ ¨ ª £ S £ ¤R SÁR ¦ ¨ ¥ IÂ> £ >¦ ¬¢ §> b£lÁ<£ À ÁI§ ÁÒ £ ¥ ª Ó<¥ § ¤fA ¨ ¡¦ © I ¢ Iª £ ¤¤ « ¥ ,´ Ê ª ¨ ¡S ¢ S¢ £ § ¤ £ ¥ S ¥ Á<£ À ÁI§ ÁT £ <¥ § ¤AÂ> £ § ¢ I¯ Ô Õ¦ ¤ £ ¢ ¢A Á ¨ ª ¢f£ 1£ ª A£ Ó ¢¦ ¤ £ ¢ «lÖ § ¤ ¤ ´SµA ¤ ¥ ¤ f ¨ ¡S¢ £ § ¤ £ ¢f£ ª A£ Ó ¢A£ ¤ fÁ<£ À ÁI§ Á § ¤ ¤ £ Ñ ¢ ¨ ª £ ´ §  ¢ § ¥ I¥ É ª £ ¦ ¢ ¥f£ I À ¨ ¤ ¢ ¢ ¥ ¥ ¥ ¤ Á¶ Ö × Ö ×A Ø Ù Ç)ÚI l ×Ù ¸ º Ê ¥ ¤ ¤ ¢ ¨ ¥ >¦ ¢ ¥S£ S © ¤ ¦ ¨ £ ¤ £ Â>¥ ª £IA ¢AÁ<£ À ÁI§ ÁÂ> «I fÁ<£ À ÁI§ Á2 § ¤ ¤ ´ Ê ¤ « É £ ¢¯ ° Ä ± Å ² bÛA,Ç^Ü ¬ ,¶ ²æ Ö ×A Ø Ù Þ¸Ý · 'ß >>à'áJ² æ >â ,ãJ² ß æ >,¸ á ä å ä â å ß ç å á > ä ²æ ×Ù ß > å ß ç á Ý ä ã ² æ å á ¸ ç å à ä ã >>à'áJ'>â ç å â á > å Ú!;Rè å ß á ¸ ¸ >² æ ãJç ² æ å,ä é Ê ¦ © ª ¥ ¨ £A ¤ ¨ £ ¤ £ Â>¥ ª £AÁR¥ ¦ ª ¥ ¤, ¥ © ¤ £ ª ª § ¤ ¤ R£ ¢¤ ¨ ¥ ¤ ¦l 1ê, « ´IµA fÃ>¤ ¢ ¨ £ ¤ ¥ S § ¤ ¤ I ¢I¦ ¢ ¤ Â> ¦)A ) £ ¨ £ ¤ £ Â>¥ ª £< >£ f ¢ Í ¤ ¥1A b£ Í ¤ ¥1¢ ª ¥ ¨ £ S £ >¦) ¤ ¢ ¢ º R£¢ « ª ¨ ¥ ´ µA A¢ ¥ >¦ ¨ £ ¤ '¥ J § ¤ ¤ ¢ º A ª ' Ý ¤ ¦ ¨ £ ¤ ¥ J A § ¤ ¤ ¢'£ ¨ £ ¤ £ Â>¥ ª £fA Í ¤ ¥<¢ ª ¥ ¨ f£ >¦<© £ ª § f£ ^ £ >¦ ¤ ¢ ¢ º £f¢ « ª ¨ ¥ ¸ ´ µA ¤ ¥ ¤ f f ¢ ¥ ¤ ¤ § § ¤ ¤ À ¨ ¤ ¢ ¢ ¥ ¢ ¶ I1 ë 0.6 Current R^ J > f^ T >1 0.4 0.2 I3 0 tn tp Ipeak -0.2 -0.4 0 0.1 0.2 0.3 0.4 0.5 time 0.6 0.7 0.8 0.9 1 ì í î>ïÐð ñ;ò ó ô õ ö ÷ ø ù õ ø ú ù öIø ú õ õ û ü öIý'þ ÿ û ô õ û ø õ ù û ý ù ö óIþö ó õ û û þ õ þ ô þ ô û ñ 'ô ü û ö õ ù ø þ Jø ú õ ÷ õ û ü ö'ý'þ ÿ û ô õ 'ø þ ü û û ø õ ù û ñ + + !".0+# / $ % 4 *5 ( * !, -" $ % 12 *)- $ %3û #' û&(&(&(ý')))ó û&(&(&(õ û +% Ê ¤ 6 % ¬ 6 ¸ ¬ % £ >¦ ¸ £ ¤ f¥  £ ¦I% ¤ ¥ Á¶ Ý Æ Ý Ö Ý Ý Ö × Ý Ö × ¸ Ö ¸ ¸ ² ß² ä ß² ä ² ²ß ² â ä â ß ² ² â ä ¥ ª © « ¥  £ ,¶ Ý ² ß ² ² á ² ² ä á ß á ä ² ² ² ¸ ß ² á á ² ä á ä ß ® Ý ² ² á ¸ ² ² äã ß ã â ¸ ² ß ² á ¸ ² ä ã ã ² â ê, > £ ª ª Ó ¬ f¢ ¥ ¤ ¤ § >£ ¤ « f ¤ £ ¢ ¤ > I ¢ ¶ ; ; 7 8 97 9 7 8 : 7 9 7 8 :7 7 8 7 =< : > < : :> > 8 :!? > =< : > < : :> > 8 :!? > 6 < : > : > < 8 :!? > 8 :!? > < 6 < : > : > < 8 :!? > 8 :!? > < @ ² ² ² A Õ B DC ² 9 Ö Ý E ,ÇFC ² 9 â Ö × E JÇGC ² Ö ¸ E ® â §  ¢ § « é ¬ Æ £ >¦ ® @ ® ¥  £ S£ S À ¨ ¤ ¢ ¢ ¥ S ¥ ¤ A Õ B £ ¢ ¶ A Õ B ¾; » A ® ¾ » Ç » ² æ Æ » Ç » ² æ ® » æ Ç » ² æ æ æ ® ® H H H I Model HSPICE Sakurai Hedenstierna Capacitor Veendrick 9 8 ¼ 7 E(pJ) 6 5 4 3 2 1 0 Ø 2 4 6 CL/Cref 8 10 12 ½ Î ¾  ¿!ÀFÓÖ Á Å ÂlÈ Ö Ã1ÅÄ Ù Å Æ Æ È Ç Æ È Ù ÄÍ ÅÉ Ä Ê ËËÚ ÌÑÍ Û!Î Î Ü Í Ñ È ÆË ÅÊ ÍÐ Ä Ý Ï"Ä ÐÆlÑÒlÓÔ2Õ Ö × Ê Ë Model HSPICE Sakurai Hedenstierna Veendrick Capacitor 2 ¼ 1.5 E(pJ) JKLNT M U O O P RQ R V!Q VS W KLYX!M Z [ R R V!Q \ V ]^ _ ` ad h!b kc!d f je f eg x h m n m y g n mf h!d jld z k z mc n n f d o e m m kFd x j mj hlc ple x f hmqj x r g sGn etz tuf n z rc v)f e w z{ x!c d eln q z md {!f jd z z f ]g e ^ gpl^ n `'{!d i n d | } me ge x m'i z x x!m d h n q J ms y ln g pYe x mg c e ~ w e|!x mlm0h z m c q n } nm mz he m elk y n g ] xpm )he x j m"g } {o ` ~f h 0q Fe n d h j mf j e f gh n2e n gz d k hGc! zh m2 g d e zd g} })n n z m d z j e m f jg hld jf h y g i} } g j e gg | e d f hld] o ` d l} f km { n m j j f g hy g n hFsfd0h!z n m0d jm j w fe h ]x ^o m ^mihln` e e m x n mw j f xyg n vFe ~ z f fj'n z c m f { eez c z gn nh m j h e ed h j xelg d c h!} kk jo d f ze mc n |!d m e zmd e c gj m'dg o y)d f} ec jm!k h m fe e m mn plz g f h!h km klc!z | e d h!e zx m mh ~h20e x f ljjk f me ~~ c!d e f g h)w d'} f plf e f h q'o d } c my g ne x m'z x!d n q m g c } k2|!m J s LD P O r v P L )v v K K i e gf h!d0z m p2d f p'c f jp } f h m P d [x n m n m fy e g xFn m s1wf e'h f mjlo zm gnln nj md ze ec m n kG]d ^ e em gj` fh h!~ z0} c!k "m(] z^d(g ^ h!j` dk ec!c z n e 0d d e h!¡f gz mhG i o d } c m0k m] ^e m^ n ` plf h!d e m kG| Fe x m J'¢ £¤ L J J ss ¥ J J s s §{ ng m nlj j d"f g g h(h m2z d eh"g(|!¨ m'm n k gm n f f h o {m k1c e e n d h j f e f g hFd0j f plf } d n'] ^m ¦ `~ J ¤ £'¢ L J J vv ¥ J J v v ]^ ` x m n m J v d h!k J v d n m i J v L !s s © K ]^ ª ` ¥ J v L « )v J © !s ¥ ] )^ v !P ¬s ) !v s P ¬¬ ¥ ` )v P ¬ W ©© ¬ `]_ ^ ¬ ` ] ® ¯m f h q J © L3T M U [ [ P R¬ R V!Q VS d h!k W © L=X!M Z O R R V!Q \ V ex h!mz mmh e m x n mq 0j x k g f n j e j ~ f z{!f d n ez mc k2f ef zh"x!gd hn q m'mz f jz } m'h g{!m n h)f gw k"« d j q ] f ^o ®m j` i ]` J v v ¥ J v v ¥ J ss ¥ J s s ¥ ° L ± ] J J J J « ` ]^ ` ²³0´Gµ)¶ ·¸ ¹ ¶ d e m m k0b c!| d 0e f d2g h 0 f h f o me mx0nz eg ºm pln2 {!» f dhG nm g aGk0h m(ej xf pz m} gc m z} h dGm e nf z gq h(z j} km0d f h!j y j nk2f g {!p «m ~ g e x m n l p g k m } j { n oi f g c j } ({ c | } f j x m kf he x m"} f e m n d e c n m f h!z m"p2] d ^ h ` 10 1 0.5 0 2 3 4 5 6 Lp (um) 7 8 9 10 ǽ Ê ¾Ï ¿!â À'Å á2Þ ÚÂã Ã1äÄ ÝÅ Æ Ç1È Ä É Ê ËÌ Í Î Î Í È Æ Å Í Ä Ï Ø Î Âß!à ÒlÓÔÙ á Æ Ï Ï Ê Ç {!iå æ d g æ z nç f~ e j'd å æh!g z h ç m w} wh zm2m g q dh } }mj j fz g"k e mf fh nh!qFz e } x c!j m2x k g mlm n h e o ~m d zn }fq cn Gzm c j'k f e0g c ym2z mg e h h g0m e nn h qf g| Fkc m"ez fg g zph d j~~ {g y c ej mc!kFz x(d jd h"° i d { L { n g f p2d e f g e h g0m o d } c!d e mle x m2q g g k h m j j º{! d» n d plaFm e j m f pn j)c j }c d { e {f)g } hf m j ± k | m n ma z d n y n g f mn1k2f e j g c k ef q c f e j df h } qlè é } m o m } ke x c!mld }n m plj c m }e e d j}y hn g~ pum ì} }m me mh!iz k x n h f z g } g ^q å ç w) d m0 c d n } d j fgf å h!çz ª } dc!ê)h!k ë k m G ºm k m h j e f m n h!d å ç a 0h m n2q 'e n fd j h { j f} jg e e g e nm ªjk'} o m mh n q j e c x0jdg h!c ke { c ef k z e d x){!w d {!z g f e g m n n} g j ¦ cd k1{ {w {} ~ d h!k2f h { c en f j m'e f plmf h0§)f q j ~ §g)c f q e { c e} j g x d g kDj"y g enx m(d } }lm h e m x n mGq Dplk ]g im k ^ {!m m } jh!`k pl m h!m zh m ie f g h f m e kîxíe|!x m m~ yplg nf hm f ]p^ c` pï d {!d g z ic f ee g{ nc e0o d } }g c d m k jd n m2K ð q f o m z hg plf h{ cc eh m f kîie jd g j"yee xx mm g} g c d { k c m ek2{!| d c n ò1d jm f n e f z h z od {!m n d e z m f ne g j ]nf ¨ y m'g nf © jd'` ó plv f hL f pó1cs pñL j èf ¨ é mc h ~ w æ oij x g x g} fe } d mjq m"ôle x!fs jd eL e x m^ è j ê)xx ëfg } nm e ~d z h!KFf nkîz L c ô"f e' v © z c LL n n m è h èé e'ê)f ë0jh g §)e fc h q® { m ê)q{ ë }} f ~ qe f f g | h }i m f e x'n ¦ m j {!m i z ex e mgple x g mk gm c} ye n { g c pîez ìd m {!m d ¦h!z õ1k f eön gf z n lk z f j} mj fd {!]n ^d} `~ g o m n m ] jie f p2 d ± e m j` )k ¡f j j f {!d e f g h x mg e x m n'plg k m } jd z ~ ¡ 7 3 Model HSPICE Sakurai Hedenstierna Capacitor Veendrick 2.5 ¼ ¼ 5 4 E(pJ) 2 E(pJ) Model HSPICE Sakurai Hedenstierna Capacitor Veendrick 6 1.5 3 1 2 0.5 1 0 0 0 2 4 6 8 10 Wp (um) 12 14 16 18 ÷ ø ù!ÿ úû!ü)ý1þ ÿ þ þ ÿ þ ü þ 20 3 Model HSPICE Sakurai Hedenstierna Capacitor Veendrick 2.5 2 E(pJ) ¼ 1.5 1 0.5 0 -0.5 2 2.5 3 3.5 vdd(V) 4 4.5 ÷ "#ø ù! ú ü1ý1þ ÿ þ þ ÿ þ ü þ ÿ 5 ! $ % & ' ( ) * +-, ) . $ & / 0) ,1$ % & & ) 2 (3, / . . / 4' ( / 5 276#8 / * )( 8 ) 9:5 , ) *;4 & ) . ) 2 ( ) ,3. 8 5 6#.( 8 )0) . (#<( ( / 2 => ? 8 )#4 * 5 (5 @;A/ =B C D. 8 5 6#.) 2 ) & = +:, / . . / 4' ( ) ,E . >4 F GIHJ $ 8' 2 2 ) ** ) 2 = ( 83E ' & + / 2 =@ & 5 9LK MNO( 5QP R MN B 5 % ( 4 % (* 5 ' ,-/ .) S %' *( 5-TVU W X1' 2,-. ' 9:)IE ' * % ) . ( 8' 2Y/ 2Y4 & ) E / 5 % .74 * 5 (7' & )-= / E ) 2Z@ 5 &[4O' 2,Z2 F GIHJ ( & ' 2 . / . ( 5 &6#/ , ( 83' 2,& / . ) ( / 9:) D >\) ) 2, & / $ ];^ _ ) , ) 2 . ( / ) & 2'Z' 2, J ' ] % & ' /:9:5 , ) * .I5 E ) & ) . ( / 9' ( ) ) 2 ) & = +Q, / . . / 4' ( / 5 2I' 2,305 ( 8 J ' ] % & ' /' 2, _ ) , ) 2 F . ( / ) & 2'1, 5-2 5 (I, ) . $ & / 0)7( 8 )[) 2 ) & = +`, ) 4) 2, ) 2$ ) 6#/ ( 8`a;b;^& ) 45 & ( / 2 =c' 2Z' * 9:5 . (d;' (Q$ % & E ) > ? 8 ) 9:5 , ) *;4 & 5 45 . ) ,3/ 2( 8 / .#6V5 & ]:0) ( ( ) & , ) . $ & / 0) .) 2 F ) & = +3, ) 4) 2, ) 2;$ ) > A/ =cec4 * 5 ( .Q( 8 )-) 2 ) & = +ZE ) & . % .[4 F GIHJ $ 8' 2 2 ) * 6#/ , ( 8> ? 8 )39:5 , ) *V<( .6V) * *#6#/ ( 8 _J fg h#i * ) E ) * j $ ' * $ % * ' ( / 5 2 . >I\) ) 2, & / $ ];k .9:5 , ) *V5 E ) & ) . ( / 9' ( ) . 45 6V) &I$ 5 2 . % 9:4 ( / 5 2`' .3/ 2c4 & ) E / 5 % .I$ ' . ) . ^ 6#8 / * ) J ' ] % & ' /;) (' * >9:5 , ) *, ) . $ & / 0) .' $ $ % & ' ( ) * +( 8 )) 2 F ) & = +-@ 5 &6#/ , )Q( & ' 2 . / . ( 5 & .I' * ( 8 5 % = 81( 8 )Q. * 5 4)Q5 @ ( 8 )@ % 2$ ( / 5 2Q/ . 2 5 (<( ( ) ,;> _ ) , ) 2 . ( / ) & 2' k . 9:5 , ) * 5 E ) & ) . ( / 9' ( ) .I, / . . / 4' ( / 5 2-@ 5 &2' & & 5 6l( & ' 2 . / . ( 5 & . 6#8 / * )V% 2, ) & ) . ( / 9' ( ) .#, / . . / 4' ( / 5 2 @ 5 &6#/ , )V( & ' 2 . / . F ( 5 & . > ? 8 )#9:5 , ) * , ) E ) * 5 4) , / 2( 8 / .6V5 & ]. 8 5 6#.( 8 ) 0) ( ( ) &<( ( / 2 =( 5 _J fg h#i . / 9% * ' ( / 5 2 .#' * ( 8 5 % = 8I' 0) ( ( ) &<( ( / 2 =I/ . 5 0 ( ' / 2 ) ,I@ 5 & 2' & & 5 6Y( & ' 2 . / . ( 5 & . > 0 0.2 0.4 ÷ ø ù!ú ü1ý1þ ÿ þ 0.6 þ 0.8 1 1.2 tr(ns) 1.4 1.6 1.8 2 2.2 ÿ þ ü ÿ #m ; V ? 8 )& ) ' . 5 25 @( 8 / .V/ .V( 8' (@ 5 &V6#/ , )#( & ' 2 . / . ( 5 & .#( 8 ) 2 5 2* / 2 ) ' &4' & (5 @;) S %' ( / 5 2ZB e D/ .= & ) ' ( ) &( 8' 2 @ 5 & 2' & & 5 6c( & ' 2 . / . ( 5 & . > A/ =Qn3/ .:'34 * 5 ( 5 @( 8 )) 2 ) & = +-, / . . / 4' ( ) ,[E . >I( 8 ) 45 6V) &#. % 4 4 * +@ & 5 9OK:oc( 5n:o> ? 8 ). 8 5 & ( F $ / & $ % / ( 45 6V) &$ 5 2 . % 9:4 ( / 5 23= 5 ) .#( 5:p ) & 536#8 ) 23( 8 ) 45 6V) & . % 4 4 * +Q= 5 ) . 0) * 5 6qB o r s t uwv;o r s xQv D >:y18 ) 2-o zz / . 0) * 5 6Y( 8 / .E 5 * ( ' = ) ^( 8 )45 6V) &:$ 5 2 . % 9:4 ( / 5 2[/ . , % )I( 57, + 2' 9:/ $:( & ' 2 . / ) 2 (3, / . . / 4' ( / 5 21B TV{oz| z D ^ . / 2$ )05 ( 8:2 F GIHJ ' 2,4 F GIHJ , ) E / $ ) .#2 ) E ) &#$ 5 2 F , %$ (V. / 9% * ( ' 2 ) 5 % . * + >;}./ 2:( 8 )#4 & ) E / 5 % .#$ ' . ) .V( 8 ) 9:5 , ) *, ) E ) * 5 4) , / 2( 8 / .6V5 & ] 0) ( ( ) &#, ) . $ & / 0) .V( 8 ) ) 2 ) & = +7, ) 4) 2, ) 2$ ) > H ( 8 ) &9:5 , ) *V6#/ ( 8[' 27' $ $ % F & ' ( )Q, ) . $ & / 4 ( / 5 2-5 @, / . . / 4' ( / 5 27/ . _ ) , ) 2 . ( / ) & 2;' k . 9:5 , ) * > A/ 2' * * + ^ A/ = j . 8 5 6#.#( 8 ) ) 2 ) & = +I, ) 4) 2, ) 2$ )6#/ ( 8 / 2 4 % (. * 5 4) > ? 8 )#( & ' 2 . / ) 2 (45 6V) &V, / . . / 4' ( / 5 2, 5 ) . 2 5 (3$ 8' 2 = )Q6#/ ( 81~ UI. / 2$ )[/ (3$ 5 & & ) . 45 2, .Q( 57( 8 ) $ 8' & = ):. ( 5 & ) ,Q/ 2I( 8 ):5 % ( 4 % ($ ' 4' $ / ( 5 & > ? 8 ):0) ( F ( ) &' 4 4 & 5 ' $ 8 ( 5 _J fg h#i * ) E ) * j / .' $ 8 / ) E ) , 0 +( 8 ) 9:5 , ) *, ) . $ & / 0) ,-/ 27( 8 / .:6V5 & ];> ? 8 )35 ( 8 ) &:9:5 , F ) * .#& ) 45 & (/ 2' , ) S %' ( ) * +<( ( / 2 =' 2,'6V5 & . (, / E ) & F = ) 2$ ) >}.#( 8 ) & / . )( / 9:)/ 2$ & ) ' . ) . ^( 8 ) 45 6V) &$ 5 2 F . % 9:4 ( / 5 2/ 2$ & ) ' . ) .0) $ ' % . )V( 8 )( / 9:)V, % & / 2 =#6#8 / $ 8 05 ( 8( & ' 2 . / . ( 5 &' & )#$ 5 2, %$ ( / 2 =/ .* ' & = ) & >}./ 2 ( 8 ) 4 & ) E / 5 % .= & ' 4 8 . ^;( 8 )( 5 ( ' *45 6V) &$ 5 2 . % 9:4 ( / 5 2Q/ . = & ) ' ( ) &( 8' 2I( & ' 2 . / ) 2 ($ 5 2 . % 9:4 ( / 5 2I( & ' , / ( / 5 2' * * + % . ) ,1( 5-$ 5 9:4 % ( )Q45 6V) &I, / . . / 4' ( / 5 21' ./ 2 P P F P e ^( 8' (2 ) = * ) $ (. 8 5 & ( F $ / & $ % / (, / . . / 4' ( / 5 2> ? 8 ) , ) 4) 2, ) 2$ )5 @( 5 ( ' *45 6V) &#$ 5 2 . % 9:4 ( / 5 26#/ ( 8:& / . ) B 5 &@ ' * * D( / 9:)/ . 5 @8 / = 8Q/ 2 ( ) & ) . ( @ 5 & 45 6V) & 9:/ 2 / F 9:/ p ' ( / 5 2IB . ) )L P n D > #[Q ; }2Q' $ $ % & ' ( ) 9:5 , ) *5 @. 8 5 & ( F $ / & $ % / ( , / . . / 4' ( / 5 25 @ h#GIHJ 0 % ;) & .#8' E )0) ) 2I, ) E ) * 5 4) ,;> H ( 8 ) 	:5 , F ) * .34 & ) . ) 2 (I/ 21( 8 )[* / ( ) & ' ( % & )Q* ) ' , .3( 576V5 & . (I' 4 F 4 & 5 / 9' ( / 5 2 .#( 53( 8 ):$ 5 2 . % 9:4 ( / 5 2[B / 2I( 8 )$ ' . )5 @ ( 8 )9:5 , ) *5 @ J ' ] % & ' /;) (' * > ^ , / . . / 4' ( / 5 2/ .' @ % 2$ F ( / 5 25 @. ) E ) & ' *) 9:4 / & / $ ' *;9:5 , ) * .#* / ] )E ) * 5 $ / ( +. ' ( F % & ' ( / 5 2[/ 2, ) 1B D 5 & ( 8 )3( 8 & ) . 8 5 * ,[E 5 * ( ' = ):% . ) , ; : [3 Q ¡ 3 ¢ £ £ ¤Q¥ £ £ 7 ¦ § £ £ 7 ¨ © : ª « « © £ § ¬V Vª £ © :§ 3 # ¬V « « I « £ £ « § : « £ © ª 3 £ « ª « ® ª «; ® : ª «;§ : £ £ ® 3 § § ¦ « £ « § ¤ ¯ :§ « ª °I : «# « £ © £ 3 [§ ¬V : : ± Y q « £ Z « « ¬ £ c £ 7 £ ¢ [ #§ ¬V :ª £ © :§ Q 7²#³I´ ¯[µ ²¶ £ · ¯ ¸µ ²#¹ £ © « £ ¤I´ : : « £ ¦ª § º ª »7 ¦ § £ £ Iª :§ « ¦[ © ª ¢ ª « ® ª « § : £ ##¬V £ § § ª Z c £ £ § Zª :§ © ` ° · ¯ ¸µ ²#¹ £ © « £ ¤ ¥ £ © © O¬V »;¨- : «1ª ¡O ¦ ¼ © « § « ¢ § © 3²#³I´ ¯ ® £ 1 - £ © : ¢ ª ª- ® ¨3 ª « © ®` c £ -ª © ¨ ° £ ® ;ª # £ © : ª ª²#³I´ ¯ ¤ ½:¾ ¿ ¾ À ¾ Á ¾ Ã Ä Å ÆÇ È ÉÈ Ê#Ë Ì Í È#Î ÏVÐ Ð Ñ Ò Ë Ó ÔÕ Ö ×Ñ Ø Ë Ó Ö Ù Ì Õ Ù ÚÛ Ù ÜÔ ÒÝ Ö Õ Þ Õ Ö Û Ë Ó Ö Ù ÌÖ Ìß#àÇ á;Ð Ö Ò Ð Ñ Ö Ó Õ â Èã äääQå æ ç è é ê ë æ ìí æ ë î ï í ð ê ð ñò;î è ó ç î ð ô õ ö ßÙ Ø È Ç ÷ø ù Å ú û û ü ø û ü Å ö ýVÐ Ó È Å ü û þ È Ä ù ÆÿÈ È Ö Õ Ô Ò È Î ÏVÌlÔ Ì Ë Ì Ð Ô ÝwÛ Ù ÜÔ Ò`×Ô Ó Ô Ò Ú Ù Ò3Ç ;á ÷ù[Ð Ö Ò Ð Ñ Ö Ó3Õ Ö ×Ñ Ø Ë Ó Ö Ù Ì â È¡ã äää è ê é ô õ ò;æ ç ð ñ è Vî ï ñ ï#ñ ô î é õ ößÙ Ø È ú þ Å ø þ ö:É:Ë È ÅüûûÈ Ä ÆÿÈ È Ë Ð Ù Ñ È 7È #È ÊVÑ È3Î ÏVÌ3Ô Ì Ë Ì Ð Ô ÝIÓ Ô Ð Ì Ö Ñ Ô Ú Ù ÒÕ Ö ×Ñ Ø Ë Ó Ö Ì Í7Õ Ù Ò Ó Þ Ð Ö Ò Ð Ñ Ö Ó3Û Ù ÜÔ Ò3Ý Ö Õ Õ Ö Û Ë Ó Ö Ù Ì â È ã äääYå æ ç è é ê ë#æ ìí æ ë î ï3í ð ê ð ñQò;î è ó ç î ð ô õ öVßÙ Ø ÈVù ú û û ø û ö Ñ Ì ÔÅ ü û ü È Ä Æ #È ßÔ Ô Ì Ý Ò Ö Ð ÈÎ Ç Ù Ò Ó Þ Ð Ö Ò Ð Ñ Ö ÓVÝ Ö Õ Õ Ö Û Ë Ó Ö Ù Ì:Ù ÚÕ Ó Ë Ó Ö Ð ÷É:ý#ÇÐ Ö Ò Ð Ñ Ö Ó Ò Ë Ì ÝÖ Ó ÕÖ ×Û Ë Ð Ó#Ù ÌÓ ÔÝ Ô Õ Ö Í Ì3Ù Ú Ñ Ô ÒÐ Ö Ò Ð Ñ Ö Ó Õ â È ã äääQå æ ç è é ê ë æ ìí æ ë î ïVí ð ê ð ñò;î è ó ç î ð ô ö Å ü ú þ û ø ö;Å ü û È Ä ! Æ #È Ç Ë Ñ Ò Ë Ö;Ë Ì ÝÏÈ "VÈ #Ô ÜÓ Ù Ì ÈÎ ÏØ Û Ë Þ Ù ÜÔ ÒàË Ü É:ý#Ç $$ZÉÙ Ý Ô ØË Ì ÝIÖ Ó ÕÏVÛ Û Ø Ö Ð Ë Ó Ö Ù ÌQÓ ÙI÷É:ý#Ç áÌ % ÔÒÓÔ Ò &Ô Ø Ë Ë Ì Ý ýVÓ Ô Ò Ù Ò ×Ñ Ø Ë Õ â È ã äääQå æ ç è é ê ëæ ì í æ ë î ïí ð ê ð ñò;î è ó ç î ð ô öù ' ù ( ú û ø ü öVÏVÛ Ò È Åüü)È Ä þ Æ##È*Ô Ý Ô Ì Õ Ó Ö Ô Ò Ì Ë öVÊÈ Ô Û Û Õ Ù Ì È1Î ÷Ù ××Ô Ì Ó ÕÙ ÌQÏ ÉÙ Ý Ñ Ø ÔVÿVÔ Ì Ô Ò Ë Ó Ù ÒÚ Ù ÒÙ Û Ó Ö ×Ö + Ô Ý ÷É:ý#Ç-,Ñ Ô Ò Õ â È ã ää. ä è ê é ô õ æ éò #õ % Ù Ø È Å ùú Å û ) ø Å û Å/ Ë Ì È Å ü ü È Ä Æ##È0Ô Ý Ô Ì Õ Ó Ö Ô Ò Ì Ë ö[ÊÈ ýÈ Ô Û Û Õ Ù Ì È Î ÷É:ý#ÇZÐ Ö Ò Þ Ð Ñ Ö Ó-Õ Û Ô Ô ÝlË Ì Ý1 Ñ Ô ÒcÙ Û Ó Ö ×Ö + Ë Ó Ö Ù Ì â È ã äää è ê é ô õò;æ ç ð ñ è #î ï ñ ï2#ñ ô î é2% Ù Ø È ÷Ï&Þ þ ú ù ) ø ù û ÅÉ:Ë Ò Ð 3Å ü ü È Ä û ÆÇ È "VÈ ßÔ ×Ñ Ò Ñ ö ##È Ç Ð Ô Ö Ì Ô Ò Í È Î Ç Ù Ò Ó#Ð Ö Ò Ð Ñ Ö ÓVÛ Ù ÜÔ Ò Ý Ö Õ Õ Ö Û Ë Ó Ö Ù ÌÚ Ù Ò#÷É:ý#ÇØ Ù Í Ö ÐÍ Ë Ó Ô Õ â È#ã äää3 è ê é ô õ æ éó î è ó ç î ð ôê é ïí 4 ô ð ñ #ô5 ì ç é ï ê ñ é ð ê ë ð 6 ñ æ è 4ê é ï ê ë î ó ê ð î æ é ô 7 ö ßÙ Ø È ÅÌ Ñ ×È Å ÅVú þ ù ø þ ö #Ù % È Å ü ü Ä ü Æ ÏÈ #È ÉÈ Ç Ù Ñ Õ ËË Ì ÝIÉÈ Ï8 Ù Ñ Ø ÜË Ú Ë ÈÎ ÏZÿVÔ Ì Ô Ò Ë Ø Þ Ö+ Ô 2 Ý Ë Ì QàË Ü`É:ý#Ç $$ZÉÙ Ý Ô ØË Ì ÝIá Ó ÕÏVÛ Û Ø Ö Þ Ð Ë Ó Ö Ù Ì Õ Ó ÙQ÷É:ý#ÇIá Ì % Ô Ò Ó Ô Ò Õ â È`ã äää`å æ ç è é ê ëæ ì ÄÅ ÄÅ ÄÅ ÄÅ ÄÅ ÄÅ í æ ë î ï í ð ê ð ñò;î è ó ç î ð ô ö % Ù Ø È ù ûÌ Ù È ùú Å þ ø Å ü öÉ:Ë Ò Ð ÅüüÈ ) Æ ÿÈ ÉÔ Ò Ð Ô Ø ö È ,Ù Ò Ô Ø ö Ë Ì Ý!##È 9È ÷Ñ Û Ð Ô Ë ÈÎÏVÌË Ð Ð Ñ Þ Ò Ë Ó ÔVØ Ë Ò Í Ô Þ Õ Ö Í Ì Ë Ø;É:ý#Ç Ó Ò Ë Ì Õ Ö Õ Ó Ù Ò×Ù Ý Ô ØÚ Ù ÒÑ Õ ÔVÖ Ì Ð Ù ×Û Ñ Ó Ô Ò Þ Ë Ö Ý Ô ÝQÝ Ô Õ Ö Í Ì â ÈQã äää: è ê é ô ê ó ð î æ é ô æ é ñ ë ñ ó ð è æ éï ñ ; î ó ñ ô < ö ß;Ù Ø *&Þ Å ü ú þ û Å ø þ ü ) öÉ:Ë È Å ü ù È Å ÆÏÈ ÷ Ë Ì Ý Ò Ë Ë Õ Ë Ì ö #È Ç Ô Ì Í ö Ë Ì 0 Ý 7È ,Ò Ù Ý Ô Ò Õ Ô Ì È Îà Ù2 Ü Ù ÜÔ Ò;÷É:ý#ÇÝ Ö Í Ö Ó Ë Ø Ý Ô Õ Ö Í Ì â È ã äääå æ ç è é ê ë æ ìVí æ ë î ï#í ð ê ð ñò;î è ó ç î ð ô ö ù ' ( ú ø û ö ÏVÛ Ò È Å ü ü ù È ù! Æ "Ö Ð Ë Ò Ý =È ÿVÑ Ë Ì Ý ÉÙ Ë ×Ô Ýá È Ø × Ë Õ Ò ÈÎ Ù ÜÔ Ò &Ö Õ Õ Ö Û Ë Ó Ö Ù Ì7ÏVÌ Ë Ø Õ Ö ÕË Ì Ý-ýVÛ Ó Ö ×Ö + Ë Ó Ö Ù ÌQÙ !Ú &Ô Ô Û Ç Ñ ×Ö Ð Ò Ù Ì÷É:ý# Ç &Ö Í Ö Ó Ë Ø;÷Ö Ò Ð Ñ Ö Ó Õ â Èã äää7å æ ç è é ê ë;æ ì#í æ ë î ïí ð ê ð ñò;î è ó ç î ð ô ö ßÙ Ø È Å#Ì Ù È ú ) ø Å È É:Ë öÅ ü ü þ !Æ &#È#à Ö Ñ7Ë Ì Ý-÷VÈVÇ % Ô Ì Õ Õ Ù Ì ÈlÎ ;Ò Ë Ý Ö Ì Í[Ç Û Ô Ô Ý7Ú Ù Ò à Ù: Ü Ù ÜÔ Ò I÷ Ù Ö Ð ÔÙ ÚÇ Ñ Û Û Ø QË Ì Ý Ò Ô Õ Ù Ø Ý ßÙ Ø Ó Ë Í Ô Õ â ÈVã äää7å æ ç è é ê ëæ ìVí æ ë î ïí ð ê ð ñò;î è ó ç î ð ô ö ù û ú Å ) ø Å $ö Ë Ì ÈÅ ü ü È !Æ &#Èà Ö ÑIË Ì ÝI÷VÈ;Ç % Ô Ì Õ Õ Ù Ì È[Î Ù ÜÔ Ò÷Ù Ì Õ Ñ ×Û Ó Ö Ù Ì ;Õ Ó Ö × Ë Ó Ö Ù Ì#Ö Ì÷É:ý#ÇVß#àÇ á ÷ Ö Û Õ â È ã äää3å æ ç è é ê ë æ ì#í æ ë î ïí ð ê ð ñò;î è ó ç î ð ô ö ù ü ' þ ( ú þ ø þ ) $ö Ñ Ì ÔÅ ü ü È !Æ >×Ö Ì ÍÊVÙË Ì Ý Ù Ò Ë Õ #È ,Ë Ø Õ Ë Ò Ë ÈVÎ Ç Ù Ò Ó Þ ÷Ö Ò Ð Ñ Ö Ó Ù ÜÔ $Ò &Ò Ö % Ô Ìÿ#Ë Ó ÔÇ Ö + Ö Ì Í ;Ô Ð Ì Ö Ñ ÔÚ Ù Ò "Ô Ý Ñ Ð Ö Ì Í Ù ÜÔ Ò &Ö Õ Õ Ö Û Ë Ó Ö Ù Ì â ÈVã ää? ä è ê é ô ê ó ð î æ é ôVæ é @ ñè4 A ê è ñí ó ê ë ñ;ã é ð ñ è ê ð î æ /é 5 @ A í ã 7 í 4 ô ð ñ #ô ö % Ù Ø È Ì Ù È Û Û È )ø È Ç ÔÛ ÓÔ/ × Ô ÒÅ ü ü È )tU@* L_i*@|L? Lu |i *T@TLih w@ 56,A L_i* aLti wt +Ltti**L @?_ a@4i 5i}h@ )tUt #iT| @*i@hU Wt*@?_t N?iht|) |h@ V@**_i4Ltt@c !4 .Dc f.f. @*4@ _i @**LhU@ L?iG ne b. .2 DfS 6@ G ne b. . e2S i4@*Gi_uthtec_uttuej9TtMit Mt|h@U| D vlpsoh sk|vlfdoo|0edvhg h{suhvvlrq ri wkh doskd0 srzhu odz PRVIHW prgho lv suhvhqwhg1 D irupx0 odwlrq iru wkh hpslulfdo sdudphwhuv YWK dqg lv jlyhq surylglqj d sk|vlfdo phdqlqj wr wkh prgho dqg uhgxflqj sdudphwhu h{wudfwlrq hruwv1 Wkh re0 wdlqhg h{suhvvlrq lv frpsduhg wr KVSLFH vlpxod0 wlrqv +ohyho 83, iru d 3168p whfkqrorj| zlwk d 5( phdq huuru lq wkh gudlq vdwxudwlrq fxuuhqw1 W?|hL_U|L? Vkrfnoh|*v PRVIHW prgho ^4` lv wkh vlpsohvw irup wr h{suhvv wkh L0Y fkdudfwhulvwlfv ri d PRV0 IHW wudqvlvwru1 Krzhyhu/ wklv wudglwlrqdo vtxduh0 odz prgho ljqruhv wkh fduulhuv* yhorflw| vdwxudwlrq hhfwv zklfk ehfrphv surplqhqw lq dfwxdo vkruw0 fkdqqho ghylfhv1 Gxh wr lwv pdwkhpdwlfdo vlpsolf0 lw|/ wkh doskd0srzhu odz PRVIHW prgho ^5` lv d zlgho| xvhg gudlq fxuuhqw prgho wr dqdo|wlfdoo| gh0 ulyh jdwh sdudphwhuv olnh ghod|/ rxwsxw vohz wlph ru srzhu glvvlsdwlrq ^6`0^;`1 Wkh prgho wdnhv lqwr df0 frxqw wkh yhorflw| vdwxudwlrq hhfw/ zklfk ehfrphv grplqdqw lq vkruw0fkdqqho ghylfhv/ jlylqj dq h{fho0 ohqw lqwxlwlyh xqghuvwdqglqj ri wkh uhodwlrqvkls eh0 wzhhq wkh gudlq vdwxudwlrq fxuuhqw dqg wkh jdwh yrow0 djh1 Krzhyhu/ wkh hpslulfdo qdwxuh ri wkh sdudph0 whuv lqfoxghg lq wkh prgho +wkdw pxvw eh h{wudfwhg iurp phdvxuhphqwv ru VSLFH vlpxodwlrqv, fdqqrw surylgh d uhdo sk|vlfdo uhodwlrqvkls ehwzhhq prgho sdudphwhuv dqg fduulhuv* vdwxudwlrq hhfwv wkhuhiruh uhtxlulqj dgglwlrqdo frpsxwdwlrqdo hruw iru sdud0 phwhu h{wudfwlrq1 Uhfhqwo| d sk|vlfdo doskd0srzhu odz PRVIHW prgho kdv ehhq suhvhqwhg ^<`1 D sk|v0 lfdo ghvfulswlrq lv rewdlqhg dw wkh h{shqvhv ri d pruh frpsolfdwhg uhodwlrqvkls ehwzhhq wkh gudlq vdwxud0 wlrq fxuuhqw dqg wkh jdwh0yrowdjh1 Iru wklv prgho/ wkh frhflhqw wdnhv glhuhqw ydoxhv +iurp 625 iru vkruw0fkdqqho wr 5 iru orqj0fkdqqho, wkdq lq prgho ghyhorshg e| Vdnxudl hw do1 +wkdw jrhv iurp 4 iru vkruw0fkdqqho wr 5 iru orqj0fkdqqho,1 Wkh frpsoh{0 lw| ri wkh h{suhvvlrqv rewdlqhg lq ^<` suhyhqw wkh ds0 solfdwlrq ri prgho sdudphwhuv wr pdq| kdqg| irupx0 odv edvhg rq wkh wudglwlrqdo doskd0srzhu odz prgho1 Lq wklv zrun zh suhvhqw d sk|vlfdo ghvfulswlrq ri wkh doskd0srzhu odz PRVIHW prgho e| surylg0 lqj d vlpsoh uhodwlrqvkls ehwzhhq wkh prgho sdud0 phwhuv dqg sk|vlfdo sdudphwhuv1 Wklv prgho dqg wkh wudglwlrqdo doskd0srzhu odz duh frpsduhg wr wkh PRVIHW prgho < ghyhorshg e| Sklolsv oderudwrulhv ^43/ 44` iru d 3=68p whfkqrorj| vkrzlqj d phdq hu0 uru ri 5(1 2 *T@TLih *@ 56,A 4L_i*t Wkh gudlq fxuuhqw iru wkh doskd0srzhu odz PRV0 IHW prgho ^5` lv h{suhvvhg dv= LG @ ; A ? A = 3 LG3 3 YG3 3 YGV LG3 3 +YJV _ YWK , +YGV ? YG3 3 , +YGV YG3 3 , +4, zlwk L3 G3 YG3 3 Y YWK @ LG3 JV YGG YWK Y YWK 5 @ YG3 JV YGG YWK +5, zkhuh YJV /YGG > dqg YWK duh wkh jdwh yrowdjh/ vxs0 so| yrowdjh dqg wkh wkuhvkrog yrowdjh uhvshfwlyho|1 YG3 lv wkh gudlq vdwxudwlrq yrowdjh iru YJV @ YGG / dqg LG3 lv wkh gudlq fxuuhqw dw YJV @ YGV @ YGG = Threshold voltage variation with channel length Alpha-exponent variation with channel length 0.8 1.7 VTO (Hspice Lev 50) VTH (Sakurai fitting) 0.78 1.6 p-MOS 0.76 0.74 n-MOS 1.5 p-MOS 1.4 alpha VTH (V) 0.72 0.7 0.68 n-MOS Model Sakurai et al. 1.3 n-MOS 0.66 1.2 0.64 p-MOS 1.1 0.62 0.6 0 0.5 1 1.5 L(um) 2 2.5 3 1 0 0.5 1 1.5 L(um) 2 2.5 3 Iljxuh 4 ~ Wkuhvkrog yrowdjh yduldwlrq zlwk fkdqqho Iljxuh 5 ~ ohqjwk ohqjwk iru d q0PRV dqg d s0PRV wudqvlvwru1 Wkh sdudphwhu lv wkh yhorflw| vdwxudwlrq lqgh{ wkdw wdnhv d ydoxh ehwzhhq 5 +orqj0fkdqqho ghylfhv, dqg 4 +vkruw0fkdqqho,1 Wkh wzr sdudphwhuv LG3 dqg YG3 duh h{wudfwhg iurp wkh L0Y gdwd/ zkloh YWK lv rewdlqhg e| vroylqj= wkh jdwh yrowdjh1 Vxfk prgho prglhv wkh vdwxud0 3 3 e| xvlqj= wlrq fxuuhqw h{suhvvlrq LG i +YWK , @ orj LLGG45 orj YYJJ56YYWK WK +6, L Y Y G 5 J 4 WK orj LG6 orj YJ5 YWK @ 3 zkhuh +YJ4 > LG4 , > +YJ5 > LG5 , dqg +YJ6 > LG6 , duh wkuhh srlqwv iurp wkh YJV LG sorw1 Rqfh YWK lv ghwhuplqhg/ lv rewdlqhg dv= orj +LG4 @LG5 , +7, orj ++YJ4 YW K , @ +YJ5 YW K ,, Wklv prgho lv hqwluho| hpslulfdo surylglqj d kdqg| irupxod wkdw fdq eh hdvlo| xvhg wr vroyh v|vwhpv ri pruh wkdq rqh wudqvlvwru olnh lqyhuwhuv ru frpsoh{ jdwhv dv uhsruwhg lq pdq| zrunv ^6`0^;`1 Htxdwlrq +6, surylghv kljkhu wkuhvkrog yrowdjh wkdq rwkhu sk|vlfdoo|0edvhg h{suhvvlrqv1 Dv dq h{0 dpsoh zh vkrz d frpsdulvrq ehwzhhq wkh wkuhvkrog yrowdjh jlyhq e| ht1 +6, dqg wkh wkuhvkrog yrowdjh h{suhvvlrq iurp wkh PRVIHW prgho < lq Ilj1 4 iru d 3168p whfkqrorj|1 H{suhvvlrq +6, ryhuhvwlpdwhv wkh wkuhvkrog yrowdjh zlwk d pd{lpxp huuru ri 47(1 D odfn ri sk|vlfdo phdqlqj +olnh wkh wkuhvkrog yrow0 djh uroo0xs suhvhqw, fdq eh fohduo| dssuhfldwhg lq Ilj1 41 Wkh sk|vlfdoo|0edvhg doskd0srzhu odz PRVIHW prgho ^<` surylghv d sk|vlfdo phdqlqj ri wkh srzhu uhodwlrqvkls ehwzhhq wkh gudlq fxuuhqw dqg @ Yduldwlrq ri sdudphwhu zlwk fkdqqho YG3 +YGG YWK +@5, YG3 , YJV YWK 3 LG3 @ YGG YWK +4 . +YJV YWK ,, 4 . YHGVDW FO +8, zlwk +v YJV YWK 4. HF O YGVDW @ HF O 5 4 , Iru wklv prgho kdv wkh h{suhvvlrq= @ orj YG3 ^YGG YWK +@5,YG3 ` YGd ^YGG YWK YGd ` 5 orj+5, +9, zkhuh YGd @ YGVDW mYJV @+YGG .YWK ,@5 1 Xvlqj ht1 +9, lv 625 iru vkruw0fkdqqho dqg 5 iru orqj0fkdqqho1 Wkh glhuhqfh ehwzhhq ht +9, dqg wkh wudglwlrqdo doskd0srzhu odz lv gxh wr wkh uhodwlrqvkls xvhg eh0 wzhhq LG3 3 dqg YJV YW K zklfk lv qrw dv vlpsoh dv wkh 0srzhu h{suhvvlrq +8,1 Wkhuhiruh/ vxfk prgho fdq qrw eh dssolhg wr pdq| zrunv edvhg rq wkh wud0 glwlrqdo doskd0srzhu odz prgho1 L_i* _ih@|L? Wkh h{suhvvlrq ghyhorshg lq wklv zrun lv ghulyhg iurp wkh gudlq vdwxudwlrq fxuuhqw ri PRV prgho < ^43/ 44`/ h{suhvvhg dv= +:, Zkhuh Yjw @ Yjv Ywk +Yjv lv wkh jdwh wr vrxufh yrowdjh dqg Ywk lv wkh wkuhvkrog yrowdjh,/ @ hii hii Fr{ Z Ohii > zlwk Fr{ ehlqj wkh jdwh r{lgh fdsdf0 lwru/ zkloh Zhii dqg Ohii duh wkh hhfwlyh fkdqqho zlgwk dqg ohqjwk uhvshfwlyho|1 hii lv wkh hhfwlyh fduulhuv prelolw| h{suhvvhg dv= 3 hii @ n-MOS Saturation current vs. gate voltage (L=0.35um,W=1..6um) 3.5 3 5 4. 4. 2 1.5 1 +;, +4 . 4 Yjw , +4 . 6 Ygvdw , 4 dqg 6 duh wkh jdwh hog dqg gudlq eldv prelo0 lw| uhgxfwlrq frhflhqwv uhvshfwlyho|1 Ygvdw lv wkh vdwxudwlrq yrowdjh jlyhq e|= Ygvdw @ Model Sak HSPICE 2.5 Isat (mA) 5 Lgv @ Yjw Ygvdw Ygvdw 5 Yjw 56 Yjw 4 5 +<, 0.5 0 0 0.5 1 1.5 2 2.5 3 3.5 Vgs(V) Iljxuh 6 ~ q0PRV p vdwxudwlrq fxuuhqw iru d 3168 ghylfh zlwk h{suhvvhg dv= p-MOS Saturation current vs. gate voltage (L=0.35um,W=1..6um) @4. 7 +NR N , Y VE[ 5 4 N . Y VE[ 5 . +8Yjw ,5 +S KLE , 5 +43, zkhuh 7 @ 3=6> 8 @ 3=41 NR dqg N duh wkh vxe0 vwudwh vhqvlwlylw| zkhq ghsohwlqj vxuidfh dqg exon grslqj uhvshfwlyho|/ S KLE lv wkh vxuidfh srwhqwldo iru vwurqj lqyhuvlrq dqg Y VE[ lv d yrowdjh ri wudq0 vlwlrq ehwzhhq NR dqg N 1Dv d ydoxh ri zh fkrrvh +Yjw @ +YGG YWK , @5, = Zh fdq hdvlo| rewdlq LG3 dqg YG3 iurp htxdwlrq +:, dqg +<, e| xvlqj YG3 @ Ygvdw +Yjv @ YGG , dqg LG3 @ Lgv +Yjv @ YGG , = Dv zdv vkrzq lq wkh suhylrxv vhfwlrq/ wkh ydoxh ri wkh wkuhvkrog yrowdjh lv rewdlqhg e| vroylqj +6, qxphulfdoo|1 Lq wklv zrun zh frqvlghu d sk|vlfdoo|0 edvhg h{suhvvlrq iru wkh wkuhvkrog yrowdjh= Ywk @ YWK 3 3YGG +44, zkhuh 3 dffrxqwv ri wkh GLEO hhfw dqg YWK 3 lv wdnhq dv= 1.4 & 4 4 YWK 3 @ YWR . VO Ohii Ouhi +45, 4 4 .VO5 O54 O54 . VZ Zhii Z uhi hii uhi zkhuh YWR lv wkh wkuhvkrog yrowdjh zlwk qr vxevwudwh ru gudlq eldv/ zkloh VO dqg VO5 dffrxqw iru wkh ohqjwk ghshqghqfh ri wkh wkuhvkrog yrowdjh/ dqg VZ lv wkh zlgwk ghshqghqfh sdudphwhu ri wkh wkuhvk0 rog yrowdjh1 Ilqdoo|/ Ouhi dqg Zuhi duh d uhihuhqfh 1.2 Model Sak HSPICE 1 Isat (mA) % 0.8 0.6 0.4 0.2 0 0 0.5 1 1.5 2 2.5 3 3.5 Vgs(V) Iljxuh 7 ~ s0PRV p vdwxudwlrq fxuuhqw iru d 3168 ghylfh fkdqqho ohqjwk dqg zlwk iru d jlyhq whfkqrorj|1 Doo wkh sdudphwhuv frqvlghuhg duh lqfoxghg lq wkh PRV0 IHW prgho < surfhvv sdudphwhuv vhw dqg dffrxqw iru vhyhudo vkruw0fkdqqho hhfwv dv wkh gudlq0lqgxfhg eduulhu orzhulqj ru wkh wkuhvkrog yrowdjh uroo0xs1 D vlpsoh dqg xvhixo irup wr h{suhvv wkh h{sr0 qhqw lq whupv ri yhorflw| vdwxudwlrq frhflhqwv lv= @ 4 . hii 3 Yjv @YGG +46, zkhuh hii lv wkh hhfwlyh prelolw| frhflhqw jlyhq e| +;,1 Ht1 +46, lv yhu| hhfwlyh lq ghvfulelqj wkh uhodwlrqvkls ehwzhhq wkh vdwxudwlrq fxuuhqw dqg wkh jdwh yrowdjh1 Ht1 +46, dovr erxqgv wkh ydoxhv n-MOS Saturation current vs. gate voltage (L=3.0um,W=1..6um) p-MOS Saturation current vs. gate voltage (L=3.0um,W=1..6um) 0.9 0.18 0.8 0.16 0.7 0.5 0.14 0.12 Model Sak HSPICE Isat (mA) Isat (mA) 0.6 Model Sak HSPICE 0.4 0.1 0.08 0.3 0.06 0.2 0.04 0.1 0.02 0 0 0 0.5 1 1.5 2 2.5 3 3.5 0 0.5 Vgs(V) Iljxuh 8 ~ q0PRV vdwxudwlrq fxuuhqw iru d 613 1 1.5 2 2.5 3 3.5 Vgs(V) p Iljxuh 9 ~ p s0PRV vdwxudwlrq fxuuhqw iru d 613 ghylfh ghylfh olnh wkh ruljlqdo Doskd0srzhu prgho vlqfh iru orqj0 fkdqqho wudqvlvwruv/ @ 5 +vlqfh hii @ 3 , zkloh iru vkruw0fkdqqho wklv h{suhvvlrq whqgv wr 41 Ilj1 5 vkrzv d frpsdulvrq ehwzhhq htxdwlrq +46, dqg +7, iru ydulrxv ydoxhv ri fkdqqho ohqjwk vkrzlqj wkdw wkhuh lv d forvhg uhodwlrqvkls ehwzhhq wkh wzr iru0 pxodwlrqv1 fdofxodwlrqv1 Phdq dqg pd{lpxp huuruv +fdofxodwhg , duh vkrzq lq Wdeoh 41 uhvshfw LG3 dv 433 L LLGKVS 3 e L_i* hit*|t Zh frpsduhg wkh doskd0srzhu odz PRVIHW prgho iru wkh hpslulfdo dqg wkh sk|vlfdoo| edvhg sdudphwhuv suhvhqwhg khuh zlwk dffxudwh PRVIHW prgho < fdofxodwlrqv iru d 3=68p surfhvv whfkqro0 rj|1 Lq Iljv1 6 dqg 7 zh sorw wkh vdwxudwlrq fxuuhqw ri q0PRV dqg s0PRV wudqvlvwruv zlwk Ohii @ 3=68p dqg ydulrxv Zhii ydoxhv +iurp 4p wr 9p,1 Dv fdq eh vhhq/ erwk h{suhvvlrqv w gdwd zlwk kljk dffxudf| +wkhuh lv d 51:( dqg 416( phdq huuru zlwk uhvshfw LG3 iru wkh prgho suhvhqw khuh dqg wkh wudglwlrqdo doskd0srzhu odz prgho uhvshfwlyho|,1 Iljv1 8 dqg 9 sorw wkh vdwxudwlrq fxuuhqw ri q0 PRV dqg s0PRV wudqvlvwruv zlwk d fkdqqho ohqjwk ri 6=3p iru ydulrxv ydoxhv ri Zhii +iurp 4p wr 9p,1 Erwk h{suhvvlrqv wv gdwd zlwk qhduo| wkh vdph dffxudf| +41;( dqg 4( ri phdq huuru iru wkh prgho suhvhqw khuh dqg wkh wudglwlrqdo doskd0srzhu odz prgho,1 Lghqwlfdo sorwv kdyh ehhq shuiruphg iru 3=8p> 3=9p> 3=;p> 4=3p> dqg 4=8p ri fkdqqho ohqjwk iru erwk s0PRV dqg q0PRV ghylfhv vkrz0 lqj d vlplodu dffxudf|1 Iljv1 : dqg ; vkrzv vxfk uhvxowv e| sorwwlqj KVSLFH suhglfwlrqv yv1 prghov W deoh 4 Huuruv= 3=68p 3=8p 3=9p 3=;p 4=3p 4=8p 6=3p Pd{1 614 614 519 519 518 517 514 Phdq1 51: 519 5 41< 41< 41; 41; Pd{1^5` 518 41: 5 41< 41; 41; 41< Phdq1^5` 416 415 414 413 31< 31< 31; Pdq| zrunv kdyh ehhq grqh edvhg rq vxfk prgho rewdlqlqj xvhixo ixpxodh wr suhglfw ghod|/ vohz wlph ru srzhu glvvlsdwlrq lq FPRV jdwhv1 Edvhg rq klv PRVIHW prgho/ Vdnxudl hw do1 ghyhorshg d vlpsoh irupxod iru fdofxodwlqj wkh ghod| ri d FPRV lqyhuwhu ^5`1 Wklv irupxod lv jlyhq e|= F Y y . 4 wsOK > wsKO @ O GG . W w +47, 5LG3 4. 5 W zkhuh wW lv wkh lqsxw ulvh2idoo wlph dqg yW @ YWK @YGG 1 Zh fdq revhuyh wkh glhuhqfh ri xvlqj lq +47, wkh wudglwlrqdo sdudphwhuv iru YWK dqg ru htxdwlrqv +44, dqg +46,1 Ilj1 < vkrzv wkh yduldwlrq ri wkh ghod| wlph ri d FPRV lqyhuwhu zlwk lqsxw ulvh dqg idoo wlph1 Dv fdq eh dssuhfldwhg/ erwk irupx0 odwlrqv ri wkh doskd0srzhu odz prgho ohdgv wr wkh Sakurai's model fitness with HSPICE (p-MOS and n-MOS) L={0.35um..3um} Model 3 Model 3 2.5 2.5 Ids(mA) (Model) Ids(mA) (Traditional model) Model fitness with HSPICE simulations (p-MOS and n-MOS) L={0.35um..3um} 2 1.5 1 0.5 2 1.5 1 0.5 0 0 0 Iljxuh : ~ 0.5 1 1.5 2 Ids(mA) (HSPICE) 2.5 3 Frpsdulvrq ehwzhhq KVSLFH ohy1 0 83 0.5 1 1.5 2 Ids(mA) (HSPICE) 2.5 3 Iljxuh ; ~ Frpsdulvrq ehwzhhq KVSLFH ohy1 83 dqg dqg vdnxudl*v suhglfwlrq iru wkh q0PRV dqg s0PRV prgho suhglfwlrq iru wkh q0PRV dqg s0PRV fxuuhqwv fxuuhqwv iru d vhw ri ghylfhv ehwzhhq iru d vhw ri ghylfhv ehwzhhq 6=3p ri fkdqqho 3=68p dqg ohqjwk1 3=68p dqg 6=3p ri fkdqqho ohqjwk1 vdph rughu ri dffxudf| +zlwklq d 6( ri phdq hu0 uru,1 Ilj1 43 vkrzv ghod| yduldwlrq zlwk fkdqqho ohqjwk iru d {hg q0PRV dqg s0PRV frqgxfwdqfh +Zq @Oq @ 3=8@3=68 dqg Zs @Os @ 4=3@3=68 ,1 ^6` A 5@!h@ @?_ + i|L? #i*@) @?@*)tt Lu tihit D L?U*tL?t ^7` @|3}iLh}Lc 5 !L*@_t @?_ W AtL!@*@t D qhz irupxodwlrq ri wkh Doskd0srzhu odz PRV0 IHW prgho kdyh ehhq suhvhqwhg1 Prgho wdnhv lqwr dffrxqw sk|vlfdo sdudphwhuv wr ghvfuleh wkh fduul0 huv* vdwxudwlrq hhfwv lq d vlpsoh zd|1 Vlpsolflw| dqg dffxudf| ri wkh suholplqdu| prgho ghyhorshg e| Vdnxudl hw do1 kdyh ehhq pdlqwdlqhg1 Wkh prgh0 odwlrq fdq eh lqfoxghg lq pdq| kdqg| irupxodh gh0 yhorshg iurp wkh doskd0srzhu odz PRVIHW prgho ^6`0^;` zlwkrxw orrvh ri dffxudf| dqg doorzlqj d gl0 uhfw uhodwlrqvkls zlwk surfhvv sdudphwhuv1 U!?L*i_}4i?|t Wklv zrun kdv ehhq vxssruwhg e| wkh Vsdqlvk %Frplvlrq Lqwhuplqlvwhuldo gh Flhqfld | Whfqrorjld% xqghu wkh surmhfw FLF\W0WLF<;035;71 -jujijAWjt ^4` `5LU!*i)c ?TL*@h i*_ igiU| |h@?tt|Lh hLU W+, L* ef TT SD.S L bD2 ^5` A5@!h@c + i|L? *T@TLih *@ 5 6,A 4L_i* @?_ |t TT*U@|L?t |L 5 ?ih|ih _i*@) @?_ L|ih uLh4*@t W,,, aLh?@* Lu 5L*_ 5|@|i UhU|tc L* 2D ?L2 TT DHeDbe Th* bbf UL??iU|i_ 56,A UhU|t W,,, aLh?@* Lu 5L*_5|@|i hU|t L* 2S ?L2 TT22 6iM bb 4L_i*?} |iU?^i uLh 5 }@|it W,,, Ah@?t@U|L?t L? L4T|ih@_i_ _it}? VL* H ?LD TT DD.D.D @) bbb ^8` w t_L?tc 5 !L*@_t @?_ kLuLT@*L ?@*)|U@* |h@?ti?| hitTL?ti @?_ ThLT@}@|L? _i *@) i@*@|L? Lu |i 5 ?ih|ih uLh 5Lh| U@??i* _iUit W,,, aLh?@* Lu 5L*_5|@|i Uh U|t VL* ?L2 TT f2fS 6iM bbH ^9` 5 #||@c 5@@?| 5i|| @?_ 5wwt!) UL4 Thii?ti _i*@) 4L_i* uLh 5 ?ih|iht W,,, aLh?@* Lu 5L*_t|@|i UhU|t VL* fc ?LH TT HDeH. }bbD ^:` 5 !L*@_t @?_ *i @?_ih @|3}iLh}L L_i*?} |i |h@?tt|Lh U@? LTih@|L? ? 5 }@|it uLh tLh| U@??i* _iUit W,,, Ah@?t@U|L?t L? UhU|t @?_ t)t|i4t W VL* eSc ?Lf TT b 2f2 U| bbb ^;` v Wt4@*c ,B 6hi_4@? @?_ aw iit #)?@4U @?_ tLh|UhU| TLih Lu 5 }@|it _h?} *Ltt*itt |h@?t4ttL? *?it W,,, Ah@?t@U |L?t L? UhU|t @?_ t)t|i4t W VL* eSc ?LHc TT bDfbS } bbb Delay time evaluation 500 Tdelay (ps) 400 300 Model Sakurai et al. HSPICE tpLH HSPICE tpHL 200 100 0 50 100 150 200 250 300 Tin (ps) 350 400 450 500 Iljxuh < ~ Wlph ghod| yduldwlrq zlwk lqsxw ulvh2idoo wlph iru d FPRV lqyhuwhu Delay time evaluation 450 HSPICE tdHL HSPICE tdLH Sakurai et al. Model 400 Tdelay (ps) 350 300 250 200 150 0 0.5 1 1.5 Channel length (um) 2 2.5 3 Iljxuh 43 ~ Wlph ghod| yduldwlrq zlwk fkdqqho ohqjwk iru d FPRV lqyhuwhu ^<` kL4@?c t|?c a,*Mic j A@?} @?_ a # i?_* T)tU@* @*T@TLih *@ 56,A 4L_i* W,,, aLh?@* Lu tL*_t|@|i UhU|tc VL* ec ?Lfc TTefee U| bbb ^43` + Vi*}ic # k*@@tti?c @?_ 6 k*@@tti?c 5 L_i* bc N?U*@tti_ +iTLh| wN+ ff%bec *Tt ,*iU|hL?Ut V Ebbe ^44` #@?i* 6L|) 56,A L_i*?} | 5W, h?UT*it @?_ Th@U|Ui hi?|Ui O@** bb. D vlpsoh srzhu frqvxpswlrq prgho ri FPRV exhuv gulylqj UF lqwhufrqqhfw olqhv M1O1 Urvvhoor dqg Mdxph Vhjxud Sk|vlfv Ghsw1/ Edohdulf Lvodqgv Xqlyhuvlw|/ Fud1 Ydooghprvvd np1:18 3:3:4 Sdopd gh Pdoorufd/ Vsdlq hpdlo= ~m1urvvhoor/mdxph1vhjxudCxle1hv Devwudfw1 Zh suhvhqw d vlpsoh dqg dffxudwh prgho wr frpsxwh wkh srzhu glv0 vlsdwhg lq vxe0plfurq FPRV exhuv gulylqj UF lqwhufrqqhfw olqhv1 Wkh h{suhv0 vlrq rewdlqhg dffrxqwv iru wkh pdlq hhfwv lq fxuuhqw vxe0plfurq FPRV whfk0 qrorjlhv dv fduulhu yhorflw| vdwxudwlrq hhfwv/ lqsxw0rxwsxw frxsolqj fdsdflwru/ rxwsxw ordg/ lqsxw vohz wlph/ ghylfh vl}hv dqg lqwhufrqqhfw uhvlvwdqfh1 Uhvxowv duh frpsduhg wr KVSLFH vlpxodwlrqv +ohyho 83, dqg rwkhu suhylrxvo| sxeolvkhg zrunv iru d fH>6 dqg d fD>6 whfkqrorj| vkrzlqj vljqlfdqw lpsuryhphqwv1 4 Lqwurgxfwlrq Dv LF whfkqrorj| ideulfdwlrq surfhvvhv vfdoh grzq/ qhz sk|vlfdo hhfwv pxvw eh frq0 vlghuhg zkhq dqdo|}lqj dqg prgholqj FPRV flufxlwv1 Yhorflw| vdwxudwlrq gxh wr kljk lqwhuqdo hohfwulf hogv/ lqsxw0rxwsxw frxsolqj fdsdflwru hhfwv gxh wr wkh qduurzhu jdwh r{lgh wklfnqhvv/ ru rq0fkls lqwhufrqqhfw uhvlvwdqfh +wkdw grhv qrw vfdoh grzq zlwk ihd0 wxuh vl}h, duh vrph ri wkh hhfwv wkdw pxvw eh frqvlghuhg wr rewdlq dffxudwh prghov1 D odujh iudfwlrq ri wkh srzhu glvvlsdwhg lq wrgd| YOVL LFv lv gxh wr wkh L2R gulyhuv dqg exvvhv dqg wkh forfn glvwulexwlrq qhwzrun/ zklfk duh edvhg rq lqyhuwhu jdwhv1 Khqfh/ wkh dqdo|wlfdo ghvfulswlrq ri srzhu glvvlsdwhg lq d FPRV lqyhuwhu lv ri lqfuhdvlqj lpsruwdqfh iru FPRV LFv srzhu hvwlpdwlrq1 Lw lv zhoo nqrzq wkdw srzhu glvvlsdwlrq lq FPRV flufxlwv kdv d g|qdplf dqg d vwdwlf frpsrqhqw1 Wkh g|qdplf glvvlsdwlrq +ghqhg dv wudqvlhqw hqhuj|, lv gxh wr wkh fkdujh2glvfkdujh ri wkh jdwh rxwsxw ordg/ dqg wr wkh vkruw0flufxlw fxuuhqw gxh wr wkh vxsso|0jurxqg frqgxfwlqj sdwk fuhdwhg gxulqj wkh wudqvlwlrq ^4`1 Vhyhudo zrunv kdyh ehhq irfxvvhg rq prgholqj wkh vkruw0flufxlw srzhu frqvxpswlrq ri FPRV exhuv1 Yhhqgulfn ^4` dqg Vdnxudl hw do1 ^5` rewdlqhg dqdo|wlfdo prghov iru xq0 ordghg exhuv xvlqj d orqj0fkdqqho dqg d vkruw0fkdqqho PRVIHW prgho uhvshfwlyho|1 Qrvh hw do1 ^6` ghulyhg d prgho iru vxeplfurq FPRV exhuv gulylqj d vlqjoh fdsdfl0 wru1 Wklv prgho grhv qrw wdnh lqwr dffrxqw erwk wkh lqsxw0rxwsxw frxsolqj fdsdflwru +LRFF, hhfwv qru wkh olqh uhvlvwdqfh dw wkh exhu rxwsxw1 Wxujlv hw do1 ^7` ghulyhg dq h{suhvvlrq iru wkh vkruw0flufxlw srzhu wdnlqj lqwr dffrxqw wkh LRFF dqg qhjohfwlqj wkh uhvlvwdqfh dw wkh exhu rxwsxw1 Qlnrodlglv hw1 do ^8`/ rewdlqhg dq h{suhvvlrq ri wkh vkruw0flufxlw glvvlsdwlrq iru exhuv gulylqj orqj lqwhufrqqhfw olqhv xvlqj wkh srzhu odz PRVIHW prgho1 Wkh dqdo|vlv zdv edvhg rq wkh 0prgho ri dq UF ordg dqg gh0 yhorshg iru vxe0plfurq ghylfhv1 Wklv prgho wdnhv lqwr dffrxqw wkh LRFF exw qhjohfwv wkh vkruw0flufxlw fxuuhqw frqwulexwlrq zkhq frpsxwlqj wkh rxwsxw zdyhirup1 Lq wklv zrun zh suhvhqw dq dffxudwh dqg vlpsoh prgho wr frpsxwh wkh srzhu frq0 vxpswlrq ri FPRV exhuv dffrxqwlqj iru wkh pdlq hhfwv lq vxeplfurq FPRV whfk0 qrorjlhv dv wkh LRFF dqg wkh olqh lqwhufrqqhfw uhvlvwdqfh/ ri lqfuhdvlqj lpsruwdqfh lq fxuuhqw vxeplfurq LFv1 Forvhg0irup h{suhvvlrqv iru srzhu hvwlpdwlrq duh rewdlqhg 5 Dxwkruv Vxssuhvvhg Gxh wr H{fhvvlyh Ohqjwk dyrlglqj wlph0frqvxplqj qxphulfdo surfhgxuhv1 Wkh prgho lv frpsduhg wr KVSLFH vlpxodwlrqv +ohyho 83, dqg wr rwkhu suhylrxvo| sxeolvkhg prghov iru d 3=4;p dqg d 3=68p whfkqrorjlhv vkrzlqj d vljqlfdqw lpsuryhphqw lq whupv ri dffxudf|1 Wkh uhvw ri wklv zrun lv rujdql}hg dv iroorzv= lq vhfwlrq 5 zh rewdlq dq h{suhvvlrq iru wkh wudqvlhqw hqhuj|1 Vhfwlrq 6 ghulyhv wkh vkruw0flufxlw hqhuj| frpsrqhqw dqg Vhfwlrq 7 suhvhqwv wkh uhvxowv zkloh Vhfwlrq 8 frqfoxghv wkh zrun1 5 Wudqvlhqw glvvlsdwlrq Wkh wudqvlhqw hqhuj| +Hwu , lv ghqhg dv wkh hqhuj| glvvlsdwhg zkhq wkh rxwsxw fdsdflwru lv fkdujhg2glvfkdujhg1 Lq d FPRV exhu wkh fkdujh dw wkh rxwsxw qrgh +Trxw , lv vwruhg lq erwk wkh rxwsxw dqg wkh frxsolqj fdsdflwru dqg fdq eh h{suhvvhg dv= Trxw +Ylq > Yrxw , @ +FP . FO , Yrxw FP Ylq +4, zkhuh Yrxw lv wkh rxwsxw yrowdjh/ Ylq wkh lqsxw yrowdjh/ FP lv wkh LRFF/ dqg FO lv wkh wrwdo fdsdflwdqfh dw wkh exhu rxwsxw1 O , lv Wkh ydoxh ri FP zkhq wkh lqsxw lv lq wkh vwdwlf orz vwdwh +ghqhg dv FP frpsxwhg frqvlghulqj wkh vlgh0zdoo fdsdflwdqfh ri erwk wudqvlvwru gudlqv/ wkh jdwh wr gudlq fdsdflwdqfh ri wkh sPRV wudqvlvwru lq wkh olqhdu uhjlrq/ dqg lv jlyhq e|= Zshii Oshii O +5, @ Fr{ FP . ODSs Zshii . ODSq Zqhii 5 zlwk ODSs dqg ODSq ehlqj wkh jdwh gudlq xqghuglxvlrq iru wkh sPRV dqg qPRV wudqvlvwruv uhvshfwlyho|/ Zqhii dqg Zshii wkh qPRV dqg sPRV hhfwlyh fkdqqho zlgwk/ Oshii wkh hhfwlyh fkdqqho ohqjwk ri wkh sPRV wudqvlvwru/ dqg Fr{ wkh jdwh r{lgh K fdsdflwdqfh1 Iru d vwdwlf lqsxw kljk wkh fdsdflwdqfh FP fdq eh rewdlqhg vlploduo|1 Wkh hqhuj| glvvlsdwhg dw wkh qPRV wudqvlvwru iru d kljk wr orz rxwsxw wudqvlwlrq lv jlyhq e| Hwu @ TYGG @5/ zkhuh T lv wkh fkdujh wudqvihuuhg iurp wkh rxwsxw qrgh wr jurxqg wkurxjk wkh qPRV wudqvlvwru/ dqg YGG lv wkh yrowdjh vzlqj1 Wkxv/ wudqvlhqw hqhuj| lv h{suhvvhg dv= Hwu @ ^Trxw +Ylq @ 3> Yrxw @ YGG , Trxw +Ylq @ YGG > Yrxw @ 3,` YGG 5 +6, zkhuh Trxw +3> YGG , lv wkh fkdujh vwruhg dw wkh rxwsxw qrgh dw wkh ehjlqqlqj ri wkh wudqvlwlrq dqg Trxw +YGG > 3, lv wkh fkdujh vwruhg dw wkh rxwsxw qrgh zkhq wkh wudqvlwlrq lv qlvkhg1 Xvlqj ht1+4, zh rewdlq= 5 4 O K +7, YGG FO . FP . FP 5 Wkh vdph h{suhvvlrq lv rewdlqhg zkhq d orz wr kljk rxwsxw wudqvlwlrq lv frqvlghuhg1 Hwu @ 6 Vkruw0flufxlw srzhu prgho Zh frpsxwh wkh vkruw0flufxlw hqhuj| glvvlsdwhg lq d FPRV exhu +Ilj1 4, iru d orz wr kljk lqsxw wudqvlwlrq +iru d kljk wr orz lqsxw wudqvlwlrq wkh prgho lv htxlydohqw,1 Lq rxu dqdo|vlv zh lqlwldoo| qhjohfw wkh uhvlvwdqfh ri wkh lqwhufrqqhfw olqh U dqg wkh lqsxw0rxwsxw frxsolqj fdsdflwru FP / wkdw zloo eh lqfoxghg odwhu1 D vlpsoh srzhu frqvxpswlrq prgho ri FPRV exhuv gulylqj UF lqwhufrqqhfw olqhv 6 Ilj1 41 FPRV exhu prgho Wkh vkruw0flufxlw frpsrqhqw lv rewdlqhg e| frpelqlqj wkh vroxwlrq rewdlqhg iru wkh olplw ri d idvw lqsxw wudqvlwlrq +ru d odujh rxwsxw fdsdflwru, dqg wkh rqh rewdlqhg iru wkh olplw ri d vorz lqsxw wudqvlwlrq +ru d vpdoo rxwsxw fdsdflwru,1 Ilqdoo| zh lqfoxgh wkh hhfwv ri wkh lqsxw0rxwsxw fdsdflwru dqg wkh uhvlvwdqfh ri wkh lqwhufrqqhfw1 614 Vkruw0flufxlw prgho iru khdylo|0ordghg exhuv Wkh g|qdplf ehkdylru ri wkh flufxlw lq Ilj1 4 lv ghvfulehg e|= gYrxw gYlq +8, @ Ls Lq . FP gw gw zkhuh Ls dqg Lq duh wkh sPRV dqg qPRV fxuuhqwv uhvshfwlyho|1 Xvlqj d vlpsoh vkruw0fkdqqho PRVIHW prgho iurp ^9`/ dqg qhjohfwlqj fkdqqho0 ohqjwk prgxodwlrq hhfwv/ wkh gudlq fxuuhqw h{suhvvlrq lv jlyhq e|= +FO . FP , LGV ; +YJV _ YW K , ?3 Y 3 3 , YYGV LG3 +YGV ? YG3 , 3 3 @ +5 YGV G3 G3 = 3 3 +YGV YG3 , LG3 +9, zlwk= 3 LG3 @ LG3 YJV YW K YGG YW K q +:, 3 Wkh vdwxudwlrq yrowdjh YG3 lv jlyhq e| ^9`= 3 YG3 @ YG3 YJV YW K YGG YW K p +;, Wkh sdudphwhu q lv wkh yhorflw| vdwxudwlrq lqgh{ wkdw wdnhv d ydoxh ehwzhhq 5 +orqj0 fkdqqho ghylfhv, dqg 4 +vkruw0fkdqqho,1 Sdudphwhuv LG3 dqg YG3 duh wkh gudlq fxuuhqw dqg vdwxudwlrq yrowdjh iru YJV @ YGV @ YGG / zkloh sdudphwhuv q/ p dqg YW K duh wwlqj sdudphwhuv1 Wkh lqsxw yrowdjh lv ghvfulehg zlwk d olqhdu udps dv= Ylq +w, @ YW Q . YVF w wq wvf +<, 7 Dxwkruv Vxssuhvvhg Gxh wr H{fhvvlyh Ohqjwk VF wlq dqg wq @ YWQ wlq 1 YW Q dqg YW S duh zkhuh YVF @ YGG YW Q mYW S m > wvf @ YYGG YGG wkh qPRV dqg sPRV wkuhvkrog yrowdjhv/ dqg wlq lv wkh lqsxw ulvh wlph1 Dw wkh ehjlqqlqj ri wkh wudqvlwlrq/ wkh qPRV wudqvlvwru lv vdwxudwhg1 Iru khdylo|0 ordghg exhuv wkh vkruw0flufxlw dqg ryhuvkrrwlqj hhfwv fdq eh qhjohfwhg dqg ht1+8, fdq eh vlpsolhg wr= gYrxw 3 +43, @ LG3 q gw 3 O O zlwk LG3q jlyhq e| ht1 +:, dqg FV @ FO . FP 1 Zh fdq vroyh ht1 +43, zlwk wkh lqlwldo frqglwlrq Yrxw +wq , @ YGG rewdlqlqj= FVO q .4 w wq q +44, Yrxw +w, @ YGG YG wvf zkhuh wq lv wkh wlph dw zklfk wkh qPRV wudqvlvwru vwduwv wr frqgxfw dqg YG lv jlyhq e|= qq YVF LG3q wvf +45, YG @ O FV +qq . 4, YGG YW Q Ht1 +44, lv xvhg lq wkh olqhdu h{suhvvlrq ri wkh sPRV fxuuhqw +vhh ht1 +9,,1 Iru wkh sPRV wudqvlvwru zh h{suhvv wkh gudlq/ jdwh dqg vdwxudwlrq yrowdjhv dv= YGV @ YG w wq wvf qq .4 +46, w wq YJV @ mYW S m . YVF 4 w vf q YG3s YVF 4 ww wvf 3 YG3s @ +YGG mYW S m, zkhuh d ydoxh ri p @ 4 lv frqvlghuhg dw wkh vdwxudwlrq yrowdjh h{suhvvlrq1 Vlqfh zh duh qrz frqvlghulqj khdylo|0ordghg exhuv/ wkhq wkh gudlq0vrxufh yrowdjh dw wkh sPRV wudqvlvwru lv vpdoo ehfdxvh wkh rxwsxw fdsdflwru lv odujh1 Wkxv/ zh wdnh rqo| d uvw rughu h{suhvvlrq iru wklv fxuuhqw lq whupv ri YGV iurp ht1+9,1 zkhuh L3s YG Ls @ 5 L3s YG3s kdv wkh irup= w wq wvf qq .4 w wq 4 wvf qs 4 +47, qs 4 YVF +48, L3s @ LG3s YGG mYW S m Wkh wlph dw zklfk wkh pd{lpxp fxuuhqw wdnhv sodfh iru khdylo| ordghg exhuv O $4 lv rewdlqhg vroylqj Cw Ls @ 31 wF pd{ qq . 4 qq . qs Wkhq/ wkh pd{lpxp fxuuhqw iru khdylo|0ordghg exhuv lv h{suhvvhg dv= O $4 @ wq . w wF vf pd{ FO $4 Lpd{ s YG @5 L3s YG3s qq . 4 qq . qs qq .4 qs 4 qq . qs qs 4 +49, +4:, D vlpsoh srzhu frqvxpswlrq prgho ri FPRV exhuv gulylqj UF lqwhufrqqhfw olqhv 615 8 Vkruw0flufxlw prgho iru xqordghg exhuv Zkhq wkh rxwsxw fdsdflwdqfh lv vpdoo +l1h1 zkhq wkh vkruw0flufxlw fxuuhqw kdv wkh juhdwhu lpsdfw ^4`, wkh flufxlw ehkdylru lv forvh wr wkh lqyhuwhu GF rshudwlrq vlqfh Ls * Lq 1 Dw wkh ehjlqqlqj ri wkh wudqvlwlrq/ wkh sPRV wudqvlvwru gulyhv d fxuuhqw htxdo wr wkh qPRV vdwxudwlrq fxuuhqw/ zkloh dw wkh hqg ri wkh wudqvlwlrq wkh sPRV lv vdwxudwhg1 Lq 3 3 wklv sduwlfxodu fdvh/ wkh pd{lpxp fxuuhqw wdnhv sodfh zkhq LG3 s @ LG3q 1 Jlyhq wkdw Y iru wkh qPRV dqg Y iru wkh sPRV/ wkh wlph dw zklfk wkh YJV @ Ylq JV @ YGG lq vkruw0flufxlw lv pd{lpxp +ghqhg dv wFO@3 , fdq eh rewdlqhg vroylqj= pd{ 3 4qq 3 4qs wFO@3 wFO pd{@3 mYW S m Y Y YGG pd{ Y W Q GG GG wlq wlq D @ LG3 C D LG3q C s YGG YW Q YGG mYW S m +4;, zkhuh LG3q dqg LG3s duh wkh sdudphwhuv LG3 ri wkh qPRV dqg wkh sPRV wudqvlvwru uhvshfwlyho|1 Zh rewdlqhg d jrrg dqdo|wlfdo dssur{lpdwlrq wr wkh vroxwlrq ri ht1 +4;, dv= O @3 wF pd{ WQ mYWS m 4 YYGG YGG @ wq . wlq 5 q .q 4.I s q +4<, s zkhuh Is lv jlyhq e|= LG3q Is @ LG3s YVF YGG YW Q qq YGG mYW S m YVF qs +53, FO@3 Wkhq/ wkh pd{lpxp vkruw0flufxlw fxuuhqw iru xqordghg exhuv +Lpd{ s , lv hdvlo| hydoxdwhg iurp wkh vdwxudwlrq h{suhvvlrq ri wkh qPRV ru wkh sPRV wudqvlvwru +ht1 +4;,,1 616 Frpelqlqj erwk h{suhvvlrqv Zh frqvwuxfw dq h{suhvvlrq iru wkh pd{lpxp vkruw0flufxlw fxuuhqw Lpd{s wkdw ohdgv wr FO $4 FO @3 FO $4 lv d ixqfwlrq ri wkh Lpd{ s iru odujh ydoxhv ri FO > dqg wr Lpd{s iru FO @ 31 Lpd{ irup D@FVO dqg wkhuhiruh glyhujhqw zkhq FO @ 31 Wr suhyhqw vxfk d glyhujhqfh zh xvh wkh iroorzlqj h{suhvvlrq iru wkh pd{lpxp vkruw0flufxlw fxuuhqw1 Lpd{s @ FO $4 FO @3 Lpd{ s Lpd{s FO $4 FO @3 Lpd{s . Lpd{ s +54, Wkh vkruw0flufxlw fxuuhqw lv lqlwldwhg zkhq wkh qPRV wudqvlvwruvwduwv wr frqgxfw WQ , dqg fhdvhv zkhq wkh sPRV lv r +dw wlph ws @ wlq 4 mYWS m ,1 Wkh +dw wq @ wlq YYGG YGG vkruw0flufxlw fkdujh wudqvihuuhg +VFFW, lv rewdlqhg dssur{lpdwlqj wkh vkruw0flufxlw fxuuhqw vkdsh dv d wuldqjoh zlwk pd{lpxp ydoxh Lpd{s +wuldqjoh DEF lq Ilj1 5,1 Wkhq/ wkh duhd xqghu wkh wuldqjoh zloo eh sursruwlrqdo wr wkh VFFW= T3vf @ mYW S m YW Q Lpd{s wlq 4 5 YGG YGG +55, 9 Dxwkruv Vxssuhvvhg Gxh wr H{fhvvlyh Ohqjwk zkhuh lv d wwlqj sdudphwhu dffrxqwlqj iru wkh ghyldwlrq ri wkh vkruw0flufxlw fxuuhqw vkdsh iurp dq lghdo wuldqjoh1 Wkh sdudphwhu lv forvh wr 4 iru ghhs0vxeplfurq whfk0 qrorjlhv gxh wkh olqhdu ghshqghqfh ehwzhhq wkh vdwxudwlrq fxuuhqw dqg wkh jdwh yrowdjh +wkdw ghvfulehv dq lghdo wuldqjoh,1 Iru orqj0fkdqqho ghylfhv @ 5@6 vlqfh wkh ghshq0 ghqfh ehwzhhq wkh vdwxudwlrq fxuuhqw dqg wkh jdwh yrowdjh lv txdgudwlf +wkh duhd ri d wuldqjoh frpsrvhg e| wzr sduderodv lv 46 Lpd{s +ws wq ,,1 Wkhuhiruh/ wkh sdudphwhu wdnhv d ydoxh ehwzhhq 5@6 +orqj0fkdqqho, dqg 4 +ghhs0vxeplfurq,1 Wkh sdudphwhu lv wdnhq htxdo iru erwk idoolqj dqg ulvlqj lqsxw wudqvlwlrqv iru vlpsolflw|1 Iru wkh wzr whfkqrorjlhv xvhg lq wklv zrun zh rewdlqhg @ 3=9< dqg @ 3=:8 iru wkh 3=68p dqg wkh 3=4;p whfkqrorjlhv uhvshfwlyho|1 617 Ryhuvkrrwlqj hhfwv Geometry extraction of Qsc from Qsc(CM=0) and tov B 50 40 E Q sc 0 Current ( µ A) 30 20 Q sc r 10 D 0 t ov A C -10 -20 0 20 40 60 80 100 t (ps) Ilj1 51 Jhrphwulfdo ghulydwlrq ri 'orS iurp 'frS dqg |J Hhfwv ri ryhuvkrrwlqj rq wkh vkruw0flufxlw fxuuhqw Ilj1 5 lv d sorw ri wkh fxuuhqw wkurxjk wkh vkruw0flufxlwlqj wudqvlvwru gxulqj wkh wudqvlwlrq1 Wzr fdvhv duh frqvlghuhg/ FP @ 3 dqg FP 9@ 31 Vlpxodwlrqv lq Ilj1 5 vkrzhg wkdw ryhuvkrrwlqj glvsodfhv wkh vkruw0flufxlw fxuuhqw wr wkh uljkw/ pdlqwdlqlqj wkh fxuuhqw vorshv lqyduldqw1 Wklv fdq eh ghvfulehg dqdo|wlfdoo| xvlqj d jhrphwulfdo dssurdfk dv vkrzq lq Ilj 51 Zh dssur{lpdwh wkh vkruw0flufxlw fxuuhqw fxuyh glvsodfhphqw zlwk vwudljkw olqhv ri htxdo vorshv/ zlwk wkh glvsodfhphqw gxh wr ryhuvkrrwlqj1 T3vf lv wkh duhd ri wkh wuldqjoh DEF +VFFW zkhq FP @ 3, dqg lv nqrzq iurp ht1 +55,/ zkloh wkh uhgxfhg VFFW gxh wr ryhuvkrrwlqj +Tuvf , lv wkh duhd xqghu wkh wuldqjoh GHF1 Xvlqj wklv jhrphwulfdo dqdorj| Tuvf lv ghulyhg iurp T3vf xvlqj wry dv= Tuvf @ T3vf 5 wry wq 4 wvf +56, Li wry A wq . wvf / ht1+56, qr orqjhu krogv dqg Tuvf @ 3= Ryhuvkrrw wlph hydoxdwlrq Wkh vroxwlrq ri ht1+8, wr jhw wry lv d qrq0olqhdu sureohp zlwk qr0forvhg irup h{suhvvlrq1 Wkhuhiruh/ zh uhodwh wklv sdudphwhu wr wkh wlph dw D vlpsoh srzhu frqvxpswlrq prgho ri FPRV exhuv gulylqj UF lqwhufrqqhfw olqhv : 450 0.18um Design Rule 0.35um Design Rule Eq. (24) 400 350 t ov (ps) 300 250 200 150 100 50 0 0 50 100 150 tov max (ps) 200 250 300 iru d fH>6 dqg d fD>6 surfhvv whfkqrorj|1 D Ilj1 61 KVSLFH vlpxodwlrqv ri |J dqg |4@ J plqlpxp vl}hg lqyhuwhu gulylqj dqrwkhu plqlpxp vl}hg lqyhuwhu duh frqvlghuhg zlwk glhuhqw lqsxw ulvh wlphv zklfk wkh ryhuvkrrwlqj fxuuhqw lv pd{lpxp +ghqhg dv wpd{ ry ,/ wr jhw dq dqdo|wlfdo h{suhvvlrq iru wry = Ilj1 6 vkrzv KVSLFH vlpxodwlrqv ri wry dqg wpd{ ry iru d 3=4;p dqg d 3=68p surfhvv whfkqrorj| iru d plqlpxp vl}hg lqyhuwhu wkdw gulyhv dqrwkhu plqlpxp vl}hg lqyhuwhu1 Wkh glhuhqw vlpxodwlrqv duh rewdlqhg ydu|lqj wkh lqsxw ulvh wlph1 D olqhdu uhodwlrqvkls lv rewdlqhg zlwk wkh irup= wry wq @ 6 +wpd{ ry wq , 5 +57, Wkh pd{lpxp ryhuvkrrw wlph lv rewdlqhg iurp ht1+8, qhjohfwlqj wkh fxuuhqw wkurxjk wkh qPRV wudqvlvwru lv vdwxudwhg dqg wkh rxwsxw yrowdjh lv wkh sPRV1 Dw w @ wpd{ ry pd{lpxp + gYgwrxw @ 3,1 Wkhq ht1 +8, lv uhgxfhg wr= FP gYlq 3 LG3 q @3 gw +58, Ht1+58, fdq eh h{suhvvhg dv= YGG LG3q FP wlq # $qq wpd{ YGG wrylq YW Q @3 YGG YW Q +59, Vroxwlrq wr ht1 +59, ohdgv wr= wpd{ ry wlq @ YGG # YW Q . +YGG YW Q , FP YGG LG3q wlq q4 $ q +5:, Rqfh wpd{ lv rewdlqhg/ wry lv jlyhq e| ht1+57,1 ry Ilqdoo|/ wkh hqhuj| dvvrfldwhg wr wkh vkruw0flufxlw fxuuhqw iru d ulvlqj lqsxw wudqvlwlrq lv frpsxwhg dv= u Hvf @ Tuvf YGG +5;, ; Dxwkruv Vxssuhvvhg Gxh wr H{fhvvlyh Ohqjwk Ilj1 71 Lqwhufrqqhfwlrq vfkhph1 D Z prgho lv xvhg wr vlpxodwh wkh lqwhufrqqhfwlrq olqh1 618 Lqfoxglqj wkh uhvlvwlylw| ri wkh lqwhufrqqhfw olqh Zh lqfoxgh wkh hhfw ri wkh lqwhufrqqhfw olqh e| xvlqj wkh hhfwlyh fdsdflwdqfh frqfhsw ^:`1 Wr rewdlq dq dqdo|wlfdo h{suhvvlrq ri wkh hhfwlyh fdsdflwdqfh wr eh xvhg lq wkh vkruw0flufxlw prgho zh dqdo|}h wkh UF qhwzrun ri Ilj1 71 Wkh qrgh yrowdjh Y4 dqg Y5 duh uhodwhg e| d v|vwhp ri glhuhqwldo htxdwlrqv1 Y Y gY4 4 5 4 LG3 q gw @ F4 U +5<, gY5 4 Y4 Y5 gw @ F5 U Iru wkh fdvh U@3 zh kdyh wkdw Y4 @ Y5 1 LG3q FO zkhuh FO @ F4 . F5 = Iurp ht1+63, zh ghqh wkh hhfwlyh fdsdflwdqfh dv= Y4 @ YGG w +63, LG3q w +64, YGG Y4 +w, Xvlqj wklv ghqlwlrq zh kdyh wkdw Fhi i @ FO zkhq U @ 31 Iru d odujh ydoxh ri wkh lqwhufrqqhfw uhvlvwdqfh/ Y4 wdnhv wkh irup= LG3q 4 5 LG3q +65, Y4 @ YGG w .w .r 5 F4 5UF4 U5 Xvlqj wklv vroxwlrq/ wkh hhfwlyh fdsdflwdqfh iru odujh ydoxhv ri wkh lqwhufrqqhfw uhvlvwdqfh lv= Fhi i w +66, 5U Zh exlog d vlqjoh h{suhvvlrq ri wkh hhfwlyh fdsdflwdqfh wkdw ohdgv wr FO iru U @ 3 dqg wr ht1+66, iru odujh ydoxhv ri wkh lqwhufrqqhfw uhvlvwdqfh dv= Fhi i * F4 . Fhi i +w, @ F4 . +FO F4 , w 5U +FO F4 , . w +67, zkhuh F4 uhsuhvhqwv wkh rxwsxw fdsdflwdqfh ri wkh exhu +gudlq fdsdflwdqfh ri erwk qPRV dqg sPRV wudqvlvwruv, dqg FO lv wkh wrwdo fdsdflwdqfh dw wkh rxwsxw1 Ht1+67, lv wlph ghshqghqw dqg lv hydoxdwhg lqvlgh wkh lqwhuydo zh zdqw d ghvfulswlrq ri wkh rxwsxw yrowdjh1 Lq rxu prgho zh qhhg dq hhfwlyh fdsdflwdqfh iru wkh wlph gxulqj zklfk wkh vkruw0flufxlw fxuuhqw wdnhv sodfh1 Wkhuhiruh zh wdnh wkh wlph dw wkh plggoh ri wkh lqsxw wudqvlwlrq vr wkdw Fhi i @ Fhi i wlq = Wklv hhfwlyh fdsdflwdqfh lv lqfoxghg 5 lq wkh vkruw0flufxlw hqhuj| prgho +ht1 +5;,,1 D vlpsoh srzhu frqvxpswlrq prgho ri FPRV exhuv gulylqj UF lqwhufrqqhfw olqhv < Energy vs. line resistance(CL=0.2pF tin=300ps) 0.14 Short-circuit energy/Cycle (pJ) 0.12 0.1 0.08 0.06 0.04 Wp/Wn=5um/10um Wp/Wn=7.5um/7.5um Wp/Wn=10um/5um Model [5] 0.02 0 0 200 400 600 800 1000 R ( Ω) Ilj1 81 Hqhuj| glvvlsdwhg yv1 olqh uhvlvwdqfh iru d fH>6 whfkqrorj|1 Glhuhqw ydoxhv ri udwlr `R *`? duh frqvlghuhg1 Energy vs. input time (CL=1pF) 12.4 12.2 Wp/Wn=10um/10um R=0 Ω Wp/Wn=10um/10um R=1k Wp/Wn=6um/14um R=0 Ω Wp/Wn=6um/14um R=1k Model Energy/Cycle (pJ) 12 11.8 11.6 11.4 11.2 11 400 600 800 1000 tin (ps) 1200 1400 1600 Ilj1 91 Hqhuj| glvvlsdwhg shu f|foh shulrg yv1 lqsxw wlph iru glhuhqw `R *`? udwlrv dqg lqwhufrqqhfw uhvlvwdqfhv iru d fD>6 whfkqrorj|1 7 Uhvxowv Lq Ilj1 8 zh sorw KVSLFH vlpxodwlrqv ri wkh vkruw0flufxlw hqhuj| glvvlsdwhg shu rqh f|0 foh shulrg yv1 olqh uhvlvwdqfh iru d 3=4;p whfkqrorj|1 Wkh lqwhufrqqhfw olqh lv vlpxodwhg zlwk KVSLFH xvlqj wkh 6 prgho1 Wkuhh glhuhqw lqyhuwhuv zlwk glhuhqw ydoxhv ri wkh Zs @Zq udwlr duh frqvlghuhg1 Wrwdo fdsdflwru dw wkh rxwsxw lv {hg dw FO @ 3=5sI= Dv fdq eh dssuhfldwhg wkh vkruw0flufxlw srzhu lqfuhdvhv zkhq lqfuhdvlqj wkh olqh uhvlv0 wdqfh1 Wklv lv ehfdxvh sduw ri wkh rxwsxw fdsdflwdqfh lv vklhoghg iurp wkh exhu/ wkxv ghfuhdvlqj wkh jdwh ghod| dqg lqfuhdvlqj wkh vkruw0flufxlw glvvlsdwlrq ^:`1 Zh frpsduh KVSLFH vlpxodwlrqv +grwv, zlwk prgho lq ^8` dqg wkh prgho sursrvhg1 Wkh prgho lq ^8` xqghuhvwlpdwhv hqhuj| zkloh wkh prgho sursrvhg suhvhqwv dq ryhudoo jrrg dffxudf|1 Lq Ilj1 9 zh vkrz KVSLFH vlpxodwlrqv ri wkh hqhuj| glvvlsdwhg shu rqh f|foh shulrg yv1 wkh lqsxw wlph iru d 3=68p whfkqrorj|1 Wzr glhuhqw lqyhuwhuv duh frqvlghuhg zlwk glhuhqw ydoxhv ri wkh Zs @Zq udwlr dqg wzr ydoxhv ri wkh lqwhufrqqhfw uhvlvwdqfh +U @ 3 dqg U @ 4n,1 Wkh wrwdo fdsdflwru dw wkh exhu rxwsxw lv {hg dw FO @ 4sI 1 43 Dxwkruv Vxssuhvvhg Gxh wr H{fhvvlyh Ohqjwk Dv fdq eh dssuhfldwhg/ wkh prgho ghyhorshg ghvfulehv fruuhfwo| KVSLFH vlpxodwlrqv iru doo wkh frqglwlrqv frqvlghuhg1 Ilqdoo|/ lq Wdeoh 4 zh vkrz wkh wrwdo dqg wkh phdq huuru ri wkh vkruw0flufxlw hqhuj| glvvlsdwhg iru wkh prghov lq ^6/ 8` dqg wkh prgho sursrvhg uhvshfw KVSLFH vlpxodwlrqv lq Iljv1 8 dqg 91 Dv fdq eh dssuhfldwhg/ wkh prgho sursrvhg uhsuhvhqwv dq lpsuryhphqw lq whupv ri dffxudf|1 Wdeoh 41 Phdq dqg pd{lpxp huuruv ri wkh vkruw0flufxlw hqhuj| glvvlsdwhg iru d 3=4;p dqg d 3=68p whfkqrorj| Huuru Pd{1+3=4;p, Phdq+3=4;p, Pd{1+3=68p, Phdq+3=68p, 6( 63( ;( Prgho 8( 99( 8:( <3( :3( ^6` <3( 5<( ;7( 7:( ^8` 8 Frqfoxvlrqv Dq dffxudwh dqdo|wlfdo prgho wr fdofxodwh wkh srzhu frqvxpswlrq ri FPRV exhuv gulylqj UF lqwhufrqqhfw olqhv kdv ehhq ghyhorshg1 Wkh prgho lv frpsduhg wr KVSLFH vlpxodwlrqv +ohyho 83, dqg rwkhu suhylrxvo| sxeolvkhg prghov iru d 3=4;p dqg d 3=68p surfhvv whfkqrorj| uhsruwlqj d kljk dffxudf|1 Lw lv deoh wr ghvfuleh wkh hqhuj| ghshq0 ghqfh ri wkh exhu zlwk lqsxw vohz wlph/ dv|pphwu| ri wkh exhu/ rxwsxw fdsdflwdqfh/ lqsxw0rxwsxw frxsolqj fdsdflwru dqg wkh uhvlvwdqfh ri wkh lqwhufrqqhfw olqh1 Qrq0olqhdu sureohpv duh vroyhg xvlqj vlpsoh irupxodv dqg dyrlglqj wlph0frqvxplqj qxphulfdo surfhgxuhv1 Wkh prgho uhsuhvhqwv dq lpsuryhphqw uhvshfw suhylrxvo| sxeolvkhg zrunv surylglqj d kljk dffxudf| uhvshfw KVSLFH vlpxodwlrqv1 DFNQRZOHGJPHQW Wklv zrun kdv ehhq vxssruwhg e| wkh Vsdqlvk jryhuqphqw xqghu wkh surmhfw FLF\W0 WLF<;035;71 Uhihuhqfhv ^4` K1Yhhqgulfn/ Vkruw0flufxlw glvvlsdwlrq ri vwdwlf FPRV flufxlwu| dqg lwv lpsdfw rq wkh ghvljq ri exhu flufxlwv/ LHHH M1 Vrolg0Vwdwh Flufxlwv/ yro VF04</ ss179;07:6/ Dxj1 4<;71 ^5` W1Vdnxudl/ U1 Qhzwrq/ Doskd0srzhu odz PRVIHW prgho dqg lwv dssolfdwlrqv wr FPRV lqyhuwhu ghod| dqg rwkhu irupxodv/ LHHH Mrxuqdo ri Vrolg0Vwdwh flufxlwv/ yro 58/ ss1 8;70 8<7/ Dsu1 4<<31 ^6` N1 Qrvh dqg W1 Vdnxudl/ Dqdo|vlv dqg ixwxuh wuhqg ri vkruw0flufxlw srzhu/ LHHH Wudqv0 dfwlrqv rq Frpsxwhu0Dlghg Ghvljq/ Yro 4</ Vhsw1 53331 ^7` V1Wxujlv dqg G1 Dxyhujqh/ D qryho pdfurprgho iru srzhu hvwlpdwlrq lq FPRV vwuxf0 wxuhv/ LHHH Wudqv1 rq Frpsxwhu0Dlghg Ghvljq/ yro 4:/ ss143<3043<;/ Qry1 4<<;1 ^8` V1 Qlnrodlglv/ D Fkdw}ljhrujlrx dqg N|uldnlv0Elw}durv/ Ghod| dqg Srzhu Hvwlpdwlrq iru d FPRV Lqyhuwhu gulylqj UF Lqwhufrqqhfw Ordgv/ Lq Surf1 ri wkh LHHH Lqwhuqdwlrqdo V|psrvlxp rq Flufxlwv dqg V|vwhpv/ Prqwhuh| FD/ XVD/ Pd| 640Mxqh 6/ 4<<;/ yro1 YL/ ss1 69;06:41 ^9` Wdnd|dvx Vdnxudl dqg Ulfkdug Qhzwrq/ D vlpsoh PRVIHW Prgho iru Flufxlw Dqdo|vlv/ LHHH Wudqvdfwlrqv rq Hohfwurq Ghylfhv/ yro1 6;/ ss1 ;;:0;<7/ Dsu1 4<<41 ^:` M1 Tldq/ V1 Sxoohod dqg O1 Sloodjh/ Prgholqj wkh hhfwlyh fdsdflwdqfh iru wkh UF lq0 whufrqqhfw ri FPRV jdwhv/ LHHH Wudqvdfwlrqv rq Frpsxwhu0Dlghg Ghvljq/ yro 46/ ss1 485904868/ Ghf1 4<<71 Prgholqj wkh lqsxw0rxwsxw frxsolqj fdsdflwru hhfwv rq wkh FPRV exhu srzhu frqvxpswlrq M1O1 Urvvhoor dqg Mdxph Vhjxud Sk|vlfv Ghsw1/ Edohdulf Lvodqgv Xqlyhuvlw|/ Fud1 Ydooghprvvd np1:18 3:3:4 Sdopd gh Pdoorufd/ Vsdlq hpdlo= ~m1urvvhoor/mdxph1vhjxudCxle1hv Devwudfw0 D ghwdlohg ghvfulswlrq ri frxsolqj fdsdflwru hhfwv rq wkh vkruw0flufxlw dqg wudqvlhqw srzhu lv suhvhqwhg1 Lw lv vkrzq wkdw wkh lqsxw0rxwsxw frxsolqj fdsdflwru gh0 fuhdvhv wkh frqwulexwlrq ri wkh vkruw0flufxlw fkdujh wudqvihuuhg +VFFW,/ zkloh lqfuhdvhv wkh wrwdo fdsdflwru dw wkh exhu rxwsxw wkxv lqfuhdvlqj wkh wrwdo srzhu1 Wkh prgho lv gh0 yhorshg iru vxe0plfurq FPRV exhuv dqg dssolhg wr d uhfhqwo| sxeolvkhg vkruw0flufxlw srzhu prgho uhvxowlqj lq d frqvlghudeoh lp0 suryhphqw lq whupv ri dffxudf|1 Uhvxowv duh frpsduhg wr KVSLFH vlpxodwlrqv +ohyho 83, iru d 3=68p whfkqrorj|1 L1 Lqwurgxfwlrq D kljk shufhqwdjh ri wkh srzhu glvvlsdwhg e| YOVL lqwhjudwhg flufxlwv lv gxh wr wkh forfn glvwulexwlrq qhwzrun/ L2R gulyhuv dqg exvvhv zklfk duh doo edvhg rq lqyhuwhuv1 Wkh dqdo|vlv ri FPRV lqyhuwhuv lv dovr wkh prvw lpsruwdqw vwhs zkhq d ghwdlohg ghvfulswlrq ri pruh frpsoh{ jdwhv lv uhtxluhg1 Wkhuhiruh/ wkh dqdo|wlfdo ghvfulswlrq ri wkh srzhu glvvlsdwhg lq d FPRV lqyhuwhu lv ri lqfuhdvlqj lpsruwdqfh1 Srzhu glvvlsdwlrq lq FPRV flufxlwv kdv d g|0 qdplf dqg d vwdwlf frpsrqhqw1 Wkh g|qdplf glvvl0 sdwlrq lv gxh wr wkh fkdujh2glvfkdujh ri jdwh rxwsxw ordg +ghqhg dv wudqvlhqw hqhuj|,/ dqg wr wkh vkruw0 flufxlw fxuuhqw gxh wr wkh vxsso|0jurxqg frqgxfwlqj sdwk fuhdwhg gxulqj wkh wudqvlwlrq ^4`1 Vhyhudo zrunv kdyh irfxvvhg rq prgholqj wkh vkruw0flufxlw srzhu frqvxpswlrq1 Yhhqgulfn ^4` re0 wdlqhg dq h{suhvvlrq iru xqordghg exhuv1 Vdnxudl hw do1 ^5` ghulyhg d prgho iru orqj dqg vkruw fkdq0 qho ghylfhv xvlqj wkhlu doskd0srzhu odz PRVIHW prgho iru xqordghg exhuv1 Wxujlv hw do1 ^6` gh0 ulyhg dq h{suhvvlrq iru wkh vkruw0flufxlw dqg ryhu0 vkrrwlqj glvvlsdwlrq dqg lqwurgxfhg wkh htxlydohqw fdsdflwdqfh frqfhsw doorzlqj d gluhfw dqg iuhtxhqf|0 lqghshqghqw frpsdulvrq ri wkh glhuhqw srzhu frp0 srqhqwv1 Pruh uhfhqwo|/ Qrvh hw do1 ^7` ghulyhg d vlpsoh prgho iru wkh vkruw0flufxlw srzhu zklfk wdnhv vkruw0fkdqqho hhfwv lqwr frqvlghudwlrq frqfoxglqj wkdw wkh vkruw0flufxlw srzhu wr wrwdo srzhu udwlr StU @S |L|@* zloo qrw fkdqjh zlwk vfdolqj li wkh udwlr YAO @Y ## lv nhsw frqvwdqw1 Wklv prgho grhv qrw wdnh lqwr dffrxqw frxsolqj fdsdflwru hhfwv/ ri lq0 fuhdvlqj lpsruwdqfh lq fxuuhqw vxeplfurq whfkqror0 jlhv1 Dv wkh wudqvlvwru ihdwxuh vl}h lv ghfuhdvhg/ wkh jdwh r{lgh wklfnqhvv lv dovr ghfuhdvhg ixuwkhu lq0 fuhdvlqj frxsolqj fdsdflwdqfh hhfwv1 Wkhuhiruh wklv fdsdflwru fdqqrw eh qhjohfwhg zkhq frqvlghulqj vxe0 plfurq whfkqrorjlhv1 Wkh lqsxw0rxwsxw frxsolqj fd0 sdflwru uhgxfhv wkh vkruw0flufxlw fxuuhqw vkdsh dqg wkhuhiruh wkh wrwdo vkruw0flufxlw fkdujh wudqvihuuhg1 Wklv fdsdflwru dovr lpsdfwv rq wkh wudqvlhqw glvvl0 sdwlrq ixuwkhu lqfuhdvlqj wkh wrwdo srzhu1 Lq wklv zrun zh sursrvh d vlpsoh prgho wr dffx0 udwho| frpsxwh wkh frxsolqj fdsdflwru frqwulexwlrq wr wkh srzhu glvvlsdwhg lq d FPRV exhu1 D forvhg irup h{suhvvlrq iru wkh wudqvlhqw hqhuj| lv ghyhorshg dqg wkh lpsdfw ri ryhuvkrrwlqj rq wkh vkruw0flufxlw fxuuhqw vkdsh lv dqdo|}hg1 Wklv dqdo|vlv lv dssolhg wr wkh vkruw0flufxlw prgho ghyhorshg e| N1 Qrvh dqg W1 Vdnxudl lq ^7`1 Prgho uhvxowv duh frpsduhg wr KVSLFH vlpxodwlrqv +ohyho 83, iru d 3=68p whfk0 qrorj| vkrzlqj d vljqlfdqw lpsuryhphqw lq whupv ri dffxudf|1 Wklv sdshu lv rujdql}hg dv iroorzv= lq vhfwlrq LL zh rewdlq dq h{suhvvlrq iru wkh wudqvlhqw hqhuj|1 Vhfwlrq LLL dqdo|}hv wkh lpsdfw ri wkh frx0 solqj fdsdflwru rq wkh vkruw0flufxlw hqhuj| frpsr0 qhqw1 Vhfwlrq LY suhvhqwv wkh uhvxowv zkloh Vhfwlrq Y frqfoxghv wkh zrun1 LL1 Wudqvlhqw glvvlsdwlrq Wkh wudqvlhqw hqhuj| +Hwu , lv wkh hqhuj| glvvlsdwhg zkhq fkdujlqj2glvfkdujlqj wkh rxwsxw fdsdflwru1 Lq wklv vhfwlrq zh dqdo|}h wkh srzhu glvvlsdwhg zkhq glvfkdujlqj wkh rxwsxw fdsdflwru vlqfh wkh fkdujlqj fkdujh vwruhg dw wkh rxwsxw qrgh zkhq wkh rxwsxw wudqvlwlrq lv qlvkhg1 Xvlqj ht1+5, zh rewdlq dq h{suhvvlrq iru Trxw +3, dqg Trxw +4, dv= O YGG Trxw +3, @ FO . FP +7, K Trxw +4, @ FP YGG Iurp htv1 +6, dqg +7, wkh wudqvlhqw hqhuj| iru d kljk wr orz rxwsxw wudqvlwlrq lv= 5 4 K O +8, YGG FO . FP . FP 5 Iru d orz wr kljk rxwsxw wudqvlwlrq wkh dqdo|vlv lv htxlydohqw dqg wkh vdph h{suhvvlrq lv rewdlqhg1 Hwu @ Iljxuh 4 FPRV exhu prgho fdvh lv htxlydohqw1 Wkh rxwsxw qrgh fkdujh lv vwruhg lq erwk wkh lqsxw0rxwsxw frxsolqj fdsdflwru FP dqg wkh ordg fdsdflwru FO +vhh Ilj1 4,1 Wkh hqhuj| ri d glvfkdujlqj fdsdflwru lv H @ TY @5/ zkhuh Y lv wkh yrowdjh vzlqj dqg T wkh fkdujh lqlwldoo| vwruhg lq wkh fdsdflwru1 Wkh yrowdjh vzlqj dw wkh rxwsxw qrgh ri wkh exhu lv htxdo wr wkh vxsso| yrowdjh YGG zkloh wkh fkdujh wudqvihuuhg fdq eh ghulyhg xvlqj fkdujh frqvhuydwlrq e| frpsxwlqj wkh fkdujh dw wkh ehjlqqlqj ri wkh wudqvlwlrq plqxv wkh fkdujh dw lwv hqg1 Wkh ydoxh ri wkh frxsolqj fdsdflwru FP lq wkh vwd0 O wlf lqsxw orz vwdwh +ghqhg dv FP , frqvlghulqj wkh vlgh0zdoo fdsdflwdqfh ri erwk wudqvlvwru gudlqv/ dqg wkh jdwh wr gudlq fdsdflwdqfh ri wkh sPRV wudqvlvwru lq wkh olqhdu uhjlrq lv jlyhq e|= Zshii Oshii @ Fr{ . ODSs Zshii . ODSq Zqhii 5 +4, zlwk ODSs dqg ODSq ehlqj wkh jdwh gudlq xqghugli0 ixvlrq iru wkh sPRV dqg qPRV wudqvlvwruv uhvshf0 wlyho|/ Zqhii dqg Zshii duh wkh qPRV dqg sPRV hhfwlyh fkdqqho zlgwk zkloh Oshii lv wkh hhfwlyh fkdqqho ohqjwk ri wkh sPRV wudqvlvwru1 Iru d vwd0 K wlf lqsxw kljk wkh fdsdflwdqfh FP fdq eh rewdlqhg vlploduo|1 Lq d FPRV exhu wkh fkdujh dw wkh rxwsxw qrgh lv vwruhg lq erwk wkh rxwsxw dqg wkh frxsolqj fdsdf0 lwru1 Wklv fkdujh +ghqhg dv Trxw , fdq eh h{suhvvhg dv= O FP Trxw @ +FP . FO , Yrxw FP Ylq LLL1 Wkh wrwdo srzhu glvvlsdwhg lq rqh f|foh shulrg lv jlyhq e|= 5 K O YGG . Tuvf . Tivf YGG Hwrw @ FO . FP . FP zkhuh Tuvf dqg Tivf duh wkh vkruw0flufxlw fkdujh wudqvihuhqfh iru d ulvlqj dqg d idoolqj lqsxw wudqvl0 wlrq uhvshfwlyho|1 Lq wklv vhfwlrq zh dqdo|}h wkh lq0 xhqfh ri frxsolqj fdsdflwru FP rq wkh vkruw0flufxlw fkdujh wudqvihuhqfh +VFFW,1 Wkh g|qdplf ehkdylru ri wkh flufxlw lq Ilj1 4 lv ghvfulehg e|= +FO . FP , YGG +6, Hwu @ iTrxw +3, Trxw +4,j 5 zkhuh Trxw +3, lv wkh fkdujh dw wkh rxwsxw qrgh dw wkh ehjlqqlqj ri wkh wudqvlwlrq dqg Trxw +4, lv wkh gYrxw gYlq @ Ls Lq . FP gw gw +9, zkhuh Ls dqg Lq duh wkh sPRV dqg qPRV fxuuhqw uhvshfwlyho|1 Ht1 +9, lv qrq0olqhdu dqg qr0forvhg irup h{suhvvlrq fdq eh rewdlqhg1 Wkh hhfw ri FP lv riwhq qhjohfwhg ^7` lq rughu wr rewdlq d vlpsohu h{0 suhvvlrq iru wkh rxwsxw yrowdjh dqg wkh vkruw0flufxlw fxuuhqw vkdsh1 Wkh fdvhv ri ulvlqj dqg idoolqj lqsxw wudqvlwlrqv duh htxlydohqw dqg rqo| wkh ulvlqj lqsxw wudqvlwlrq lv dqdo|}hg1 D1 PRVIHW prgho D vlpsoh vkruw0fkdqqho PRVIHW prgho lv ghyho0 rshg lq ^8`1 Qhjohfwlqj fkdqqho0ohqjwk prgxodwlrq hhfwv/ wklv prgho lv h{suhvvhg dv= +5, zkhuh Yrxw lv wkh rxwsxw yrowdjh dqg Ylq wkh lqsxw yrowdjh ri wkh exhu1 Wkh hqhuj| glvvlsdwhg zkhq glvfkdujlqj wkh fkdujh vwruhg dw wkh exhu rxwsxw fdq h{suhvvhg dv= Frxsolqj fdsdflwru hiihfwv rq vkruw0flufxlw srzhu LGV ; ? 3 +5 YYGV , YGV L 3 @ G3 3 YG3 3 G3 = 3 LG3 +YJV _ YW K , 3 +YGV ? YG3 , 3 +YGV YG3 , +:, zlwk 3 LG3 @ LG3 YJV YW K YGG YW K q +;, Current through the short-circuiting transistor 800 Increasing CM 600 Isc (uA) 400 200 0 -200 t=tov -400 -600 0 0.05 0.1 Time (ns) 0.15 0.2 Iljxuh 5 sPRV fxuuhqw vkdsh yduldwlrq zlwk frx0 solqj fdsdflwru ydoxh 3 lv jlyhq e|= Wkh vdwxudwlrq yrowdjh YG3 3 YG3 @ YG3 YJV YW K YGG YW K p +<, zkhuh sdudphwhu q lv wkh yhorflw| vdwxudwlrq lq0 gh{ wkdw wdnhv d ydoxh ehwzhhq 5 +orqj0fkdqqho gh0 ylfhv, dqg 4 +vkruw0fkdqqho, dqg wkh wzr sdudphwhuv LG3 dqg YG3 duh wkh gudlq fxuuhqw dqg vdwxudwlrq yrowdjh iru YJV @ YGV @ YGG = Sdudphwhuv q/ p dqg YW K duh wwlqj sdudphwhuv1 E1 Ryhuvkrrwlqj hhfwv Ilj1 5 suhvhqwv KVSLFH vlpxodwlrqv ri wkh fxuuhqw wkurxjk wkh sPRV wudqvlvwru gxulqj d ulvlqj lqsxw wudqvlwlrq iru ydulrxv ydoxhv ri wkh frxsolqj fdsdf0 lwdqfh1 Wklv fxuuhqw +odehohg dv Ls lq Ilj14, kdv wzr frpsrqhqwv fohduo| glvwlqjxlvkhg e| wkh vljq ri wkh fxuuhqw1 Dw wkh ehjlqqlqj ri wkh wudqvlwlrq/ d qhjdwlyh sPRV fxuuhqw lv suhvhqw gxh wr d sduwldo glvfkdujh ri wkh rxwsxw fdsdflwru iurp wkh rxwsxw qrgh wr wkh vxsso| udlo1 Wklv hhfw dsshduv zkhq wkh lqsxw0rxwsxw fdsdflwru gulyhv wkh rxwsxw yrow0 djh eh|rqg wkh vxsso| ydoxh +YGG , dw wkh ehjlq0 qlqj ri wkh wudqvlwlrq dqg lv nqrzq dv ryhuvkrrwlqj1 Wkh wlph gxulqj zklfk wkh rxwsxw yrowdjh lv eh0 |rqg wkh vxsso| ydoxh lv fdoohg wkh ryhuvkrrw wlph/ wry 1 Zkhq wkh qPRV ghylfh vwduwv wr frqgxfw +wkdw lv/ zkhq wkh lqsxw yrowdjh lv htxdo wr wkh qPRV wkuhvkrog yrowdjh Ylq @ YW Q ,/ lw sxoov wkh rxwsxw yrowdjh grzq1 Rqfh wkh rxwsxw yrowdjh jrhv ehorz YGG / wkh sPRV fxuuhqw lv srvlwlyh fruuhvsrqglqj wr wkh vkruw0flufxlw frpsrqhqw gxh wr wkh vlpxowdqhrxv frqgxfwlrq ri erwk ghylfhv1 Wkhuhiruh/ wkh ryhuvkrrw dqg vkruw0flufxlw fxuuhqw frpsrqhqwv duh uhodwhg dqg wkhlu uhodwlyh frqwulex0 wlrq lv ghwhuplqhg e| wkh lqsxw wudqvlwlrq wlph dqg wkh frxsolqj fdsdflwdqfh1 Li wkh lqsxw yrowdjh lv eh0 orz YGG .YW S +wkh lqsxw yrowdjh ydoxh dw zklfk wkh sPRV wxuqv r> YW S lv wkh sPRV wkuhvkrog yrow0 djh, dw w @ wry / wkhq wkhuh zloo eh d vkruw0flufxlw fxu0 uhqw shulrg iurp wklv wlph xqwlo wkh sPRV lv wxuqhg r1 Rwkhuzlvh wkh rxwsxw yrowdjh lv vwloo eh|rqg YGG zkhq wkh lqsxw uhdfkhv YGG . YW S dqg wkh vkruw0flufxlw fxuuhqw lv qrw suhvhqw1 Ilj1 5 vkrzv wkdw ryhuvkrrwlqj glvsodfhv wkh vkruw0flufxlw fxuuhqw wr wkh uljkw/ pdlqwdlqlqj wkh fxuuhqw vorshv lqyduldqw1 Dv fdq eh dssuhfldwhg/ wkh vkruw0flufxlw fkdujh wudqvihuuhg +srvlwlyh fxuuhqw, lv ixuwkhu uhgxfhg zkloh wkh ryhuvkrrwlqj fkdujh wudqv0 ihuuhg +qhjdwlyh fxuuhqw, lqfuhdvhv1 Wkhuhiruh/ ryhu0 vkrrwlqj hhfwv fdqqrw eh qhjohfwhg zkhq frpsxw0 lqj wkh vkruw0flufxlw frpsrqhqw1 Lq wklv zrun/ ryhuvkrrwlqj hhfwv rq wkh vkruw0 flufxlw fxuuhqw vkdsh duh lqfoxghg wkurxjk wkh wlph dw zklfk ryhuvkrrwlqj fxuuhqw ydqlvkhv wry 1 Dq hp0 slulfdo uhodwlrqvkls ehwzhhq wkh vkruw0flufxlw fkdujh wudqvihuuhg +Tuvf , dqg wkh ydoxh ri wklv fkdujh zkhq wkh frxsolqj fdsdflwru lv qhjohfwhg +T3vf Tuvf +FP @ 3,, lv rewdlqhg wkurxjk wry dv= w 5 5 wry W q Tuvf @ T3vf h vf +43, zkhuh wq lv wkh wlph dw zklfk wkh qPRV wudqvlvwru vwduwv wr frqgxfw dqg Wvf lv wkh wlph gxulqj zklfk erwk wudqvlvwruv duh frqgxfwlqj vlpxowdqhrxvo|1 Li d olqhdu wudqvlwlrq lv dvvxphg dw wkh lqsxw ri wkh w exhu zlwk lqsxw ulvh wlph wlq +Ylq @ YGG wlq , zh rewdlq Wvf dqg wq dv= Wvf WQ wq @ wlq YYGG WQ . YWS @ wlq 4 YYGG YGG +44, Zkhq qr0ryhuvkrrwlqj hhfwv duh suhvhqw +wry @ wq , wkhq Tuvf @ T3vf lq ht1 +43,1 Zkhq ryhuvkrrw0 lqj lv vljqlfdqw dqg wry A wq . Wvf wkh vkruw0flufxlw fkdujh ydqlvkhv Tuvf 31 Dq dqdo|wlfdo h{suhvvlrq iru T3vf fdq eh rewdlqhg iurp wkh prgho lq ^7` zkhuh d vlpsoh forvhg0forvhg irup h{suhvvlrq iru VFFW dv0 vxplqj FP @ 3 lv ghyhorshg1 Lq Ilj1 6 zh sorw VFFW yv1 frxsolqj fdsdf0 lwdqfh iru ydulrxv ydoxhv ri wkh rxwsxw fdsdflwru +iurp Fplq wr 83Fplq > zkhuh Fplq lv wkh plqlpxp fdsdflwru doorzhg e| wkh whfkqrorj|, iru d 3=68p whfkqrorj|1 Dv fdq eh dssuhfldwhg/ wkh prgho gh0 yhorshg lv forvh wr KVSLFH vlpxodwlrqv1 Ilqdoo|/ wkh hqhuj| dvvrfldwhg wr wkh VFFW lq d ulvlqj lqsxw hgjh lv frpsxwhg dv= u Hvf @ Tuvf YGG F1 +45, Ryhuvkrrw wlph Wkh vroxwlrq ri ht1+9, wr jhw wry lv d qrq0olqhdu sure0 ohp dqg qr0forvhg irup h{suhvvlrq fdq eh irxqg iru wklv wlph1 Wr dyrlg qxphulfdo surfhgxuhv zh frp0 sxwh wkh wlph dw zklfk wkh ryhuvkrrw fxuuhqw lv pd{0 lpxp wpd{ ry > dqg uhodwh wry wr wklv ydoxh1 Short-circuit charge vs. CM (Wn=3um Wp=6um L=0.35um Tin=0.2ns) Energy vs. input time 20 1.8 HSPICE Model proposed 18 W p /W n =6 µ m/6 µ m W p /W n =4 µ m/8 µ m W p /W n =4 µ m/2 µ m W p /W n =2 µ m/4 µ m [4] (Original) [4] (Modified) 1.6 C L =C min 16 1.4 Energy/Cycle (pJ) Q sc r (fC) 14 C L =10C min 12 10 C L =50C min 8 6 C L =10C min 0.8 C L =5C min 0.4 2 0 5 10 15 C M (fF) 20 25 30 Iljxuh 6 Vkruw0flufxlw fkdujh wudqvihuhqfh yv1 frx0 solqj fdsdflwru iru ydulrxv ydoxhv ri FO iru d 3=68p whfkqrorj| 450 0.18um Design Rule 0.35um Design Rule Eq. (13) 400 0.2 0 0.5 1 300 YGG LG3q FP wlq 200 150 100 50 0 50 2 t in /t out 2.5 3 3.5 4 Iljxuh 8 Hqhuj| glvvlsdwlrq yv1 lqsxw wr rxwsxw wlph udwlr iru glhuhqw Zs @Zq udwlrv iru d 3=68p whfkqrorj|1 Dv fdq eh dssuhfldwhg/ zkhq wlq @wrxw A 4 wkh vkruw0flufxlw frpsrqhqw lv grplqdqw 250 0 1.5 zkhuh wlq lv wkh lqsxw ulvh wlph1 Wkhq/ ht1+47, fdq eh h{suhvvhg dv= 350 t ov (ps) 1 0.6 4 0 1.2 100 150 tov max (ps) 200 250 300 wpd{ ry Iljxuh 7 KVSLFH vlpxodwlrqv ri wry dqg iru d 3=4;p dqg d 3=68p surfhvv whfkqrorj|1 D plqlpxp vl}hg lqyhuwhu gulylqj dq rwkhu plqlpxp vl}hg lqyhuwhu duh frqvlghuhg zlwk glhuhqw lqsxw ulvh wlphv Ilj1 7 vkrzv KVSLFH vlpxodwlrqv ri wry dqg wpd{ ry iru d 3=4;p dqg d 3=68p surfhvv whfkqrorj| re0 wdlqhg iru d plqlpxp vl}hg lqyhuwhu gulylqj dq rwkhu plqlpxp vl}hg lqyhuwhu1 Wkh glhuhqw vlpxodwlrqv duh rewdlqhg ydu|lqj wkh lqsxw ulvh wlph1 D olqhdu uhodwlrqvkls lv rewdlqhg zlwk wkh irup= 6 +wpd{ ry wq , +46, 5 Wkh pd{lpxp ryhuvkrrw wlph lv rewdlqhg iurp ht1+9, qhjohfwlqj wkh vkruw0flufxlw fxuuhqw1 Dw wkh qPRV wudqvlvwru lv vdwxudwhg dqg w @ wpd{ ry gYrxw gw @ 31 Wkhq ht1 +9, lv uhgxfhg wr= wry @ wq . gYlq 3 +47, LG3 q @3 gw Wkh lqsxw yrowdjh fdq eh ghvfulehg zlwk d olqhdu udps1 Iru d orz wr kljk lqsxw wudqvlwlrq zh kdyh= FP Ylq +w, @ YGG w wlq +48, # wpd{ YGG wrylq YW Q YGG YW Q $qq @3 +49, zkhuh LG3q lv wkh sdudphwhu LG3 ri wkh qPRV wudq0 vlvwru zkloh qq lv wkh yhorflw| vdwxudwlrq lqgh{ ri qPRV1 Vroxwlrq wr ht1 +49, ohdgv wr= wpd{ ry @ wq . wlq +YGG YW Q , YGG FP YGG LGRq wlq q4 q +4:, Rqfh wpd{ lv rewdlqhg/ wry lv jlyhq e| ht1+46,1 ry LY1 Uhvxowv Zh sorwwhg wkh prgho suhglfwlrq yv1 KVSLFH ohyho 83 +PP<, vlpxodwlrqv iru d 3=68p whfkqrorj|/ frq0 vlghulqj hqhuj| yv1 lqsxw wudqvlwlrq wlph1 Lq Ilj1 8 zh vkrz wkh hqhuj| glvvlsdwhg shu rqh f|foh shulrg yv1 wkh lqsxw wr rxwsxw wlph udwlr iru d 3=68p whfkqrorj|1 Irxu glhuhqw lqyhuwhuv duh frqvlghuhg zlwk glhuhqw ydoxhv ri wkh Zs @Zq ud0 wlr dqg iru wzr ydoxhv ri wkh rxwsxw fdsdflwru +hdfk vl}h dqg fdsdflwdqfh lv lqglfdwhg lq wkh judsk,1 Wkh lqsxw wlph wlq udqjhv iurp 53sv wr 4=8qv +wkdw lv/ iurp 3=5wrxw wr 6=;wrxw ,1 Zh sorw KVSLFH vlpxod0 wlrqv +v|perov, dqg wkh prgho lq ^7` zlwk wkh wzr irupxodwlrqv/ wkh ruljlqdo prgho dqg d prglhg yhu0 vlrq wdnlqj lqwr dffrxqw wkh ryhuvkrrwlqj prgho gh0 yhorshg1 Dv fdq eh dssuhfldwhg d vljqlfdqw lp0 suryhphqw fdq eh rewdlqhg xvlqj rxu irupxodwlrq1 Y1 Frqfoxvlrqv D ghwdlohg ghvfulswlrq ri frxsolqj fdsdflwru hhfwv rq wkh vkruw0flufxlw dqg wudqvlhqw srzhu kdyh ehhq ghyhorshg1 Wkh frqwulexwlrq ri wkh vkruw0flufxlw srzhu glvvlsdwlrq iru kljk dqg orz vshhg wudqvlwlrqv kdyh ehhq ghvfulehg zlwk ghwdlo1 Qrq0olqhdu sure0 ohpv duh vroyhg xvlqj vlpsoh irupxodv dqg dyrlglqj wlph0frqvxplqj qxphulfdo surfhgxuhv1 Wkh prgho lv dssolhg wr d uhfhqwo| sxeolvkhg vkruw0flufxlw srzhu prgho ^7` dqg frpsduhg wr KVSLFH vlpxodwlrqv +ohyho 83, iru d 3=68p surfhvv whfkqrorj| uhsruw0 lqj d kljkhu dffxudf| uhvshfw wkh ruljlqdo prgho1 DFNQRZOHGJPHQW Wklv zrun kdv ehhq vxssruwhg e| wkh Vsdqlvk Frplvlöq Lqwhuplqlvwhuldo gh Flhqfld | Whfqrorjld xqghu wkh surmhfw FLF\W0WLF<;035;71 Uhihuhqfhv ^4` K1Yhhqgulfn/ Vkruw0flufxlw glvvlsdwlrq ri vwdwlf FPRV flufxlwu| dqg lwv lpsdfw rq wkh ghvljq ri exhu flufxlwv/ LHHH M1 Vrolg0Vwdwh Flufxlwv/ yro VF04</ ss179;07:6/ Dxj1 4<;71 ^5` W1Vdnxudl/ U1 Qhzwrq/ Doskd0srzhu odz PRVIHW prgho dqg lwv dssolfdwlrqv wr FPRV lqyhuwhu ghod| dqg rwkhu irupxodv/ LHHH Mrxuqdo ri Vrolg0Vwdwh flufxlwv/ yro 58/ ss1 8;708<7/ Dsu1 4<<31 ^6` V1Wxujlv dqg G1 Dxyhujqh/ D qryho pdfurprgho iru srzhu hvwlpdwlrq lq FPRV vwuxfwxuhv/ LHHH Wudqv1 rq Frpsxwhu0Dlghg Ghvljq/ yro 4:/ ss143<30 43<;/ Qry1 4<<;1 ^7` N1 Qrvh dqg W1 Vdnxudl/ Dqdo|vlv dqg ixwxuh wuhqg ri vkruw0flufxlw srzhu/ LHHH Wudqvdfwlrqv rq Frpsxwhu0Dlghg Ghvljq/ Yro 4</ Vhsw1 53331 ^8` Wdnd|dvx Vdnxudl dqg Ulfkdug Qhzwrq/ D vlpsoh PRVIHW Prgho iru Flufxlw Dqdo|vlv/ LHHH Wudqv0 dfwlrqv rq Hohfwurq Ghylfhv/ yro1 6;/ ss1 ;;:0;<7/ Dsu1 4<<41 219 A Compact Charge-Based Propagation Delay Model for Submicronic CMOS Buffers José Luis Rossello and Jaume Segura Departament de Física, Universitat Illes Balears, 07071 Palma de Mallorca, Spain Abstract. We provide an accurate analytical expression for the propagation delay and the output transition time of submicron CMOS buffers that takes into account the short-circuit current, the input-output coupling capacitance, and the carrier velocity saturation effects, of increasing importance in deep-submicron technologies. The model is based on the nth-power law MOSFET model and computes the propagation delay from the charge delivered to the gate. Comparison with HSPICE level 50 simulations and other previously published models for a 0.35µm and a 0.18µm process technologies show significant improvements over previously-published models. 1 Introduction Timing analysis is one of the most critical topics in VLSI design. The nonlinear behavior of CMOS gates requires numerical procedures for accurate timing analysis at expenses of large computation times. Moreover, the impact of design parameters such as fan in, fan out or transistor sizes on the propagation delay are difficult to understand and optimize using numerical procedures. The dynamic behavior of submicron CMOS buffers depends on several nonlinear effects like the velocity saturation of carriers due to the high electric fields in submicron technologies, the short circuit current appearing when both pMOS and nMOS transistors are conducting simultaneously [1], and the additional effect of the input-output coupling capacitance [2]. Several methods have been proposed to derive the delay of CMOS buffers [2][7] as a first step to describe more complex gates [8,9]. Cocchini et al. [3] obtained a piece-wise expression for the propagation delay based on the BSIM MOSFET model [10]. The model included overshooting effects (due to the input-to-output coupling capacitance) while the short-circuit current was neglected. In [2] and [4] K.O Jeppson and L. Bisdounis presented a model for the output response of CMOS buffers using a quadratic current-voltage dependence for MOSFET devices, which is not longer valid for submicron technologies. Daga et. al. [5] obtained a simple empirical expression for the propagation delay taking into account both overshooting and short-circuit currents using six fitting parameters. The relative error of this model was 19% for a 0.6µm technology as reported in [5]. Hirata et al. [6] derived a delay model based on the nth-power law MOSFET model [11] considering both short-circuit and overshooting currents and B. Hochet et al. (Eds.): PATMOS 2002, LNCS 2451, pp. 219–228, 2002. c Springer-Verlag Berlin Heidelberg 2002 220 J.L. Rossello and J. Segura using numerical procedures . The model provides an accurate description for the propagation delay but the numerical procedures used increases the computation time considerably. Bisdounis et al. [7] developed a piece-wise solution with seven operation regions for the transient response of a CMOS inverter based on the α-power law MOSFET model [12] including both overshooting and short-circuit currents. In [8] T. Sakurai et. al. obtained a simple expression for the propagation delay of CMOS gates based on their nth-power law MOSFET model neglecting both short-circuit and overshooting currents. In this work we propose a compact analytical model to accurately compute the propagation delay and the output transition time of a CMOS buffer accounting for the main effects of submicron technologies as the input-output coupling capacitance, carriers velocity saturation effects and short-circuit currents. The model is based on an accurate physically-based nth-power law MOSFET model [13] and on a power dissipation model for CMOS inverters [14]. Comparisons with HSPICE level 50 simulations and previously published models for a 0.35µm and a 0.18µm process technologies are reported showing significant improvements in terms of accuracy. Fig. 1. In this figure we show the CMOS current and voltage switching characteristics. This paper is organized as follows: In Section 2 the CMOS buffer switching characteristics are analyzed with detail and the MOSFET model used is presented. The delay and the output transition time models are developed in Section 3 and compared to HSPICE simulations and other previously published models for a 0.35µm and a 0.18µm process technology in section 4. Finally in section 5 we conclude the work. A Compact Charge-Based Propagation Delay Model 2 221 Analysis of the CMOS Buffer Switching Characteristics The dynamic behavior of a CMOS buffer is described by the next equation: (CL + CM ) dVin dVout = Ip − In + CM dt dt (1) where CL is the output capacitance, Vout and Vin are the output and input voltage respectively, while Ip and In are the current that crosses the pMOS and the nMOS transistor respectively. CM is the input to output coupling capacitance L which is voltage dependent. The static value of CM when the input is low (CM ) is computed considering the side-wall capacitances of both transistor drains and the gate to drain capacitance of the pMOS transistor that operates in the linear region as: Wpef f Lpef f L CM (2) = Cox + LDp Wpef f + LDn Wnef f 2 with Wpef f and Wnef f being the effective channel width of pMOS and nMOS respectively, Lpef f is the effective channel length of pMOS, while LDn and LDp are the gate-drain underdiffusion for the nMOS and pMOS transistors reH spectively. For a static input high the capacitance CM is obtained similarly. In this work a mean value for the coupling capacitance during the transition L H ) will be used. (CM = 0.5 CM + CM Fig. 1 illustrates the input and output voltage evolution of the buffer along with the current through the nMOS and pMOS transistors for a low to high input transition. The current through the pMOS transistor (Ip in Fig. 1) has two components clearly distinguished by the sign of the current. The negative pMOS current is due to a partial discharge of the output capacitance from the output node toward the supply rail and appears when the input-output capacitance drives the output voltage beyond the supply value (VDD ) at the beginning of the transition [2] (this effect is known as overshooting). When the nMOS device starts to conduct, it pulls the output voltage down. Once the output voltage goes below VDD , the pMOS current is positive corresponding to the short-circuit component due to the simultaneous conduction of both devices. The propagation delay (defined as tpHL for a high to low output transition) is typically defined as the time interval from the 50% VDD input voltage to the 50% VDD output voltage. The dependence of the propagation delay with design parameters is non-linear and difficult to model given that eq.(1) can not be solved in a closed form even using the simple Shockley MOSFET model [15]. Moreover carrier saturation effects become important with technology scaling and more complex MOSFET models accounting for such effects must be considered. The nth-power law MOSFET model [11] is a widely used short-channel drain current model, and will be used in this work to derive the propagation delay and the output transition time of CMOS inverters. The drain current is expressed as: 222 J.L. Rossello and J. Segura ID 0 = (2 − ID0 VDS VDS ) V ID0 VD0 D0 with ID0 = ID0 (VGS VT H ) ) (VDS < VD0 (VDS VD0 ) VGS − VT H VDD − VT H (3) n (4) where VGS ,VDD , and VD0 are the gate, supply, and saturation voltage respectively and ID0 is the drain current at VGS = VDS = VDD . The parameter n is the velocity saturation index that ranges between 2 (long-channel devices) and 1 (short-channel) [11]. The saturation voltage VD0 is given by: m VGS − VT H = VD0 (5) VD0 VDD − VT H The parameter VD0 is the saturation voltage at VGS = VDD , while m and VT H are empirical parameters [11]. These equations are mathematically simpler than physically-based MOSFET models such as BSIM3v3 or MM9 with the disadvantage that, in the original model developed by Sakurai and Newton, the relationship between the empirical and the process parameters supplied by manufacturers is not provided. Therefore the variation of nth-power law model predictions with key parameters like the supply voltage are not taken into account in the original formulation performed by Sakurai and Newton, where each parameter must be recomputed if the supply voltage or some device dimension are changed. In this work we use the physical formulation proposed in [13] and used in [14]. This physical formulation provides an analytical relationship between the nth-power law parameters and the more accurate MM9 model parameters (that take into account the parameter variations with the supply voltage, MOSFET dimensions and temperature). 3 Delay Model We compute the propagation delay when the input voltage switches. The shortcircuit and overshooting currents are first neglected and incorporated later. Assuming a linear variation of the input voltage with rise time tin then Vin (t) is: t − tn Vin (t) = VT N + (VDD − VT N ) (6) tin − tn where VT N is the nMOS threshold voltage, tn is the time when the nMOS chain starts to conduct (tn = VT N tin /VDD ) and tin is the input rise time. At the beginning of the transition the nMOS is off and Vout = VDD . At t = tn , the nMOS starts to conduct and the output voltage is obtained solving: CL dVout = −In dt (7) where CL is the total output capacitance of the gate, and In is the current through the nMOS transistor. An analytical solution to (7) is possible if the A Compact Charge-Based Propagation Delay Model 223 nMOS transistor is assumed to be in the saturation region (valid while Vout > VD0 ): n n+1 ID0n t − tn tin − tn Vout = VDD − (8) CL tin − tn n+1 Equation (8) is used to obtain the propagation delay from the input at 0.5VDD to the output at 0.5VDD . tpHL1 Qf (n + 1) = tn + ID0n 1 1+n n (tin − tn ) n+1 − tin 2 (9) where Qf = CL VDD /2 is the charge transferred by the nMOS transistor when the output reaches VDD /2 while parameters ID0n and n are the maximum saturation current and the velocity saturation index of nMOS respectively. Equation (9) is valid for slow inputs (defined when tpHL ≤ tin /2). If Qf0 is defined as the total charge transferred through the nMOS transistor when tpHL = tin /2 then eq. (9) is valid in the interval Qf < Qf0 . The parameter Qf0 is obtained equating tpHL1 = tin /2 and solving Qf0 Qf0 = ID0n (tin − tn ) (n + 1) (10) If the input reaches the supply voltage before the output is at VDD /2 then Qf > Qf0 and eq. (9) is no longer valid. The propagation delay when tpHL ≥ tin /2 (fast input range) can be obtained by solving (7) for In = ID0n leading to: tpHL2 = Qf − Qf0 tin + 2 ID0n (11) Equation (11) is valid when Qf > Qf0 (fast input range). For simplicity, the proposed model for the propagation delay (eqs. (9) and (11)) does not take into account the fact that the nMOS transistor is in the linear region when Vout > VD0 . For the evaluation of the output fall time (tf ) we first compute n the output voltage slope at VDD /2 from (8) dVout = dt VDD /2 n n+1 I V Qf (n+1) DD − D0n (12) (Qf < Qf0 ) 2Qf (tin −tn )ID0n − ID0n VDD (Q > Q ) f 2Qf f0 For the evaluation of the output fall time we use: tf = VDD dVout dt VDD /2 (13) The value of the output fall/rise time is important since this parameter is used as the input fall/rise time of the gates driven by the buffer. 224 3.1 J.L. Rossello and J. Segura Including Short-Circuit Currents The model proposed cannot be used for static CMOS gates since short-circuit currents are not considered. In this work we include the short-circuit current contribution to the delay as an additional charge that must be transferred through the pull-down (pull-up) network during an output falling (rising) transition. This additional charge is computed from the short-circuit power model presented in [14]. Therefore, for an output falling transition, the charge transferred through the f f nMOS transistor is computed as Qf = CL VDD /2+qsc , where qsc is defined as the short-circuit charge transferred during the falling output transition until Vout = f is complex given that this parameter VDD /2. The analytical derivation of qsc depends on the relative switching speed between the input and the output. For f an input transition faster than the output, qsc can be modeled as the total shortf circuit charge transferred (defined as Qsc ) given that when Vout = VDD /2 the input is high and the short-circuit current ceased. For an input transition slower f f than the output then qsc < Qfsc . For both cases we assume that qsc = κQfsc , where κ is an empirical parameter that must be optimized for each technology. For the 0.35µm and the 0.18µm technologies considered we obtained κ = 0.45 and κ = 0.73 respectively. 3.2 Including Overshooting Effects Similarly to the short-circuit currents case, overshooting currents effects are included into the delay model as an additional charge to be transferred through the nMOS transistor. For fast inputs, the charge injected through the coupling capacitor (CM ) when Vout = VDD /2 is Qov = CM VDD . For simplicity we assume the same value for Qov in the slow-input case. Therefore, the total charge that must be transferred through the nMOS transistor during a falling output transition is: Qf = 0.5 [(CL + 2CM ) VDD ] + κQfsc (14) Equation (14) must be used in eqs. (9), (11) and (13). 4 Results We plotted model results vs. HSPICE level 50 simulations for a 0.35µm and a 0.18µm technologies. Results show the propagation delay for different values of the input transition time tin , the configuration ratio Wp /Wn and the supply voltage VDD . In Fig. 2 we plot the propagation delay tpHL vs. the input time tin for different values of the Wn /Wp ratio for a 0.35µm technology. HSPICE simulations (dots) are compared to the model proposed and to a previous model [3]. Shortcircuit currents are not taken into account in [3] leading to an underestimation of the propagation delay. The model in [3] provides a piece-wise solution of the propagation delay: depending on the input transition (fast or slow input transitions) it uses an approximated or an exact expression for the propagation delay. A Compact Charge-Based Propagation Delay Model 225 The approximated propagation delay is used when the nMOS transistor changes from the saturation to the linear region and the input is rising (eq.(11) in [3]), otherwise an exact expression for the output response is used. This pice-wise solution leads to a discontinuity in the propagation delay when changing from one region to the other (see Fig. 2). Fig. 2. Propagation delay vs. input rise time for different values of the configuration ratio. Short-circuit currents are not taken into account in [3] Fig. 3 plots the propagation delay vs. the input rise time for a 0.18µm technology. When the Wp /Wn ratio is small the propagation delay decreases when increasing the input rise time. The model proposed in this work (solid lines) and the previously-published in [6,7] provide a good approximation to HSPICE simulations (dots). Fig. 4 is a plot of HSPICE simulations (dots) and model predictions of the propagation delay vs. the supply voltage. The model proposed in this work provides a better fitting than the models in [6,7]. The model in [7] uses Taylor series expansions for the output response. For large supply voltage values the input transition is slow with respect the output response and the output voltage crosses VDD /2 when both nMOS and pMOS transistors are in saturation, (called region 3 in [7]) and the output response used to compute the propagation delay is described through a Taylor series expansion. For the voltage range (0.6V < VDD < 1V ) the propagation delay is obtained computing the output voltage when the nMOS is saturated, the pMOS off and Vin < VDD (region 4 in [7]) and a quadratic Taylor series expansion of the output voltage around time tp| tn t1−p = tin 1 − VVDD is used to compute the propagation delay. As VDD − |V VDD is further reduced, the accuracy of the approximated output voltage decreases because the time point t1−p used in the Taylor expansion is reduced. For low 226 J.L. Rossello and J. Segura Fig. 3. Propagation delay vs. input rise time for different values of the configuration ratio for a 0.18µm technology Fig. 4. Propagation delay vs. supply voltage for a 0.18µm technology. values of the supply voltage, VDD < 0.6V , the propagation delay is computed for the nMOS saturated and Vin = VDD (region 5A ) and an exact solution for the output response is used. Therefore, there are two discontinuities: between regions 4-5A (VDD = 0.6V ) and between regions 3 and 4 (VDD = 1V ). In Fig. 5 we plot HSPICE simulation of the output transition time tf for different values of the input rise time tin and the configuration ratio Wp /Wn . A Compact Charge-Based Propagation Delay Model 227 A maximum relative error of 15% is obtained between model predictions and HSPICE simulations. In general a good agreement is obtained with the proposed model. Fig. 5. Propagation delay vs. supply voltage for a 0.18µm technology. 5 Conclusions An accurate analytical expression to compute the propagation delay and the output transition time of CMOS buffers has been presented. The main effects present in current submicron CMOS technologies like the input-output coupling capacitance, carriers velocity saturation effects and short-circuit currents are taken into account in the analysis. The model is compared to HSPICE simulations (level 50) and other previously published works for a 0.18µm and a 0.35µm process technology reporting a high degree of accuracy. The model represents an improvement with respect to previously published works. References 1. H.Veendrick, “Short-circuit dissipation of static CMOS circuitry and its impact on the design of buffer circuits,” IEEE J. Solid-State Circuits, vol SC-19, pp.468–473, 1984. 2. K.O.Jeppson “Modeling the influence of the transistor gain ratio and the inputto-output coupling capacitance of the CMOS inverter delay,” IEEE Journal of Solid-State Circuits, vol. 29, no. 6, pp. 646–654, June 1994. 228 J.L. Rossello and J. Segura 3. P. Cocchini, G. Piccinini and M. Zamboni, “A comprehensive submicrometer MOST delay model and its application to CMOS buffers,” IEEE Journal of SolidState Circuits, Vol. 32, no. 8, pp. 1254–1262, August 1997. 4. L. Bisdounis, S. Nikolaidis and O. Koufopavlou, “Propagation delay and shortcircuit power dissipation modeling of the CMOS inverter,” IEEE Transactions on Circuits and Systems I: Fundamental theory and applications, Vol 45, no.3, pp. 259–270, March 1998. 5. J. M. Daga and D. Auvergne, “A comprehensive delay macro modeling for submicrometer CMOS logics,” IEEE Journal of Solid-State Circuits, vol. 34, no.1, January 1999. 6. A. Hirata, H. Onodera and K. Tamaru, “Estimation of propagation delay considering short-circuit current for static CMOS gates,” IEEE Transactions on Circuits and Systems I: Fundamental theory and applications, Vol. 45, no.11, pp. 1194–1198, Nov. 1998. 7. L. Bisdounis, S. Nikolaidis and O. Koufopavlou, “Analytical transient response and propagation delay evaluation of the CMOS inverter for short-channel devices,” IEEE Journal of Solid-State Circuits, vol. 33, no. 2, pp. 302–306, Feb. 1998. 8. T. Sakurai and R. Newton, “Delay analysis of series-connected MOSFET circuits,” IEEE Journal of Solid-State Circuits, vol. 26, no. 2, pp.122–131, Feb 1991. 9. J.L.Rosselló and J. Segura, “Power-delay modeling of dynamic CMOS gates for circuit optimization” in Proc. of International Conference on Computer-Aided Design (ICCAD 2001), San José CA, USA, PP. 494–499, Nov. 4–8, 2001 10. D. Foty, “MOSFET Modeling with SPICE. Principles and practice,” Prentice Hall, 1997. 11. T. Sakurai and R. Newton, “A simple MOSFET Model for Circuit Analysis,” IEEE Transactions on Electron Devices, vol. 38, pp. 887–894, Apr. 1991. 12. T.Sakurai and R. Newton, “Alpha-power law MOSFET model and its implications to CMOS inverter delay and other formulas,” IEEE Journal of Solid-State circuits, vol 25, no.2, pp. 584–594, April 1990. 13. J.L.Rosselló and J. Segura, “A physical modeling of the alpha-power law MOSFET model” in Proc. of 15th Design of Circuits and Integrated Systems Conference, Montpellier, France, Nov. 21-24, 2000 pp. 65–70. 14. J.L.Rosselló and J. Segura, “Charge-based analytical model for the evaluation of power consumption in sub-micron CMOS buffers,” IEEE Transactions on Computer-Aided design, vol 21, no. 4, pp. 433–448, April 2002. 15. W.Shockley, “A unipolar field effect transistor,” Proc IRE, vol 40, pp. 1365–1376, Nov 1952. D Vlpsoh Dqdo|wlfdo Ghvfulswlrq ri Srzhu Glvvlsdwlrq lq Vxeplfurqlf FPRV Exhuv Mrvh Oxlv Urvvhoor dqg Mdxph Vhjxud Sk|vlfv Ghsw1/ Edohdulf Lvodqgv Xqlyhuvlw|/ Fud1 Ydooghprvvd np1 :18 3:343 Sdopd gh Pdoorufd/ Vsdlq hpdlo=~m1urvvhoor/mdxph1vhjxudCxle1hv Devwudfw0 Zh suhvhqw dq dffxudwh forvhg0 irup h{suhvvlrq iru wkh vkruw0flufxlw srzhu ri vxe0plfurq FPRV exhuv edvhg rq wkh qwk0 srzhu odz PRVIHW prgho ^4`1 Wkh h{suhv0 vlrq rewdlqhg dffrxqwv iru wkh pdlq hhfwv lq fxuuhqw vxe0plfurq FPRV whfkqrorjlhv dv fduulhu yhorflw| vdwxudwlrq hhfwv/ lqsxw0 rxwsxw frxsolqj fdsdflwru/ rxwsxw ordg/ lq0 sxw vohz wlph ru ghylfh vl}hv1 Uhvxowv duh frpsduhg wr KVSLFH vlpxodwlrqv +ohyho 83, dqg wr rwkhu prghov suhylrxvo| sxeolvkhg iru d 3=4;p dqg d 3=68p whfkqrorj| vkrzlqj vljqlfdqw lpsuryhphqwv1 L1 vkruw0fkdqqho hhfwv lqwr frqvlghudwlrq frqfoxglqj wkdw wkh vkruw0flufxlw srzhu wr wrwdo srzhu udwlr StU @S |L|@* zloo qrw fkdqjh zlwk vfdolqj li YAO @Y ## lv nhsw frqvwdqw1 Lq ^9`/ Urvvhooö hw do1 ghyhors dq dffxudwh srzhu prgho iru vxeplfurq FPRV exhuv1 Ryhuvkrrwlqj dqg vkruw0flufxlw fxuuhqwv duh wdnhq lqwr dffrxqw lq wkhlu dqdo|vlv exw wkh h{suhvvlrq re0 wdlqhg duh wrr frpsoh{ iru idvw srzhu hvwlpdwlrq1 Lq wklv zrun zh sursrvh d vlpsoh dqg dffxudwh srzhu prgho ri FPRV exhuv dffrxqwlqj iru wkh pdlq hi0 ihfwv lq vxeplfurq whfkqrorjlhv1 D forvhg irup h{0 suhvvlrq iru wkh wrwdo srzhu lv ghyhorshg dyrlglqj wlph0frqvxplqj qxphulfdo surfhgxuhv/ wkxv doorz0 lqj wkh prgho wr eh dssolhg iru d idvw srzhu hvwl0 pdwlrq ri odujh flufxlwv1 Wkh prgho lv frpsduhg wr KVSLFH vlpxodwlrqv +ohyho 83, dqg wr rwkhu prg0 hov iru d 3=4;p dqg d 3=68p whfkqrorj| vkrzlqj d vljqlfdqw lpsuryhphqw lq dffxudf|1 Wkh sdshu lv rujdql}hg dv iroorzv= lq vhfwlrq LL zh rewdlq dq h{suhvvlrq iru wkh wudqvlhqw hqhuj|1 Vhfwlrq LLL gh0 ulyhv wkh vkruw0flufxlw hqhuj| frpsrqhqw1 Vhfwlrq LY suhvhqwv wkh uhvxowv zkloh Vhfwlrq Y frqfoxghv wkh zrun1 Lqwurgxfwlrq D jurzlqj iudfwlrq ri srzhu frqvxphg e| YOVL lqwh0 judwhg flufxlwv lv gxh wr wkh forfn glvwulexwlrq qhw0 zrun/ L2R gulyhuv dqg exvvhv zklfk duh doo edvhg rq lqyhuwhuv1 Wkh srzhu ghvfulswlrq ri FPRV lq0 yhuwhuv lv dovr dq lpsruwdqw vwhs wr ghvfuleh pruh frpsoh{ jdwhv1 Khqfh/ wkh dqdo|wlfdo ghvfulswlrq ri srzhu glvvlsdwhg lq d FPRV lqyhuwhu lv ri lqfuhdvlqj lpsruwdqfh1 Srzhu glvvlsdwlrq lq FPRV flufxlwv kdv d g|0 qdplf dqg d vwdwlf frpsrqhqw1 Wkh g|qdplf glvvl0 sdwlrq lv gxh wr wkh fkdujh2glvfkdujh ri jdwh rxwsxw ordg +ghqhg dv wudqvlhqw hqhuj|,/ dqg wr wkh vkruw0 flufxlw fxuuhqw gxh wr wkh vxsso|0jurxqg frqgxfwlqj sdwk fuhdwhg gxulqj wkh wudqvlwlrq ^5`1 Vhyhudo zrunv kdyh irfxvvhg rq prgholqj wkh vkruw0flufxlw srzhu frqvxpswlrq1 Yhhqgulfn ^5` re0 wdlqhg dq h{suhvvlrq iru xqordghg exhuv1 Vdnx0 udl hw do1 ^6` ghulyhg d prgho iru orqj dqg vkruw fkdqqho ghylfhv xvlqj wkhlu doskd0srzhu odz PRV0 IHW prgho iru xqordghg exhuv1 Wxujlv hw do1 ^7` ghulyhg dq h{suhvvlrq iru wkh vkruw0flufxlw dqg ryhuvkrrwlqj glvvlsdwlrq dssolfdeoh rqo| wr ghhs0 vxeplfurq whfkqrorjlhv dqg lqwurgxflqj wkh htxly0 dohqw fdsdflwdqfh frqfhsw doorzlqj d gluhfw dqg iuhtxhqf|0lqghshqghqw frpsdulvrq ri wkh glhuhqw srzhu frpsrqhqwv1 Pruh Uhfhqwo|/ Qrvh hw do1 ^8` ghulyhg d prgho iru vkruw0flufxlw srzhu zklfk wdnhv LL1 Wudqvlhqw glvvlsdwlrq Wkh wudqvlhqw hqhuj| +Hwu , fruuhvsrqgv wr wkh hq0 huj| glvvlsdwhg zkhq glvfkdujlqj wkh rxwsxw fdsdf0 lwru1 Wkh rxwsxw qrgh fkdujh lv vwruhg lq erwk wkh lqsxw0rxwsxw frxsolqj fdsdflwru FP dqg wkh ordg fdsdflwru FO 1 Wkh hqhuj| ri d glvfkdujlqj frqvwdqw fdsdflwru lv vlpso| H @ TY @5/ zkhuh Y lv wkh yrow0 djh vzlqj dqg T wkh fkdujh lqlwldoo| vwruhg lq wkh fdsdflwru1 Wkh yrowdjh vzlqj ri wkh rxwsxw qrgh lq wkh exhu flufxlw lv htxdo wr wkh vxsso| yrowdjh YGG zkloh wkh fkdujh wudqvihuuhg zloo eh ghulyhg xvlqj fkdujh frqvhuydwlrq e| frpsxwlqj wkh fkdujh dw wkh ehjlqqlqj ri wkh wudqvlwlrq plqxv wkh fkdujh dw lwv hqg1 Wkh ydoxh ri FP lq wkh vwdwlf lqsxw orz vwdwh +gh0 O , frqvlghulqj wkh vlgh0zdoo fdsdflwdqfh qhg dv FP ri erwk wudqvlvwru gudlqv/ dqg wkh jdwh wr gudlq fd0 sdflwdqfh ri wkh sPRV wudqvlvwru lq wkh olqhdu uhjlrq 4 lv jlyhq e|= O @ Fr{ Zshii Oshii . ODS Zs . ODS Zq FP s hii q hii 5 +4, zlwk ODSs dqg ODSq ehlqj wkh jdwh vrxufh2gudlq xqghuglxvlrq iru wkh sPRV dqg qPRV wudqvlvwruv uhvshfwlyho|/ Zqhii dqg Zshii duh wkh qPRV dqg sPRV hhfwlyh fkdqqho zlgwk dqg Oshii lv wkh hi0 ihfwlyh fkdqqho ohqjwk ri wkh sPRV wudqvlvwru1 Iru K fdq eh re0 d vwdwlf lqsxw kljk wkh fdsdflwdqfh FP wdlqhg vlploduo|1 Dq dyhudjh ydoxh ri wkhvh wzr h{0 suhvvlrqv zloo eh xvhg iru wkh frxsolqj fdsdflwdqfh O . F K ,1 FP @ 3=8+FP P Lq d FPRV exhu wkh fkdujh dw wkh rxwsxw qrgh lv vwruhg lq erwk wkh rxwsxw dqg wkh frxsolqj fdsdf0 lwru1 Wklv fkdujh +ghqhg dv Trxw , fdq eh h{suhvvhg dv= Trxw @ +FP . FO , Yrxw FP Ylq Iljxuh 4 FPRV exhu prgho Xvlqj d vlpsoh vkruw0fkdqqho PRVIHW prgho iurp ^4`/ dqg qhjohfwlqj fkdqqho0ohqjwk prgxodwlrq hhfwv/ wkh gudlq fxuuhqw h{suhvvlrq lv= +5, zkhuh Yrxw lv wkh rxwsxw yrowdjh dqg Ylq wkh lqsxw yrowdjh1 Wkh hqhuj| glvvlsdwhg e| wkh qPRV wudqvlvwru iru d kljk wr orz rxwsxw wudqvlwlrq lv jlyhq e| Hwu @ Tqrxw YGG @5 +hqhuj| glvvlsdwhg iru d glv0 fkdujlqj fdsdflwru,1 Tqrxw lv wkh fkdujh wudqvihuuhg iurp wkh rxwsxw qrgh wr jurxqg wkurxjk wkh qPRV wudqvlvwru/ dqg YGG lv wkh yrowdjh vzlqj1 Wkxv/ wudqvlhqw hqhuj| lv h{suhvvhg dv= YGG +6, Hwu @ iTrxw +3, Trxw +4,j 5 zkhuh Trxw +3, lv wkh fkdujh dw wkh rxwsxw qrgh dw wkh ehjlqqlqj ri wkh wudqvlwlrq +w @ 3, dqg Trxw +4, lv wkh fkdujh vwruhg dw wkh rxwsxw qrgh zkhq wkh rxwsxw wudqvlwlrq lv qlvkhg1 Xvlqj ht1+5, zh rewdlq dq h{suhvvlrq iru Trxw +3, dqg Trxw +4, dv= Trxw +3, @ +FO . FP , YGG +7, Trxw +4, @ FP YGG LGV zlwk= 3 LG3 @ LG3 YJV YWK YGG YWK q +:, +;, +<, Wkh sdudphwhu q lv wkh yhorflw| vdwxudwlrq lqgh{ wkdw wdnhv d ydoxh ehwzhhq 5 +orqj0fkdqqho ghylfhv, dqg 4 +vkruw0fkdqqho,1 Sdudphwhuv LG3 dqg YG3 duh wkh gudlq fxuuhqw dqg vdwxudwlrq yrowdjh iru YJV @ YGV @ YGG = Sdudphwhuv q/ p dqg YWK duh wwlqj sdudphwhuv1 Wkh lqsxw yrowdjh lv ghvfulehg zlwk d olqhdu udps/ iru d orz wr kljk lqsxw wudqvlwlrq lw lv h{suhvvhg dv= w +43, Ylq +w, @ YGG wlq zkhuh wlq lv wkh lqsxw ulvh wlph1 Zkhq wkh rxwsxw fdsdflwdqfh lv vpdoo +l1h1 zkhq wkh vkruw0flufxlw fxuuhqw kdv d juhdwhu lpsdfw ^5`, wkh flufxlw ehkdylru lv forvh wr wkh lqyhuwhu GF rs0 hudwlrq vlqfh Ls * Lq 1 Dw wkh ehjlqqlqj ri wkh wudq0 vlwlrq/ wkh sPRV wudqvlvwru gulyhv d fxuuhqw htxdo wr wkh qPRV vdwxudwlrq fxuuhqw/ zkloh dw wkh hqg ri wkh wudqvlwlrq wkh sPRV lv vdwxudwhg1 Lq wklv sdu0 wlfxodu fdvh/ wkh pd{lpxp fxuuhqw wdnhv sodfh zkhq 3 @ L 3 1 Xvlqj htv1 +;, dqg +43, dqg nqrzlqj LG 3s G3q wkdw YJV @ Ylq iru wkh qPRV dqg YJV @ YGG Ylq iru wkh sPRV/ wkh wlph dw zklfk wkh vkruw0flufxlw lv @3 pd{lpxp +ghqhg dv wFO pd{ , fdq eh rewdlqhg vroy0 lqj= LLL1 Vkruw0flufxlw srzhu prgho Zh ghulyh wkh vkruw0flufxlw hqhuj| glvvlsdwhg lq d FPRV exhu +Ilj1 4, iru d orz wr kljk lqsxw wudq0 vlwlrq +iru d kljk wr orz lqsxw wudqvlwlrq wkh prgho lv htxlydohqw,1 Wkh g|qdplf ehkdylru ri wkh flufxlw lq Ilj1 4 lv ghvfulehg e|= gYrxw gYlq @ Ls Lq . FP gw gw +YJV _ YWK , +YGV ? YG3 3 , +YGV YG3 3 , Wkh vdwxudwlrq yrowdjh YG3 3 lv jlyhq e| ^4`= p YJV YWK 3 YG3 @ YG3 YGG YWK Iurp htv1 +6, dqg +7, wkh wudqvlhqw hqhuj| iru d kljk wr orz rxwsxw wudqvlwlrq lv= 4 5 Hwu @ +FO . 5FP , YGG +8, 5 +FO . FP , ; ? 3 , YGV L 3 +5 YYGV @ G3 3 YG3 3 G3 = 3 LG3 +9, zkhuh Ls dqg Lq duh wkh sPRV dqg qPRV fxuuhqw uhvshfwlyho|1 5 # FO@3 YGG wpd{ wlq YWQ LG3q YGG YWQ Iru d kljk0vshhg lqsxw wudqvlwlrq +ru d odujh fd0 sdflwdqfh dw wkh rxwsxw,/ wkh wlph dw zklfk wkh vkruw0flufxlw fxuuhqw lv pd{lpxp lv jlyhq e| ht1+4:,1 Iru vorz lqsxw wudqvlwlrqv +xqordghg exhuv, wkh pd{lpxp wlph lv jlyhq e| ht1 +45,1 Zh rewdlq d vlqjoh h{suhvvlrq wkdw ohdgv wr ht1 +45, iru vorz lqsxw wudqvlwlrqv dqg wr ht1+4:, iru kljk0vshhg dv= $qq @ # @3 pd{ YGG YGG wFO wlq mYWS m LG3s YGG mYWS m $qs +44, zkhuh LG3q dqg LG3s duh wkh sdudphwhu LG3 ri wkh qPRV dqg wkh sPRV wudqvlvwru uhvshfwlyho|/ YWS dqg YWQ duh wkh sPRV dqg wkh qPRV wkuhvkrog yrowdjh zkloh qq dqg qs duh wkh yhorflw| vdwxudwlrq lqgh{ ri qPRV dqg sPRV uhvshfwlyho|1 Htxdwlrq +44, lv qrq0olqhdu dqg pxvw eh vroyhg qxphulfdoo|1 Zh rewdlqhg d jrrg dqdo|wlfdo dssur{lpdwlrq wr wkh vroxwlrq ri ht1 +44, dv= WQ mYWS m 4 YYGG YGG O @3 wF 5 pd{ @ wq . wlq qs .qq 4.I s 5 F @4 O O @3 ns LG3q wlq wF wpd{ pd{ F Y F @ 4 O GG +4;, O n L w5 wpd{ @ wpd{ s G3q lq . wFO @4 wFO @3 pd{ pd{ FOYGG Xvlqj ht1 +4;, lq wkh h{suhvvlrq iru wkh vdwxudwlrq fxuuhqw ri sPRV +;,/ wkh pd{lpxp vkruw0flufxlw fxuuhqw lv rewdlqhg # dv= $qs YGG YGG wwpd{ mYWS m lq Lpd{s @ LG3s YGG mYWS m +45, Wkh vkruw0flufxlw fxuuhqw vwduwv zkhq wkh qPRV WQ , dqg q0 wudqvlvwru vwduwv wr frqgxfw +wq @ wlq YYGG WS m ,1 lvkhv zkhq wkh sPRV lv r +ws @ wlq 4 mYYGG Wkh vkruw0flufxlw fkdujh wudqvihuuhg lv rewdlqhg ds0 sur{lpdwlqj wkh vkruw0flufxlw fxuuhqw vkdsh dv d wul0 dqjoh zlwk pd{lpxp ydoxh Lpd{s 1 Wkhq/ wkh duhd xqghu vxfk wuldqjoh zloo eh wkh vkruw0flufxlw fkdujh= 4 mYWS m YWQ Tuvf @ Lpd{s wlq 4 +4<, 5 YGG YGG zkhuh Is lv jlyhq e|= LG3q Is @ LG3s YVF YGG YWQ qq YGG mYWS m YVF qs +46, Wkhq/ wkh pd{lpxp vkruw0flufxlw fxuuhqw iru xq0 FO@3, lv hydoxdwhg dv= ordghg exhuv +Lpd{ s 4qs 3 wFO pd{@3 mYWS m Y Y GG GG wlq FO@3 @ L C D Lpd{ G3s s YGG mYWS m Ilqdoo|/ wkh hqhuj| dvvrfldwhg wr wkh vkruw0flufxlw fxuuhqw iru d ulvlqj lqsxw wudqvlwlrq lv frpsxwhg dv= u @ Tu YGG +53, Hvf vf +47, Htv1 +45, dqg +47, duh lqdffxudwh iru odujh FO ydo0 xhv1 Li wkh rxwsxw fdsdflwru lv odujh/ wkhq wkh vkruw0 flufxlw fxuuhqw lv qhjoljleoh1 Wkxv/ iru wkh olplw ri FO @ 4 wkh pd{lpxp vkruw0flufxlw fxuuhqw ydq0 lvkhv1 Wr rewdlq dq h{suhvvlrq vlplodu wr ht1 +47, iru FO @ 4/ wkh wlph dw zklfk wkh vkruw0flufxlw lv pd{lpxp lv jlyhq e| wkh vroxwlrq ri= 4qs 3 FO@4 YGG YGG wpd{ mY m WS wlq D @ 3 +48, LG3s C YGG mYWS m Wkdw ohdgv wr= mYWS m @4 @ wlq 4 wFO pd{ YGG LY1 Uhvxowv Zh sorwwhg wkh prgho suhglfwlrq yv1 KVSLFH ohyho 83 +PP<, vlpxodwlrqv iru d 3=4;p dqg d 3=68p whfkqrorj| frqvlghulqj hqhuj| yv1 lqsxw wudqvlwlrq wlph1 Lq hdfk judsk zh dovr lqfoxgh wkh prghov iurp ^7` dqg ^8` zklfk suhvhqwv wkh ehwwhu djuhhphqw zlwk KVSLFH1 Iru wkh whfkqrorj| xvhg/ wkh hpslulfdo sd0 udphwhuv ns dqg nq duh wdnhq dv ns @ nq @ 3=36 dqg ns @ nq @ 3=4 iru wkh 3=4;p dqg wkh 3=68p whfk0 qrorj| uhvshfwlyho|1 Ilj15 vkrzv wkh hqhuj| glvvlsdwhg shu rqh f|foh shulrg yv1 wkh lqsxw wr rxwsxw wlph udwlr iru d 3=4;p whfkqrorj|1 Wkh rxwsxw wlph lv wdnhq iurp KVSLFH vlpxodwlrqv dv dq dyhudjh ydoxh ri wkh ulvh dqg idoo wlphv dw wkh exhu rxwsxw +wi @5 . wu @5,/ eh0 lqj wu dqg wh sursruwlrqdo wr wkh wlph iurp 3=<YGG dw wkh rxwsxw +w<3 , wr 3=4YGG dw wkh rxwsxw +w43 , +l1h1 wi @ 3=;+w43 w<3 , ,1 Glhuhqw Zs @Zq udwlrv duh frqvlghuhg +Zs @Zq @ 6p@4=8p> Zs @Zq @ 5=58p@5=58p dqg Zs @Zq @ 4=8p@6p, zlwk FO @ 8Fplq zkhuh Fplq lv wkh rxwsxw fdsdflwdqfh ri d plqlpxp vl}hg lqyhuwhu gulylqj rwkhu plqlpxp vl}hg lqyhuwhu1 Wkh duhd ri wkh wkuhh lqyhuwhuv lv nhsw frqvwdqw +Zs . Zq @ 7=8p, zkloh wkh lqsxw wlphv +49, Wkh gudlq vdwxudwlrq fxuuhqw ri wkh sPRV ghylfh FO@4 ohdgv wr wkh h{shfwhg ydoxh iru hydoxdwhg dw wpd{ wkh pd{lpxp vkruw0flufxlw fxuuhqw1 Ht1 +49, lv lq idfw d olplw ydoxh1 Lq rughu wr rewdlq d jrrg ghvfulswlrq iru odujh ydoxhv ri FO / zh xvh d Wd|oru h{sdqvlrq lq whupv ri 4@FO ri wklv wlph dv= 5 O $4 @ wFO @4 ns LG3q wlq . r 4 wF +4:, pd{ pd{ FO YGG FO5 zkhuh ns lv d wwlqj sdudphwhu wkdw pxvw eh h{0 wudfwhg iurp VSLFH vlpxodwlrqv iru hdfk whfkqrorj|1 6 Energy vs. input time Wn+Wp=4.5um CL=5Cmin Energy vs. input time 0.26 1.8 Model [4] HSPICE (Wp/Wn=2) HSPICE (Wp/Wn=1) HSPICE (Wp/Wn=0.5) 0.24 0.22 1.6 1.4 0.2 0.18 Energy/Cycle (pJ) Energy/Cycle (pJ) W p /W n =6 µ m/6 µ m W p /W n =4 µ m/8 µ m W p /W n =4 µ m/2 µ m W p /W n =2 µ m/4 µ m [5] Model 0.16 0.14 0.12 0.1 1.2 1 C L =10C 0.8 min 0.6 0.08 C L =5C min 0.4 0.06 0.2 0.04 0 0.5 1 1.5 2 2.5 t in /t out 3 3.5 4 0 4.5 1 1.5 2 t in /t out 2.5 3 3.5 4 Iljxuh 6 Hqhuj| glvvlsdwlrq yv1 lqsxw wr rxwsxw wlph udwlr iru glhuhqw Zs @Zq udwlrv iru d 3=68p whfkqrorj|1 Iljxuh 5 Srzhu glvvlsdwlrq yv1 lqsxw wlph wr rxw0 sxw wlph udwlr iru d 3=4;p whfkqrorj|1 Glhuhqw Zs @Zq udwlrv duh frqvlghuhg1 udqjh iurp 53sv wr 4qv +iurp 3=8wrxw wr 7wrxw ,1 Wkh prgho suhvhqwhg uhsruwv dq lpsuryhphqw zlwk uh0 vshfw wr suhylrxv zrunv +zh lqfoxgh sorwv iurp wkh prgho lq ^7` vlqfh lw vkrzhg wkh ehwwhu wwlqj dprqj wkh zrunv frqvlghuhg, pdlqwdlqlqj dq dffxudwh gh0 vfulswlrq ri srzhu iru glhuhqw ydoxhv ri Zs @Zq 1 Lq Ilj1 6 zh vkrz wkh hqhuj| glvvlsdwhg shu rqh f|foh shulrg yv1 wkh lqsxw wr rxwsxw wlph udwlr iru d 3=68p whfkqrorj|1 Irxu glhuhqw lqyhuwhuv duh frqvlghuhg zlwk glhuhqw ydoxhv ri wkh Zs @Zq udwlr dqg wzr rxwsxw fdsdflwdqfh ydoxhv +hdfk vl}h dqg fdsdflwdqfh lv lqglfdwhg lq wkh judsk,1 Wkh lqsxw wlph wlq udqjhv iurp 53sv wr 418qv1 Dv fdq eh ds0 suhfldwhg/ wkh prgho ghyhorshg ghvfulehv fruuhfwo| KVSLFH vlpxodwlrqv iru doo wkh frqglwlrqv frqvlg0 huhg1 Zh fdofxodwhg wkh phdq ghyldwlrq ri wkh Hqhuj| yv1 lqsxw wlph iurp KVSLFH vlpxodwlrqv iru wkh prghov lq wkh olwhudwxuh ^7/ 8` dqg wkh prgho sur0 srvhg1 Wkh shufhqwdjh ghyldwlrqv duh suhvhqwhg lq Wdeoh L iru wkh wzr whfkqrorjlhv xvhg vkrzlqj wkh lpsuryhphqw dfklhyhg e| wkh prgho1 Y1 0.5 Wdeoh L Phdq dqg pd{lpxp huuru ri hqhuj| hvwlpdwlrq yv1 KVSLFH iru d 3=4;p dqg d 3=68p whfqrorj| Huuru Prgho +Pd{1, Prgho +Phdq, ^7` +Pd{1, ^7` +Phdq, ^8` +Pd{1, ^8` +Phdq, 3=4;p 47( 9( 66( 45( 95( 4<( 3=68p ;( 5( 98( 49( 56( 45( Uhihuhqfhv ^4` Wdnd|dvx Vdnxudl dqg Ulfkdug Qhzwrq/ D vlpsoh ^5` ^6` Frqfoxvlrqv Dq dffxudwh dqdo|wlfdo h{suhvvlrq wr fdofxodwh wkh srzhu frqvxpswlrq ri FPRV exhuv kdv ehhq gh0 yhorshg1 Wkh prgho lv frpsduhg wr KVSLFH vlp0 xodwlrqv +ohyho 83, dqg rwkhu suhylrxvo| sxeolvkhg prghov iru d 3=4;p dqg d 3=68p surfhvv whfkqro0 rj| uhsruwlqj d kljk dffxudf|1 Lw lv deoh wr ghvfuleh wkh hqhuj| ghshqghqfh ri wkh exhu zlwk lqsxw vohz wlph/ dv|pphwu| ri wkh exhu dqg rxwsxw fdsdf0 lwdqfh1 Srzhu glvvlsdwlrq iru kljk dqg orz vshhg wudqvlwlrqv kdyh ehhq ghvfulehg zlwk ghwdlo1 Qrq0 olqhdu sureohpv duh vroyhg xvlqj vlpsoh irupxodv dqg dyrlglqj wlph0frqvxplqj qxphulfdo surfhgxuhv1 Wklv prgho suhvhqwv dq dyhudjh huuru ri 9( uhvshfw KVSLFH vlpxodwlrqv iru d zlgh udqjh ri sdudphwhu yduldwlrq dqg uhsuhvhqwv dq lpsuryhphqw ryhu suh0 ylrxvo| sxeolvkhg prghov1 ^7` ^8` ^9` 7 PRVIHW Prgho iru Flufxlw Dqdo|vlv/ LHHH Wudqv0 dfwlrqv rq Hohfwurq Ghylfhv/ yro1 6;/ ss1 ;;:0;<7/ Dsu1 4<<41 K1Yhhqgulfn/ Vkruw0flufxlw glvvlsdwlrq ri vwdwlf FPRV flufxlwu| dqg lwv lpsdfw rq wkh ghvljq ri exhu flufxlwv/ LHHH M1 Vrolg0Vwdwh Flufxlwv/ yro VF04</ ss179;07:6/ Dxj1 4<;71 W1Vdnxudl/ U1 Qhzwrq/ Doskd0srzhu odz PRVIHW prgho dqg lwv dssolfdwlrqv wr FPRV lqyhuwhu ghod| dqg rwkhu irupxodv/ LHHH Mrxuqdo ri Vrolg0Vwdwh flufxlwv/ yro 58/ ss1 8;708<7/ Dsu1 4<<31 V1Wxujlv dqg G1 Dxyhujqh/ D qryho pdfurprgho iru srzhu hvwlpdwlrq lq FPRV vwuxfwxuhv/ LHHH Wudqv1 rq Frpsxwhu0Dlghg Ghvljq/ yro 4:/ ss143<30 43<;/ Qry1 4<<;1 N1 Qrvh dqg W1 Vdnxudl/ Dqdo|vlv dqg ixwxuh wuhqg ri vkruw0flufxlw srzhu/ LHHH Wudqvdfwlrqv rq Frpsxwhu0Dlghg Ghvljq/ Yro 4</ ss1 435604363/ Vhsw1 53331 M1O1 Urvvhooö dqg M1 Vhjxud/ Fkdujh0edvhg dqdo|w0 lfdo prgho iru wkh hydoxdwlrq ri srzhu frqvxpswlrq lq vxeplfurq FPRV exhuv/ LHHH Wudqvdfwlrqv rq Frpsxwhu0Dlghg Ghvljq/ Yro 54/ qr 7/ ss1 766077;/ Dsulo1 53351 Ph.D. Thesis entitled “Power and Timing Modeling of Sub-micron CMOS Gates” developed by Jose L. Rosselló, [email protected]. Directed by: Jaume Segura. Power dissipation emerged as a major concern in digital IC design during the last decade becoming a design parameter as important as performance and area. Many low power design techniques at different levels (technological, design and architectural) were developed, all of them requiring accurate power estimation tools to achieve high-performance low-power digital systems. Electrical level simulation methods are impractical to evaluate full chip performance for huge designs due to the enormous computation time required. The complex non-linear dependencies of logic gates delay with process and design parameters in traditional technologies are aggravated in deep-submicron ICs due to new physical effects that come into the picture. The traditional description of logic gates delay based on simplified linear models used by logic simulators (that are much more faster than electrical simulators) are not accurate enough to describe the behavior of present technology ICs. In the Ph.D. thesis we develop new power and timing analytical models for sub-micron and deep sub–micron CMOS gates. These analytical models are of high interest for low-power digital design since they provide an explicit relationship between power/delay and process/design parameters (identifying the parameters with greatest influence on the circuit performance and power disipation). These analytical models can be also incorporated in simulation tools to obtain accurate (very close to SPICE simulations) power/delay estimations for huge circuits. The Thesis is organized in three parts devoted to: MOSFET devices, CMOS buffers and complex CMOS gates respectively. In the first part, a simple physically based MOSFET model [1] is developed. This model is a variation of the widely-used nth-power law MOSFET model developed by Sakurai and Newton that was oriented to circuit analysis. The proposed formulation allows a direct and simple relationship between physical and nth-power law parameters. In the second part of the thesis, power and delay models [2,3] for sub-micron CMOS buffers are developed based on the physical nth-power law MOSFET model and on the charge transfer mechanisms involved in gate transitions. These models take into account short-channel effects of MOSFETs and can incorporate the effect of the interconnect line resistance [4]. Finally, in the third part we develop an nth-power law model for series-connected MOSFETs. This model is used to obtain a delay model of complex CMOS gates [5] and for power-delay optimization of dynamic gates [6]. The accuracy of the power/delay models developed in this thesis are within 5% of SPICE simulations for a wide range of circuit configurations and switching conditions. [1] J.L.Rosselló and J.Segura, “A physical modeling of the alpha-power law MOSFET model”, In Proc. of the XV Design of Circuits and Integrated systems Conference (DCIS’00) . Montpellier, Nov.2000, pp. 6570 [2] J.L. Rosselló and J. Segura, "Charge-based analytical model for the evaluation of power consumption in sub-micron CMOS buffers" IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems, vol. 21, no. 4, pp.433-448, April 2002 [3] J.L Rosselló and J.Segura, “A compact charge-based propagation delay model for submicronic CMOS buffers”, XII International Workshop on Power and Timing Modeling (PATMOS 2002), Sevilla, Spain, September 2002, pp. 219-228 [4] J.L Rosselló and J.Segura, “A simple power consumption model of CMOS buffers driving RC interconnect lines”, In Proc. of the XI International Workshop on Power and Timing Modeling (PATMOS 2001), Yverdon-Les-Bains, Switzerland September 2001, paper no. 4.2 [5] J.L. Rossello and J. Segura, "Simple and accurate propagation delay model for submicron CMOS gates based on charge analysis" Electronics Letters, Vol. 38, no. 15 , pp. 772-774, Jul 2002 [6] J.L Rosselló and J.Segura, “Power-delay modeling of Dynamic CMOS gates for circuit optimization”, In Proc. the International Conference on Computer Aided Design (ICCAD’01) . San Jose, CA, Nov.2001, pp. 494-499 Power and Timing Modeling of Submicron CMOS Gates José L. Rosselló, University of the Balearic Islands, Spain Ph.D. Director: Jaume Segura Ph.D. dissertation defended on February 2002 Development of power and timing models for sub-micron CMOS gates ACCURATE POWER MODELS FOR SUB-MICRON CMOS GATES •Physical α-power law model for series-connected transistors •The α-power law model is suitable for circuit analysis •The empirical nature of parameters involved implies a lack in physical meaning •A relationship between physical and α-power law parameters is provided • Easier extraction of power and delay models for sub-micron CMOS gates •A physical meaning for these power and delay models is provided •The model is extended to stacked transistors Charge-based power models for CMOS gates taking into account: • Short-channel effects • Short-circuit power • Overshooting effects • Resistance of the interconnect line •Temperature of operation R Vin Vout C2 C1 ACCURATE DELAY MODELS FOR SUB-MICRON CMOS GATES APPLICATIONS POWER-DELAY OPTIMIZATION Charge-based analytical models for the propagation delay and the output transition time of CMOS gates taking into account: • Short-channel effects • Short-circuit power • Overshooting effects • Temperature of operation CROSSTALK ESTIMATION SKEW ts Vin,a Vout,a AGGRESSOR LINE CL,a CC Vin,v Vout,v VICTIM LINE CL,v Delay (tpHL) Current and future work •Estimation of the self-heating effect in MOSFET devices and interconnections (Temperature of operation as a function of power dissipated) •Estimation of thermal interactions inside the IC. •Development of a compact IC electro-thermal simulation (Power, delay, crosstalk and temperature estimation inside the IC) •Development of optimization techniques (Power, delay, crosstalk and temperature optimization inside the IC) BASIC BIBLIOGRAPHY POWER J.L. Rosselló and Jaume Segura, "Charge-based analytical model for the evaluation of power consumption in sub-micron CMOS buffers" IEEE Transactions on Computer Aided Design of Integrated Circuits and Systems , vol. 21, no. 4, pp.433-448, April 2002 •Development of CAD tools using all the analytical models developed. •Technology transfer to the IC industry J.L Rosselló and J.Segura, “A simple power consumption model of CMOS buffers driving RC interconnect lines”, In Proc. of the XI International Workshop on Power and Timing Modeling (PATMOS 2001), Yverdon-Les-Bains, Switzerland September, 26-28,2001, paper no. 4.2 DELAY J.L. Rossello and J. Segura, "Simple and accurate propagation delay model for submicron CMOS gates based on charge analysis" Electronics Letters, Vol. 38, no. 15 , pp. 772-774, Jul 2002 J.L Rosselló and J.Segura, “A compact charge-based propagation delay model for submicronic CMOS buffers”, XII International Workshop on Power and Timing Modeling (PATMOS 2002), pp. 219-228 Sevilla, Spain September 11-13, 2002 APPLICATIONS J.L Rosselló and J.Segura, “Power-delay modeling of Dynamic CMOS gates for circuit optimization”, In Proc. the International Conference on Computer Aided Design (ICCAD’01) . San Jose, CA, Nov.2001, pp. 494499. J.L Rosselló and J.Segura, “A compact charge-based crosstalk induced delay model for submicronic CMOS gates ”, Accepted for publication in the XIII International Workshop on Power and Timing Modeling (PATMOS 2003), Torino, Italy, September 10-13, 2003 D frpsdfw fkdujh0edvhg furvvwdon lqgxfhg ghod| prgho iru vxeplfurqlf FPRV jdwhv Mrvì Oxlv Urvvhooö dqg Mdxph Vhjxud Ghsduwdphqw gh Iðvlfd/ Xqlyhuvlwdw Loohv Edohduv/ 3:3:4 Sdopd gh Pdoorufd/ Vsdlq Devwudfw1 Lq wklv zrun zh sursrvh d frpsdfw dqdo|wlfdo prgho wr frp0 sxwh wkh furvvwdon lqgxfhg ghod| iurp d fkdujh0edvhg sursdjdwlrq ghod| prgho iru vxeplfurqlf FPRV jdwhv1 Furvvwdon ghod| lv ghvfulehg dv dq dgglwlrqdo fkdujh wr eh wudqvihuuhg wkurxjk wkh sPRV +qPRV, qhwzrun ri wkh jdwh gulylqj wkh ylfwlp qrgh gxulqj lwv ulvlqj +idoolqj, rxwsxw wudqvlwlrq1 Wkh prgho dffrxqwv iru wlph vnhz ehwzhhq wkh ylfwlp dqg djjuhvvru lqsxw wudqvlwlrqv dqg lqfoxghv vxeplfurqlf hhfwv1 Lw surylghv dq lqwxlwlyh ghvfulswlrq ri furvvwdon ghod| vkrzlqj yhu| jrrg djuhhphqw zlwk KVSLFH vlpxodwlrqv iru d fH>6 whfkqrorj|1 4 Lqwurgxfwlrq Wkh frqvwdqw vfdolqj ri ihdwxuh vl}hv dqg vxsso| yrowdjh zlwk wkh lqfuhdvh lq erwk rshudwlqj iuhtxhqf| dqg vljqdo ulvh2idoo wlphv kdv pdgh gljlwdo ghvljqv pruh yxoqhudeoh wr qrlvh1 Lq prghuq LFv/ lqwhufrqqhfw frxsolqj qrlvh +furvvwdon, ehfrphv d shuirupdqfh olplwlqj idfwru wkdw pxvw eh dqdo|}hg fduhixoo| gxulqj wkh ghvljq surfhvv1 Li qrw frqvlghuhg/ furvvwdon fdq fdxvh h{wud ghod|/ orjlf kd}dugv dqg orjlf pdoixqfwlrq1 Ilj14 looxvwudwhv wkh zhoo nqrzq furvvwdon lqgxfhg ghod| hhfw wkdw dsshduv zkhq wzr olqhv +wkh djjuhvvru dqg wkh ylfwlp, vzlwfk vlpxowdqhrxvo|1 Iru d ylf0 wlp qrgh idoolqj wudqvlwlrq/ wkh jdwh ghod| +ghqhg dv wsKO3 , fdq eh uhgxfhg +wsKO>vx , ru lqfuhdvhg +wsKO>vg , ghshqglqj rq li wkh djjuhvvru pdnhv d idoolqj ru d ulvlqj wudqvlwlrq uhvshfwlyho|1 Vlqfh odujh flufxlwv fdq kdqgoh whqv ri ploolrqv ri lqwhufrqqhfw olqhv rq d vlqjoh fkls/ vlpsoh dqg dffxudwh dqdo|wlfdo ghvfulswlrqv iru furvvwdon ghod| duh ri kljk lpsruwdqfh iru d idvw wlplqj yhulfdwlrq ri wkh zkroh fkls1 Furvvwdon ghod| kdv ehhq dqdo|}hg lq ^4` xvlqj d zdyhirup lwhudwlrq vwudwhj|1 Xqiruwxqdwho|/ wkh wlph vnhz ehwzhhq wudqvlwlrqv duh qrw frqvlghuhg dqg qr0 forvhg irup h{suhvvlrq iru wkh zruvw0fdvh ylfwlp ghod| lv surylghg1 Pruh uhfhqwo| furvvwdon ghod| kdv ehhq prghohg dqdo|wlfdoo| lq ^5`1 Dqdo|wlfdo h{suhvvlrqv duh ghulyhg wkdw txdqwli| wkh vhyhulw| ri furvvwdon ghod| dqg ghvfuleh txdolwdwlyho| wkh ghshqghqfh rq flufxlw sdudphwhuv/ wkh ulvh2idoo wlphv ri wudqvlwlrqv dqg wkh vnhz ehwzhhq wudqvlwlrqv1 Wkh qPRV +sPRV, qhwzrun lv vxevwlwxwhg e| d sxoo0grzq +sxoo0xs, uhvlvwdqfh dqg vkruw0flufxlw fxuuhqwv duh qhjohfwhg1 Wkh pdlq olplwdwlrq lv wkdw wkh frpsoh{ htxdwlrqv rewdlqhg iru wkh ylfwlp yrowdjh yduldwlrq fdqqrw eh xvhg wr rewdlq d forvhg0irup h{suhvvlrq ri wkh sursdjdwlrq ghod|1 Dgglwlrqdoo|/ rwkhu hhfwv dv vkruw0flufxlw fxuuhqwv/ zlwk d juhdw lpsdfw rq sursdjdwlrq ghod| ^6` duh qrw frqvlghuhg lq wkhlu dqdo|vlv1 Ilj1 41 Dq dgglwlrqdo ghod| lq wkh ylfwlp lv lqgxfhg e| wkh vzlwfklqj wudqvlwlrq ri TJ|c@ +furvvwdon lqgxfhg ghod|,1 Lq wklv zrun zh sursrvh d vlpsoh dqg dffxudwh dqdo|wlfdo prgho wr frpsxwh wkh furvvwdon ghod| +wsKO>vx dqg wsKO>vg , lq vxeplfurq FPRV jdwhv1 D vlpsoh sursdjdwlrq ghod| prgho iru FPRV lqyhuwhuv ^6` lv prglhg wr lqfoxgh pruh frpsoh{ jdwhv wkdq lqyhuwhuv xvlqj wkh froodsvlqj whfkqltxh ghyhorshg lq ^7`1 Wkh prgho lv frpsduhg wr KVSLFH vlpxodwlrqv iru d 3=4;p whfkqrorj| vkrzlqj dq h{fhoohqw djuhhphqw1 5 Furvvwdon ghod| prgho Frqvlghu wkh flufxlw lq Ilj14 zkhuh wkh djjuhvvru dqg wkh ylfwlp jdwhv gulyh dq rxwsxw fdsdflwdqfh FO>d dqg FO>y uhvshfwlyho|/ dqg wkhuh lv d frxsolqj fd0 sdflwdqfh Ff ehwzhhq Yrxw>d dqg Yrxw>y +wkdw fdxvhv wkh furvvwdon ehwzhhq wkh wzr olqhv,1 Wkh wlph vnhz wv lv ghqhg dv wkh wlph lqwhuydo iurp YGG @5 dw wkh ylfwlp lqsxw wr YGG @5 dw wkh djjuhvvru lqsxw1 Wkh rxwsxw lqwhufrqqhfw olqhv duh prghohg dv oxpshg fdsdflwdqfhv1 Wklv lv d ydolg dssurdfk iru phglxp vl}h lqwhufrqqhfwv dv lw kdv ehhq uhsruwhg wkdw wkh uhodwlyh huuru ri wklv fdsdflwlyh prgho lv ehorz 43( iru d 5pp zluh lq d 3=4;p whfkqrorj| ^8`1 Wkh vwuxfwxuh ri wklv sdshu lv dv iroorzv/ uvw zh suhvhqw d frpsdfw fkdujh0 edvhg sursdjdwlrq ghod| prgho ri FPRV jdwhv wkdw lv edvhg rq wkh sursdjdwlrq ghod| prgho ghyhorshg lq ^6`1 Ilqdoo|/ furvvwdon hhfwv duh lqfoxghg lq wkh prgho dv dgglwlrqdo fkdujhv wr eh wudqvihuuhg wkurxjk wkh fruuhvsrqglqj qPRV2sPRV eorfn1 514 Sursdjdwlrq ghod| prgho iru frpsoh{ jdwhv Wkh sursdjdwlrq ghod| lv xvxdoo| frpsxwhg dv wkh wlph lqwhuydo ehwzhhq wkh lqsxw dqg wkh rxwsxw furvvlqj YGG @51 Wkh furvvwdon0iuhh sursdjdwlrq ghod| +wsKO3 , fdq eh ghvfulehg dv d ixqfwlrq ri wkh fkdujh wudqvihuuhg wkurxjk wkh jdwh xvlqj wkh prgho lq ^6` wkdw lv edvhg rq wkh qwk0srzhu odz PRVIHW prgho ^9`/ dqg rq dq h!flhqw dqg dffxudwh wudqvlvwru froodsvlqj whfkqltxh iru frpsoh{ jdwhv ghyhorshg lq ^7`1 Iru d kljk wr orz rxwsxw wudqvlwlrq +iru d orz wr kljk wudqvlwlrq wkh dqdo|vlv lv htxlydohqw, wkh sursdjdwlrq ghod| lv jlyhq e|= ; 4.4q A ? w . Ti +4.q, +w w ,q wlq Ti ? Ti3 q lq q k4>Qq l 5 LG +4, wsKO3 @ 3q A = wlq . Tik4>QTil3 T T i i3 5 LG3q q zkhuh wlq lv wkh lqsxw wudqvlwlrq wlph +l1h1 wkh wlph gxulqj zklfk wkh lqsxw lv fkdqjlqj,/ sdudphwhu q lv wkh yhorflw| vdwxudwlrq lqgh{ ri wkh qPRV wudqvlvwruv/ Ti @ FO YGG @5 lv wkh fkdujh wudqvihuuhg wkurxjk wkh qPRV eorfn xqwlo Yrxw @ YGG @5 +zkhuh YGG lv wkh vxsso| yrowdjh,/ FO lv wkh rxwsxw ordg ri wkh jdwh/ wq @ +YW Q @YGG ,wlq lv wkh wlph zkhq wkh qPRV eorfn vwduwv wr frqgxfw +YW Q lv wkh wkuhvkrog yrowdjh ri qPRV,/ dqg Ti3 lv wkh fkdujh wudqvihuuhg wkurxjk wkh qPRV eorfn zkhq wkh lqsxw wudqvlwlrq lv qlvkhg/ jlyhq e|= k4>Qql +w w , L lq q +5, Ti3 @ G3q 4.q k4>Q l Sdudphwhu LG3q q lv ghqhg dv wkh pd{lpxp fxuuhqw wkdw wkh qPRV eorfn fdq gholyhu +prghohg dv d fkdlq ri Qq vhulhv0frqqhfwhg wudqvlvwruv, dqg lv re0 wdlqhg iurp wkh wudqvlvwru froodsvlqj whfkqltxh ghyhorshg lq ^7`1 Iru wkh vlpsoh fdvh ri d fkdlq zlwk Qq lghqwlfdo wudqvlvwruv/ wkh froodsvlqj whfkqltxh surylghv k4>Q l d vlpsoh h{suhvvlrq iru LG3q q = LG3q 4 . 5 +YG3q YGG , k 4>Qq l LG3q @ 4 . +Qq 4, Nq zkhuh YG3q lv wkh vdwxudwlrq yrowdjh ri qPRV/ LG3q lv wkh pd{lpxp vdwxudwlrq fxuuhqw ri hdfk qPRV +gudlq fxuuhqw zkhq YJV @ YGV @ YGG , dqg sdudphwhu dffrxqwv iru fkdqqho ohqjwk prgxodwlrq1 Wkh sdudphwhu Nq lv d whfkqrorj|0 ghshqghqw sdudphwhu jlyhq e|= 6YG3q q +4 . q , +6, Nq @ 8 +YGG YW Q , zkhuh q lv wkh erg| hhfw sdudphwhu ri qPRV ^9`1 Wkh wudqvlwlrq wlph dw wkh rxwsxw wrxw3 / uhtxluhg wr hydoxdwh furvvwdon ghod|/ fdq dovr eh h{suhvvhg dv d ixqfwlrq ri Ti dv ^6`= ; 4.qq k4>Q l A LG3q q ? 5Ti +wlq wq , Ti ? Ti3 k4>Q l +7, wrxw3 @ LG3q q Ti +4.q, 5 T A i = k4>Qq l Ti Ti3 LG 3 q V out,v V out,a V in,v V outv(a) V outv(b) V outv(c) 2 V DD V (V) 1.5 V outv(d) t pHL0 1 Ag f V outv(e) Ag a 0.5 Ag b Ag c Ag d Ag e V outv(f) 0 0 0.5 1 1.5 2 2.5 3 3.5 t (ns) Ilj1 51 Furvvwdon ghod| lv ghshqghqw rq wkh wlph ehwzhhq wudqvlwlrqv T?c@ dqg T?c 1 Htv1 +4, dqg +7, duh ydolg iru d kljk wr orz rxwsxw wudqvlwlrq1 Htxlydohqw h{suhvvlrqv fdq eh rewdlqhg iru d orz wr kljk rxwsxw wudqvlwlrq1 515 Lqfoxglqj vkruw0flufxlw fxuuhqwv Wkh ghod| prgho h{suhvvhg lq ht1 +4, lv ydolg iru FPRV jdwhv zkhq vkruw0flufxlw fxuuhqwv duh qhjohfwhg1 Wkhvh fxuuhqwv duh lqfoxghg lq ^6` dv dq dgglwlrqdo fkdujh wr eh wudqvihuuhg wkurxjk wkh sxoo0grzq +sxoo0xs, qhwzrun iru dq rxwsxw idoolqj +ulvlqj, wudqvlwlrq1 Iru d kljk wr orz rxwsxw wudqvlwlrq/ wkh fkdujh wudqvihuuhg i / zkhuh t i lv wkurxjk wkh qPRV eorfn lv frpsxwhg dv Ti @ FO YGG @5 . tvf vf ghqhg dv wkh vkruw0flufxlw fkdujh wudqvihuuhg gxulqj wkh idoolqj rxwsxw wudqvlwlrq i @ Ti @5/ zkhuh xqwlo Yrxw @ YGG @51 Iru vlpsolflw| zh frpsxwh wklv fkdujh dv tvf vf i Tvf lv wkh wrwdo vkruw0flufxlw fkdujh wudqvihuuhg1 Iru wkh hydoxdwlrq ri Tivf zh xvh d suhylrxvo| ghyhorshg prgho ghvfulehg lq ^:`1 516 Furvvwdon ghod| Wkh lpsdfw ri furvvwdon rq wkh sursdjdwlrq ghod| lv frpsxwhg dffrxqwlqj iru wkh dgglwlrqdo fkdujh lqmhfwhg e| wkh djjuhvvru gulyhu wkurxjk wkh frxsolqj fd0 sdflwdqfh Ff wkdw pxvw eh glvfkdujhg e| wkh ylfwlp gulyhu1 Zh frqvlghu d idoolqj wudqvlwlrq dw Yrxw>y vorzhu wkdq d ulvlqj wudqvlwlrq dw Yrxw>d +iru rwkhu fdvhv wkh dqdo|vlv lv vlplodu,1 Ilj15 vkrzv d kljk wr orz wudqvlwlrq ri wkh ylfwlp qrgh Yrxw>y zkhq wkh dj0 juhvvru rxwsxw vzlwfkhv iurp orz wr kljk iru vl{ glhuhqw vnhz wlphv uhsuhvhqwhg dv d> e> ===> i 1 Iru fdvh *d*/ wkh djjuhvvru wudqvlwlrq +Djd , grhv qrw lpsdfw wkh ylf0 wlp sursdjdwlrq ghod| +wsKO3 , vlqfh wkh devroxwh ydoxh ri wkh wlph vnhz ehwzhhq wudqvlwlrqv lv wrr odujh1 Wkh ylfwlp rxwsxw Yrxw>y +wudqvlwlrq Yrxw>y +d, , ulvhv xqwlo Yrxw>d @ YGG dqg wkhq idoov edfn wr YGG ehiruh wkh ulvlqj wudqvlwlrq dw wkh ylfwlp lqsxw lv lqlwldwhg1 Lq wklv fdvh wkh furvvwdon frxsolqj hhfw lv d jolwfk wkdw odvwv iru d wlph wkdw lv ghqhg dv wG +vhh Ilj16,1 Wklv fkdudfwhulvwlf wlph +wG , lv frpsxwhg dvvxplqj wkdw wkh RQ wudqvlvwruv ri wkh ylfwlp jdwh sPRV eorfn +wkdw glvfkdujh wkh rxwsxw, duh lq wkh olqhdu uhjlrq dqg wkdw wkhlu gudlq0vrxufh yrowdjh lv vpdoo1 Xqghu wkhvh frqglwlrqv/ wkh fxuuhqw wkurxjk wkh sPRV eorfn lv= YGG Yrxw +8, Ls @ LG3S YG3s zkhuh YG3s lv wkh vdwxudwlrq yrowdjh ri sPRV dqg LG3S lv frpsxwhg iurp doo wkh RQ wudqvlvwru fkdlqv wkdw frqqhfw wkh vxsso| dqg wkh rxwsxw qrgh1 Hdfk ri wkhvh sPRV fkdlqv lv froodsvhg wr d vlqjoh htxlydohqw wudqvlvwru zlwk pd{lpxp k4>Q l vdwxudwlrq fxuuhqw LG3s l +zkhuh Ql lv wkh qxpehu ri wudqvlvwruv lq hdfk fkdlq,1 Ilqdoo| LG3S lv h{suhvvhg dv wkh vxp ri wkhvh frqwulexwlrqv dv= p [ k4>Q l LG3S @ LG3s l +9, l@4 zkhuh p lv wkh qxpehu ri dfwlyh fkdlqv frqqhfwlqj YGG dqg Yrxw>y 1 Diwhu wkh wlph srlqw dw zklfk Yrxw>d @ YGG / wkh ylfwlp olqh rxwsxw yrowdjh hyroxwlrq +Yrxw>y , lv ghvfulehg dv= + 3, w Yrxw>y @ YGG . +Ypd{ YGG , h w L G3S FO YG3 s +:, zkhuh FO @ FO>y . Ff / w3 lv wkh wlph dw zklfk Yrxw>d @ YGG dqg Ypd{ lv wkh pd{lpxp yrowdjh dw Yrxw>y 1 Wkh fkdudfwhulvwlf wlph wG +uhod{dwlrq ri Yrxw edfn wr YGG , lv rewdlqhg iurp +:, ohdglqj wr= YG3s FO +;, wG @ 5Oq +5, LG3S Lw lv zhoo nqrzq wkdw furvvwdon pd| kdyh dq lpsdfw rq ghod| rqo| zkhq wkh djjuhvvru dqg ylfwlp wudqvlwlrqv rffxu zlwklq d wlph zlqgrz1 Rwkhuzlvh wkh hhfw ri furvvwdon lv vlpso| d jolwfk dw wkh ylfwlp olqh1 Wkh wlph lqwhuydo gxulqj zklfk wkh frlqflghqfh ri lqsxw wudqvlwlrqv pd| jlyh d furvvwdon ghod| fdq eh ghqhg lq whupv ri d olplw wlph vnhz ydoxh +wv4 ,1 Wklv olplw ydoxh zloo ghshqg rq wkh sursdjdwlrq ghod| ri wkh djjuhvvru gulyhu/ wkh fkdudfwhulvwlf wlph wG / dqg wkh djjuhvvru rxwsxw wudqvlwlrq wlph1 Ilj16 looxvwudwhv wklv wlph uhodwlrqvklsv judsklfdoo|1 Wkh olplw wlph wv4 lv rewdlqhg htxdwlqj wkh wlph srlqw dw zklfk wkh jolwfk dw Yrxw>y lv qlvkhg wr wkh ehjlqqlqj ri wkh kljk wr orz wudqvlwlrq dw Yrxw>y / l1h1= wrxw3>d wrxw3>y . wG @ wsKO3>y +<, wv4 . wsOK 3>d . 5 5 zkhuh wsKO3>y dqg wrxw3>y duh wkh sursdjdwlrq ghod| dqg wkh rxwsxw wudqvlwlrq wlph ri wkh ylfwlp jdwh uhvshfwlyho| wkdw duh rewdlqhg iurp +4, dqg +7, zkhq furvvwdon lv qhjohfwhg +Ti @ FO YGG @5.Tivf @5,1 Li wv ? wv4 wkh hhfw ri furvvwdon V outv V outa V inv tD 2 V DD V (V) 1.5 1 tpHL 0.5t out0,a 0.5 t=0 t s1 +t pLH0,a 0 Ilj1 61 Wkh djjuhvvru vwduwv wr dhfw wkh ylfwlp yrowdjh yduldwlrq zkhq |r ' |r 1 lv d jolwfk dw wkh ylfwlp qrgh dqg wkh yrowdjh ydoxh lv uhvwruhg e| wkh sPRV ghylfhv1 Zkhq wv A wv4 wkh furvvwdon zloo lpsdfw ghod| dv dq dgglwlrqdo fkdujh +ghqhg dv Tf , wkdw pxvw eh gudlqhg e| wkh qPRV ghylfhv gxulqj wkh wudqvlwlrq1 Zkhq Yrxw>d dqg Yrxw>y vwduw vzlwfklqj dw wkh vdph wlph/ wkh ydoxh ri Tf lv pd{lpxp1 Ghqlqj wv5 dv wkh wlph vnhz dw wklv wlph srlqw/ wkhq zh kdyh= wrxw3>d wrxw3>y @ wsKO3>y +43, wv5 . wsOK 3>d 5 5 Iru wv @ wv5 / wkh frxsolqj fkdujh fdq eh wdnhq dv Tf @ Ff YGG vlqfh wkh yrowdjh yduldwlrq dw Yrxw>d rffxuv gxulqj wkh wudqvlwlrq dw Yrxw>y 1 Iru wkh fdvh dw zklfk wv4 ? wv ? wv5 zh xvh d olqhdu yduldwlrq ri Tf zlwk wv 1 wv wv4 Tf @ Ff YGG +44, wv5 wv4 Wkh frxsolqj fkdujh Tf lv htxdo wr Ff YGG iru d wlph vnhz juhdwhu wkdq wv5 1 Wklv frqglwlrq krogv li Yrxw>d wudqvlwlrq qlvkhv ehiruh Yrxw>y uhdfkhv YGG @51 Wklv olplw ydoxh iru wlph vnhz lv ghqhg dv wv6 dqg rewdlqhg vroylqj= wrxw3>d @ wsKO3>y wv6 . wsOK 3>d . +45, 5 Li wv5 ? wv ? wv6 +fdvh g lq Ilj15, wkhq Tf lv pd{lpxp +Tf @ Ff YGG ,1 Zkhq wv A wv6 Tf vwduwv wr ghfuhdvh xqwlo Tf @ 3 dw wv @ wv7 / zkhuh wv7 lv ghqhg dv wkh wlph dw zklfk wkh ehjlqqlqj ri wkh wudqvlwlrq dw Yrxw>d dqg wkh wlph dw zklfk Yrxw>y @ YGG @5 duh htxdo1 wrxw3>d wv7 . wsOK 3>d @ wsKO3>y +46, 5 1000 tpHL,sd 800 tpHL (ps) 600 tpHL0 400 tpHL,su 200 0 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 C C /C L Ilj1 71 Lq wklv slfwxuh zh vkrz wkh sursdjdwlrq ghod| erxqgv iru d frxsolqj fdsdflwdqfh S 1 Vrolg olqhv duh prgho suhglfwlrqv zkloh grwv duh KVSLFH vlpxodwlrqv1 Lq wkh lqwhuydo wv6 ? wv ? wv7 zh xvh d olqhdu yduldwlrq ri Tf zlwk wv dv= wv wv7 +47, Tf @ Ff YGG wv6 wv7 Ilqdoo|/ iru wv A wv7 +wudqvlwlrqv h dqg i lq Ilj15, zh xvh Tf @ 3= Iru wkh fdvh dw zklfk Yrxw>d pdnhv d kljk wr orz wudqvlwlrq/ vshhglqj xs wkh sursdjdwlrq ghod|/ d vlplodu prgho fdq eh rewdlqhg fkdqjlqj wkh vljq ri Tf 1 Rqfh Tf lv rewdlqhg/ wkh sursdjdwlrq ghod| +wsKO>vx dqg wsKO>vg , dw Yrxw>y lv rewdlqhg xvlqj Ti @ FO YGG @5 . Tivf @5 . Tf lq +4,1 6 Uhvxowv Zh frpsduh wkh prgho uhvxowv wr KVSLFH vlpxodwlrqv iru d 3=4;p whfkqrorj|1 Lq Ilj17 zh sorw wkh sursdjdwlrq ghod| olplw erxqgv iru d 60QDQG jdwh iru glhuhqw ydoxhv ri wkh frxsolqj wr ordg fdsdflwdqfh udwlr Ff @FO 1 Iru wkhvh fdvhv wv5 ? wv ? wv6 dqg wkhuhiruh Tf @ Ff YGG = Wkh rxwsxw ordg ydoxh +FO , lv rewdlqhg e| dgglqj wkh idq0rxw ri d 60QDQG jdwh wr wkh frxsolqj fdsdflwdqfh +FO @ FO>y . Ff ,1 Wkhuhiruh/ dv Ff lqfuhdvhv/ wkh ghod| wsKO3 lv odujhu1 Ilj17 vkrzv dq h{fhoohqw djuhhphqw ehwzhhq KVSLFH vlpxodwlrqv +xvlqj wkh EVLP6y6 PRVIHW prgho, dqg wkh sursrvhg furvvwdon ghod| prgho1 Lq Ilj18 zh sorw wkh sursdjdwlrq ghod| ri wkh 60QDQG jdwh zkhq ydu|lqj wkh wlph vnhz ehwzhhq Ylq>y dqg Ylq>d 1 Glhuhqw fkdqqho zlgwk ydoxhv ri wkh qPRV wudqvlvwruv ri wkh 60QDQG jdwh duh vhohfwhg +wkh sPRV vl}hg dssursuldwho|, vkrzlqj wkdw wkh sursrvhg prgho fdq ghvfuleh d zlgh udqjh ri ghvljq fkrlfhv1 0.8 tpHL,su tpHL,sd tpHL,su tpHL,sd Propagation delay t pHL (ns) 0.7 Model Wn=1um Wn=1um Wn=3um Wn=3um 0.6 0.5 0.4 0.3 0.2 0.1 0 -1 -0.8 -0.6 -0.4 -0.2 0 time skew (ns) 0.2 0.4 0.6 Ilj1 81 Lq wklv jxuh zh vkrz wkh lq xhqfh ri wkh wlph vnhz ehwzhhq wudqvlwlrq |r dqg wkh sursdjdwlrq ghod| |RMu 1 Prgho suhglfwlrqv duh KVSLFH vlpxodwlrqv zkloh vrolg olqh lv wkh sursrvhg prgho1 7 Frqfoxvlrqv dqg Ixwxuh zrun D vlpsoh ghvfulswlrq iru wkh hydoxdwlrq ri furvvwdon ghod| kdv ehhq suhvhqwhg1 Wkh prgho lv xvhixo iru d idvw dqg dffxudwh vljqdo lqwhjulw| vlpxodwlrq ri odujh LFv1 D yhu| jrrg djuhhphqw lv dfklhyhg ehwzhhq prgho suhglfwlrqv dqg KVSLFH vlpxodwlrqv iru d 3=4;p whfkqrorj|1 Wkh ghvfulswlrq dffrxqwv iru vkruw0flufxlw fxuuhqwv dqg vkruw0fkdqqho hhfwv dqg fdq eh dssolhg wr pxowlsoh lqsxw jdwhv1 H{shulphqwdo phdvxuhphqwv iru d pruh idlwkixo ydolgdwlrq ri wkh sursrvhg prgho duh xqghu ghyhorsphqw1 DFNQRZOHGJPHQW Wklv zrun kdv ehhq vxssruwhg e| wkh Vsdqlvk Jryhuqphqw xqghu wkh surmhfw FLF\W0WLF3503456;1 Uhihuhqfhv 41 S1G1Jurvv/ U1 Duxqdfkdodp/ N1Udmdjrsdo dqg O1W1Slohjjl/ Ghwhuplqdwlrq ri zruvw0 fdvh djjuhvvru doljqphqw iru ghod| fdofxodwlrq/ lq Surf1 Lqw1 Frqi1 Frpsxwhu0Dlghg Ghvljq +LFFDG,/ 4<<;/ ss1 545054< 51 Z1\1 Fkhq/ V1N1 Jxswd/ dqg P1D1 Euhxhu/ Dqdo|wlfdo Prghov iru Furvvwdon H{fl0 wdwlrq dqg Sursdjdwlrq lq YOVL Flufxlwv/ LHHH Wudqvdfwlrqv rq Frpsxwhu0Dlghg Ghvljq/ Yro 54/ qr 43/ ss1 444:04464/ Rfwrehu 5335 61 M1O1Urvvhooö dqg M1 Vhjxud/ D Frpsdfw Fkdujh0Edvhg Sursdjdwlrq Ghod| Prgho iru Vxeplfurqlf FPRV Exhuv lq Surf1 ri Srzhu dqg Wlplqj Prgholqj/ Rswlp1 dqg Vlpxo1 +SDWPRV,/ Vhylood/ VSDLQ/ ss1 54<055;/ Vhsw1 43046/ 5335 71 M1O1Urvvhooö dqg M1 Vhjxud/ Srzhu0ghod| Prgholqj ri G|qdplf FPRV Jdwhv iru Flufxlw Rswlpl}dwlrq lq Surf1 ri Lqwhuqdwlrqdo Frqihuhqfh rq Frpsxwhu0Dlghg Gh0 vljq +LFFDG,/ Vdq Mrvì FD/ XVD/ ss1 7<707<</ Qry1 70;/ 5334 81 I1 Fdljqhw/ V1 Ghopdv0Ehqgkld dqg H1 Vlfdug/ Wkh Fkdoohjh ri Vljqdo Lqwhjulw| lq Ghhs0Vxeplfurphwhu FPRV Whfkqrorj|/ Surfhhglqjv ri wkh LHHH/ yro1 ;</ qr 7/ ss188908:6/ Dsulo 5334 91 W1 Vdnxudl dqg U1 Qhzwrq/ D Vlpsoh PRVIHW Prgho iru Flufxlw Dqdo|vlv/ LHHH Wudqvdfwlrqv rq Hohfwurq Ghylfhv/ yro1 6;/ ss1 ;;:0;<7/ Dsu1 4<<4 :1 M1O1 Urvvhooö dqg M1 Vhjxud/ Fkdujh0Edvhg Dqdo|wlfdo Prgho iru wkh Hydoxd0 wlrq ri Srzhu Frqvxpswlrq lq Vxeplfurq FPRV Exhuv/ LHHH Wudqvdfwlrqv rq Frpsxwhu0Dlghg Ghvljq/ Yro 54/ qr 7/ ss1 766077;/ Dsulo1 5335 D sk|vlfdoo|0edvhg qwk srzhu odz PRVIHW prgho iru h!flhqw FDG lpsohphqwdwlrq Mrvh O Urvvhooö dqg Mdxph Vhjxud Sk|vlfv Ghsw1 Xqlyhuvlwdw Loohv Edohduv/ 3:455 Sdopd gh Pdoorufd/ Vsdlq Devwudfw Lq wklv zrun zh suhvhqw d sk|vlfdo ghvfulswlrq ri wkh qwk0srzhu odz PRVIHW prgho wkdw surylghv d sk|vlfdo phdqlqj wr pdq| jdwh ghod| dqg srzhu prghov1 Wkh pdlq remhfwlyh ri wklv zrun lv qrw wr ghyhorsh d qhz PRVIHW prgho exw wr surylgh d ed0 vlf irupxodwlrq wkdw zrxog doorz gluhfw frpsxwdwlrq ri ghod| dqg srzhu dw wkh flufxlw ohyho zlwkrxw wkh qhhg wr uhfrpsxwh wkh hpslulfdo sdudphwhuv zkhq nh| yduldeohv olnh ghylfh vl}hv/ wkh vxsso| yrowdjh ru whpshudwxuh fkdqjh1 Lq wklv sdshu zh ghyhors d vlpsoh ghvfuls0 wlrq iru wkh qwk0srzhu odz PRVIHW prgho wr lqfrusrudwh wklv dqdo|wlfdo ghvfulswlrq zlwklq FDG wrrov lq dq h!flhqw zd|1 Wklv ixoo| dqdo|wlfdo sk|vlfdoo|0edvhg ghvfulswlrq doorzv idvw dqg dffxudwh frpsxwdwlrq ri flufxlw ohyho ghod| dqg srzhu zlwkrxw wkh qhhg wr h{wudfw wkh hpslulfdo qwk0srzhu odz sdudphwhuv dw glhuhqw ghylfh vl}hv/ vxsso| yrowdjhv ru whp0 shudwxuhv1 Wkh prgho lv frpsduhg zlwk uh0 vshfw wr KVSLFH vlpxodwlrqv +ohyho 83, iru d 3=4;p whfkqrorj| vkrzlqj h{fhoohqw dffx0 udf|1 Nh|zrugv= Ghod| prghov/ PRVIHW prg0 hov/ Flufxlw prgholqj L1 LL1 Wkh q0wk srzhu odz PRVIHW prgho Fxuuhqw PRVIHW prghov duh wrr frpsoh{ wr gh0 ulyh dqdo|wlfdo h{suhvvlrqv iru wkh sursdjdwlrq ghod| ru wkh srzhu glvvlsdwlrq ri FPRV jdwhv1 Iru wklv uhdvrq/ W1Vdnxudl dqg U1Qhzwrq ghulyhg d vlqjoh vkruw0fkdqqho PRVIHW prgho vxlwdeoh iru flufxlw dqdo|vlv +wkh qwk srzhu odz PRVIHW prgho,1 Wklv prgho ^4` lv h{suhvvhg dv= Lqwurgxfwlrq Wkh qwk0srzhu odz PRVIHW prgho ^4` lv d vkruw0 fkdqqho gudlq fxuuhqw prgho zlgho| xvhg wr ghulyh flufxlw ghod| ru srzhu glvvlsdwlrq ^4`0^8` gxh wr lwv vlpsolflw|1 Wkh prgho wdnhv lqwr dffrxqw wkh yh0 orflw| vdwxudwlrq hhfw/ zklfk ehfrphv grplqdqw lq vkruw0fkdqqho ghylfhv/ jlylqj dq h{fhoohqw lqwxlwlyh xqghuvwdqglqj ri wkh uhodwlrqvkls ehwzhhq wkh gudlq vdwxudwlrq fxuuhqw dqg wkh jdwh yrowdjh1 Krzhyhu/ wkh hpslulfdo qdwxuh ri wkh sdudphwhuv lqfoxghg lq wkh prgho +wkdw pxvw eh h{wudfwhg iurp phdvxuh0 phqwv ru VSLFH vlpxodwlrqv, pdnhv wklv prgho xq0 ihdvleoh iru kljk0ohyho flufxlw vlpxodwlrqv vlqfh dq dg0 glwlrqdo frpsxwdwlrqdo hruw iru sdudphwhu h{wudf0 wlrq lv uhtxluhg zkhq nh| yduldeohv olnh ghylfh vl}hv/ vxsso| yrowdjh ru whpshudwxuh fkdqjh1 D sk|vlfdo doskd0srzhu odz PRVIHW prgho zdv ghyhorshg lq ^9` surylglqj d pruh frpsolfdwhg uhodwlrqvkls eh0 wzhhq wkh gudlq vdwxudwlrq fxuuhqw dqg wkh jdwh yrow0 djh1 Wkh frpsoh{lw| ri wkh h{suhvvlrqv rewdlqhg lq ^9`/ dowkrxjk dffxudwh/ fdqqrw eh xvhg wr frpsxwh ghod| ru srzhu xvlqj wkh prghov edvhg rq wkh wudgl0 wlrqdo srzhu odz prgho ^4`0^8`1 ; ? 3 , YGV L 3 +5 YYGV LG @ G3 3 YG3 3 G3 = 3 LG3 +YJV _ YW K , +YGV ? YG3 3 , +YGV YG3 3 , +4, q YJV YWK 3 @L +4 . +YGV YGG ,, zkhuh LG 3 G3 YGG YWK 3 dqg YJV > YGG dqg YG3 duh wkh jdwh/ vxsso| dqg vdwxudwlrq yrowdjhv uhvshfwlyho|1 LG3 lv wkh gudlq fxuuhqw dw YJV @ YGV @ YGG = Wkh sdudphwhu q +zklfk lv hpslulfdo, lv wkh yhorflw| vdwxudwlrq lqgh{ wkdw udqjhv ehwzhhq 5 +orqj0fkdqqho ghylfhv, dqg 4 +vkruw0fkdqqho, ^4`/ dqg ghvfulehv wkh fkdqqho ohqjwk prgxodwlrq1 Wkh vdwxudwlrq yrowdjh YG3 3 lv h{suhvvhg dv= p YJV YW K 3 YG3 @ YG3 +5, YGG YW K Wkh sdudphwhu YG3 lv wkh gudlq vdwxudwlrq yrowdjh dw YJV @ YGG / zkloh p dqg YW K duh hpslulfdo sdud0 phwhuv ^4`1 Wklv vlpsoh PRVIHW prgho lv wkh edvlv ri pdq| ghod| dqg srzhu prghov ri FPRV jdwhv1 4 nMOS Current-voltage characteristics W=6um L=0.18um 4 V GS =1.8V @ Z . ZY DU 5ZRW @ O . OY DU 5ODS Zhii Ohii 3.5 3 +7, V GS =1.4V I D (mA) 2.5 zkhuh ZY DU dqg OY DU duh wkh surfhvv eldv rq wkh fkdqqho zlgwk dqg ohqjwk uhvshfwlyho| zkloh ZRW lv wkh lvrodwlrq uhgxfwlrq ri fkdqqho zlgwk1 Hvdw fruuhvsrqgv wr wkh fulwlfdo hohfwulf hog dw zklfk wkh fduulhu yhorflw| ehfrphv vdwxudwhg dqg lv wkh jdwh hog prelolw| uhgxfwlrq frh!flhqw1 D sk|vlfdo ghvfulswlrq iru YG3 3 lv jlyhq e| ^:`= 2 V GS =1.0V 1.5 1 V GS =0.6V 0.5 0 -0.5 0 0.2 0.4 0.6 0.8 1 Vds (V) 1.2 1.4 1.6 YG3 3 @ 1.8 Iljxuh 4 Gudlq fxuuhqw yv1 gudlq yrowdjh iru d vkruw fkdqqho qPRV wudqvlvwru +v|perov duh VSLFH vlpxodwlrqv dqg vrolg olqhv duh prgho suhglfwlrqv,1 Sk|vlfdo 5 >3 @694 fp vY Ywk @ 3=76Y b @ 3=3<;Y 4 Y Hvdw @ <=9< 437 fp qwk0srzhu odz LG3 @ 6=8pD YG3 @ 3=;:8Y YGG @ 4=;Y q @4=36 wr{ @ 7: D w @3=:9:Y 4 OY DU @ ZY DU @ 3 YW K @ 3=79Y p @3=:: ODS @698 D LGV @ 5 JW LG3 YYGW Z hii 3 Fr{ Ohii # Sk|vlfdoo|0edvhg prgho +YJW YG3 3 4.5 YG353 , 4 +4.YJW , 4. O Y3 hii Hvdw G3 4 Y hii Hvdw G3 YG3 4 +4.YJW , 4. O Y hii Hvdw JW YGW +4.YGW , 4. O +9, zkhuh YGW @ YGG Ywk = 3 lq +4, +zlwk @ 3, zh rewdlq Htxdwlqj +9, wr LG 3 dq h{suhvvlrq iru q= oq Wkh gudlq vdwxudwlrq fxuuhqw ri d vkruw0fkdqqho PRVIHW fdq eh h{suhvvhg lq whupv ri sk|vlfdo sd0 udphwhuv dv ^:`= LGVDW @ +8, zkhuh dffrxqwv iru erg| eldv hhfwv1 Rxu jrdo lv wr uhodwh wkh qwk srzhu odz sdudphwhuv +LG3 > YG3 > q> YW K > p, wr wkh sk|vlfdo sdudphwhuv lq +6, dqg +8,1 Sdudphwhuv LG3 dqg YG3 fdq eh re0 wdlqhg gluhfwo| iurp +6, dqg +8, uhvshfwlyho| zkhq YJV @ YGG / zkloh iru wkh rwkhu sdudphwhuv wkh qh{w surfhgxuh lv xvhg1 Lq d uvw dssurdfk zh dvvxph wkdw YG3 3 kdv d olq0 hdu ghshqghqfh zlwk YJV / l1h1 p@4 lq +5,/ dqg vxe0 vwlwxwh +5, lq +6,1 Qhjohfwlqj fkdqqho ohqjwk prgx0 odwlrq dqg zlwk vrph dojheud zh jhw= ZRW @ 9<< D B @3=3<; Wdeoh 4= q0wk srzhu odz dqg sk|vlfdo sdudphwhuv iru d 3=4;p whfkqrorj| qPRV wudqvlvwru +Z@O @ 9p@3=4;p, LLL1 5 YJW 4 5 YJW 5 +4., 4. 4. H vdw Ohii +4., q@5 Y 4 +4.YJW , 4. O YJW Y G3 H GW hii vdw +4.YGW , 4. O oq 4 Y hii Hvdw G3 YJW YGW $ +:, Ht1 +:, ghshqgv rq wkh jdwh yrowdjh frpsolfdwlqj wkh fxuuhqw h{suhvvlrq1 Zkhq YJW @ YGW zh kdyh= +4 . YGV , q +YJV @ YGG , @ +6, zkhuh YJW @ YJV Ywk +YJV lv wkh jdwh wr vrxufh yrowdjh dqg Ywk wkh wkuhvkrog yrowdjh,/ zlwk Fr{ eh0 lqj wkh jdwh r{lgh fdsdflwru/ zkloh Zhii dqg Ohii duh wkh hhfwlyh fkdqqho zlgwk dqg ohqjwk uhvshf0 wlyho|1 Wkh hhfwlyh fkdqqho ohqjwk dqg zlgwk fdq eh rewdlqhg iurp ^:`= 4 . 4 . YGW 4. 4 4 Ohii Hvdw YG3 +;, wklv lv wkh jhqhudo h{suhvvlrq wkdw zh xvh iru q1 Qrz zh fkrrvh d YW K ydoxh wkdw surylghv d ehwwhu wwlqj ri wkh LGV YJV > dv= 5 Delay time vs. input rise time (CL=Cmin Ln=Lp=0.18um Vdd=1.8V) Delay time vs. Temp. Tin=0.2ns Wn/Wp=0.5um/1um CL=Cmin 80 HSPICE Model 70 V DD =0.9V 80 W p /W n =1 µ m/0.28 µ m 60 W p /W n =1 µ m/0.5 µ m 60 20 t d (ps) tdelay (ps) 40 W p /W n =1 µ m/1 µ m 0 50 V DD =1.3V 40 -20 30 -40 V DD =1.8V W p /W n =1 µ m/2 µ m 20 -50 -60 0 50 100 150 200 250 300 T in (ps) 350 400 450 YW K @ LG 3 LG36 q4 YGG 6 LG 3 LG36 q4 YGG LY1 +<, 4 { s 5 4.{ 4.{ zkhuh { wdnhv wkh irup= YGW {@5 +4 . , Hvdw Ohii 100 150 Uhvxowv Lq wklv vhfwlrq zh frpsduh wkh sk|vlfdoo| edvhg qwk0 srzhu odz PRVIHW prgho wr dffxudwh KVSLFH ohyho 83 +PP< prgho ^:`, vlpxodwlrqv iru d 3=4;p FPRV whfkqrorj|1 Ilj14 vkrzv wkh LG YGV fxuyhv ri d qPRV wudq0 vlvwru zlwk glphqvlrqv Z@O @ 9p@3=4;p1 Lw lv revhuyhg wkdw wkh prgho sursrvhg surylghv dq dffx0 udwh ghvfulswlrq ri wkh ghylfh fkdudfwhulvwlfv iru wkh zkroh jdwh dqg gudlq0vrxufh yrowdjh udqjhv1 Vlp0 lodu uhvxowv zhuh rewdlqhg iru sPRV ghylfhv1 Wd0 eoh 4 vkrzv wkh prgho sdudphwhuv iru wkh qPRV wudqvlvwru vkrzq lq Ilj14/ wkh qwk0srzhu odz sd0 udphwhuv duh gluhfwo| h{wudfwhg iurp whfkqrorjlfdo sdudphwhuv1 Lq Ilj15 zh frpsduh KVSLFH vlpxod0 wlrqv ri wkh sursdjdwlrq ghod| iru FPRV lqyhuwhuv zlwk glhuhqw dvshfw udwlrv wr wkh ghod| prgho ghyho0 rshg lq ^5` +edvhg rq wkh qwk0srzhu odz PRVIHW prgho, xvlqj wkh sk|vlfdo irupxodwlrq sursrvhg lq wklv zrun1 Zh dovr dsso| wkh sk|vlfdo prgho ri wkh qwk srzhu odz wr rwkhu glhuhqw ghod| prgho iru FPRV lqyhuwhuv ^8` lq Ilj161 Glhuhqw whpshu0 dwxuhv duh xvhg lq wkh vlpxodwlrqv/ vkrzlqj d yhu| jrrg djuhhphqw zlwk uhvshfw wr KVSLFH1 Wklv j0 xuh vkrz wkh dgydqwdjh ri wkh sk|vlfdo irupxodwlrq ri wkh qwk0srzhu odz prgho vlqfh wkh ghod| ghshq0 ghqfh zlwk d wdujhw sdudphwhu dv wkh whpshudwxuh lv lpsolflwo| lqfoxghg lq wkh sk|vlfdo irupxodwlrq +dqg qrw lqfoxghg lq wkh ruljlqdo qwk0srzhu odz prgho,1 Wkh frpsxwdwlrq ri wkh jdwh ghod| dw glhuhqw vxs0 so| yrowdjhv dqg whpshudwxuhv xvlqj wkh ruljlqdo gh0 ylfh prgho zrxog uhtxluh d suhylrxv frpsxwdwlrq ri wkh ruljlqdo sdudphwhuv iru hdfk YGG dqg whpshud0 wxuh1 Zlwk wkh sursrvhg sk|vlfdo ghvfulswlrq/ wkhvh zkhuh LG36 lv wkh gudlq vdwxudwlrq fxuuhqw iru YJV @ YGG @6 dqg YGV @ YGG wkdw fdq eh rewdlqhg iurp +6,1 Ht1 +<, fdq eh rewdlqhg e| htxdwlqj LG36 wr 3 lq +4,1 LG 3 Htxdwlrqv +;, dqg +<, surylgh d gluhfw dqdo|wlfdo uhodwlrqvkls ehwzhhq q dqg YW K zlwk sk|vlfdo sdud0 phwhuv1 Sdudphwhu p lv rewdlqhg iroorzlqj wkh vdph sur0 fhgxuh wr jhw wkh yhorflw| vdwxudwlrq lqgh{ q= Htxdw0 lqj +5, dqg +8, dqg frpsxwlqj wkh olplw iru YJW @ YGW zh rewdlq= p@ 50 Temp (C) Iljxuh 6 Whpshudwxuh ghshqghqfh ri sursdjdwlrq ghod| ri d FPRV exhu1 Iljxuh 5 Ghod| wlph ri d FPRV exhu yv1 lq0 sxw ulvh wlph iru glhuhqw dvshfw udwlrv +v|perov duh VSLFH vlpxodwlrqv dqg vrolg olqhv duh prgho suhglf0 wlrqv,1 0 500 +43, +44, Rqh ri wkh pdlq dgydqwdjhv ri wklv qhz irupx0 odwlrq ri wkh qwk0srzhu odz PRVIHW prgho lv wkh lqfrusrudwlrq ri dgglwlrqdo hhfwv wr wkh prgho wkdw zhuh qrw lqfoxghg h{solflwo| lq wkh ruljlqdo irupx0 odwlrq ri Vdnxudl ^4`1 Wklv lv wkh fdvh ri wkh whp0 shudwxuh/ zklfk lv qrw lqfoxghg h{solflwo| lq +4, exw fdq eh wdnhq lqwr dffrxqw lpsolflwo| iurp wkh whpshudwxuh0ghshqghqfh ri wkh sk|vlfdo sdudphwhuv xvhg lq wklv qhz irupxodwlrq/ dv vkrzq lq wkh qh{w vhfwlrq1 6 sdudphwhuv duh lqfoxghg lqwr wkh prgho/ wkxv doorz0 lqj lwv lpsohphqwdwlrq lq FDG wrrov1 Y1 ^:` G1 Irw| PRVIHW Prgholqj zlwk VSLFH1 Sulqflsohv dqg sudfwlfh +Suhqwlfh Kdoo/ 4<<:, Frqfoxvlrqv D qhz irupxodwlrq ri wkh qwk0srzhu odz PRVIHW prgho kdv ehhq suhvhqwhg1 Wkh prgho wdnhv lqwr dffrxqw sk|vlfdo sdudphwhuv wr ghvfuleh fduulhu vdw0 xudwlrq hhfwv lq d vlpsoh zd| vkrzlqj jrrg df0 fxudf| iru d ghhs vxeplfurq whfkqrorj| +3=4;p,1 Wkh prgho fdq eh xvhg lq pdq| kdqg| irupxodh ghyhorshg iurp wkh qwk0srzhu odz PRVIHW prgho ^4`0^8`1 YL1 Dfnqrzohgjphqw Wklv zrun kdv ehhq vxssruwhg e| wkh Frplvlöq Lq0 whuplqlvwhuldo gh Flhqfld | Whfqrorjðd xqghu surmhfw FLF\W0WLF3503456; dqg iurp FUO/ Plfursurfhv0 vru Uhvhdufk Oderudwrulhv iurp Lqwho Frusrudwlrq Uhihuhqfhv ^4` W1 Vdnxudl dqg U1 Qhzwrq/ D vlpsoh PRVIHW Prgho iru Flufxlw Dqdo|vlv/ LHHH Wudqvdfwlrqv rq Hohfwurq Ghylfhv/ yro1 6;/ ss1 ;;:0;<7/ Dsu1 4<<41 ^5` D1 Kludwd/ K1 Rqrghud dqg N1 Wdpdux/ Hvwlpd0 wlrq ri sursdjdwlrq ghod| frqvlghulqj vkruw0flufxlw fxuuhqw iru vwdwlf FPRV jdwhv/ LHHH Wudqvdfwlrqv rq Flufxlwv dqg V|vwhpv L= Ixqgdphqwdo wkhru| dqg dssolfdwlrqv/ Yro1 78/ qr144/ ss1 44<7044<;/ Qry1 4<<;1 ^6` O1 Elvgrxqlv/ V1 Qlnrodlglv dqg R1 Nrxirsdyorx/ 0 Dqdo|wlfdo wudqvlhqw uhvsrqvh dqg sursdjdwlrq ghod| hydoxdwlrq ri wkh FPRV lqyhuwhu iru vkruw0fkdqqho ghylfhv/ LHHH Mrxuqdo ri Vrolg0Vwdwh Flufxlwv/ yro1 66/ qr1 5/ ss1 6350639/ Ihe1 4<<;1 ^7` \1 Lvpdlo/ H1 Iulhgpdq dqg M1O1 Qhyhv G|qdplf dqg vkruw0flufxlw srzhu ri FPRV jdwhv gulylqj orvv0 ohvv wudqvplvvlrq olqhv/ LHHH Wudqv1 Flufxlwv V|vw1 L/ Yro1 79/ +;,/ ss1 <830<94/ Dxjxvw 4<<< ^8` M1O1 Urvvhooö dqg M1 Vhjxud/ D frpsdfw fkdujh0 edvhg sursdjdwlrq ghod| prgho iru vxeplfurqlf FPRV exhuv/ [LL Lqwhuqdwlrqdo Zrunvkrs rq Srzhu dqg Wlplqj Prgholqj +SDWPRV*35,/ Vhylood/ Vsdlq/ Vhsw1 44046 5335/ ss1 54<055; ^9` N1 Erzpdq/ E1 Dxvwlq/ M1F1 Hoeh/ [1 Wdqj dqg M1G1 Phlqgo D sk|vlfdo doskd0srzhu odz PRVIHW prg0 ho/ LHHH M1 Vrolg0Vwdwh Flufxlwv/ Yro1 67/ +43,/ ss1474304747/ Rfwrehu 4<<< 7 D Frpsdfw Sursdjdwlrq Ghod| Prgho iru Ghhs0Vxeplfurq FPRV Jdwhv lqfoxglqj Furvvwdon M1 O1 Urvvhooö dqg M1 Vhjxud Hohfwurqlf Whfkqrorj| Jurxs/ Edohdulf Lvodqgv Xqlyhuvlw|/ Vsdlq1 hpdlov=~m1urvvhoor/mdxph1vhjxudCxle1hv Devwudfw0 Zh suhvhqw d frpsdfw/ ixoo| sk|vlfdo/ dqdo|wlfdo prgho iru wkh sursdjdwlrq ghod| dqg wkh rxwsxw wudqvlwlrq wlph ri ghhs0vxeplfurq FPRV jdwhv1 Wkh prgho dffrxqwv iru furvvwdon hhfwv/ vkruw0flufxlw fxuuhqwv/ wkh lqsxw0rxwsxw frxsolqj fdsdflwdqfh dqg fduulhu yhorflw| vdwx0 udwlrq hhfwv1 Lw lv edvhg rq wkh qwk0srzhu odz PRVIHW prgho dqg frpsxwhv wkh sursdjd0 wlrq ghod| iurp wkh fkdujh gholyhuhg wr wkh jdwh1 Frpsdulvrq zlwk KVSLFH vlpxodwlrqv dqg rwkhu suhylrxvo| sxeolvkhg prghov iru glhuhqw vxepl0 furq whfkqrorjlhv vkrz vljqlfdqw lpsuryhphqwv lq whupv ri dffxudf|1 wlqj sdudphwhuv1 Kludwd hw do1 ^9` ghulyhg d ghod| prgho edvhg rq wkh 0srzhu odz PRVIHW prgho ghyhorshg e| Vdnxudl dqg Qhzwrq ^44` frqvlghulqj erwk vkruw0flufxlw dqg ryhuvkrrwlqj fxuuhqwv1 Wkh prgho surylghv dq dffx0 udwh ghvfulswlrq iru wkh sursdjdwlrq ghod| exw wkh frp0 sxwdwlrq wlph lv vhyhuho| lqfuhdvhg gxh wr wkh dgrswlrq ri qxphulfdo surfhgxuhv lq wkh dqdo|vlv1 Elvgrxqlv hw do1 ^:` ghyhorshg d slhfh0zlvh vroxwlrq zlwk vhyhq rshudwlrq uhjlrqv iru wkh wudqvlhqw uhvsrqvh ri d FPRV lqyhuwhu1 Wkh prgho lv dovr edvhg rq wkh 0srzhu odz PRVIHW prgho ^45` dqg lqfoxghv erwk ryhuvkrrwlqj dqg vkruw0 flufxlw fxuuhqwv1 W1 Vdnxudl hw1 do1 ^;` rewdlqhg d vlp0 soh h{suhvvlrq iru wkh sursdjdwlrq ghod| ri FPRV jdwhv edvhg rq wkhlu qwk0srzhu odz PRVIHW prgho qhjohfw0 L1 Lqwurgxfwlrq Wlplqj dqdo|vlv lv rqh ri wkh prvw lpsruwdqw wrslfv lq lqj erwk vkruw0flufxlw dqg ryhuvkrrwlqj fxuuhqwv1 Furvvwdon ghod| zdv dqdo|}hg lq ^46` xvlqj d zdyhirup YOVL ghvljq1 Wkh qrqolqhdu ehkdylru ri FPRV jdwhv uh0 lwhudwlrq vwudwhj|/ dqg wkhuhiruh qr0forvhg irup h{suhv0 txluhv qxphulfdo surfhgxuhv iru dffxudwh wlplqj dqdo|vlv vlrq iru wkh zruvw0fdvh ylfwlp ghod| frxog eh surylghg1 wkdw wrjhwkhu zlwk wrgd|*v flufxlw frpsoh{lw| uhvxowv lq Pruh uhfhqwo| furvvwdon ghod| kdv ehhq prghohg dqdo|w0 odujh frpsxwdwlrq wlphv1 Pruhryhu/ wkh frqvwdqw vfdo0 lfdoo| lq ^47` wr txdqwli| wkh vhyhulw| ri furvvwdon gh0 lqj ri ihdwxuh vl}hv dqg vxsso| yrowdjhv zlwk wkh lqfuhdvh od| dqg ghvfuleh txdolwdwlyho| lwv ghshqghqfh rq flufxlw lq erwk rshudwlqj iuhtxhqf| dqg vljqdo ulvh2idoo wlphv sdudphwhuv olnh wkh ulvh2idoo wlphv ri wudqvlwlrqv1 Wkh kdv pdgh gljlwdo ghvljqv pruh yxoqhudeoh wr qrlvh1 Lq qPRV +sPRV, qhwzrun lv vxevwlwxwhg e| d sxoo0grzq prghuq LFv/ lqwhufrqqhfw frxsolqj qrlvh +furvvwdon, eh0 +sxoo0xs, uhvlvwdqfh dqg wkh vkruw0flufxlw fxuuhqwv duh frphv d shuirupdqfh olplwlqj idfwru wkdw pxvw eh dqd0 qhjohfwhg1 Wkh pdlq olplwdwlrq ri wklv dssurdfk lv wkdw o|}hg fduhixoo| gxulqj wkh ghvljq surfhvv1 Li qrw frqvlg0 wkh frpsoh{ htxdwlrqv rewdlqhg iru wkh ylfwlp yrowdjh huhg/ furvvwdon fdq fdxvh h{wud ghod|/ orjlf kd}dugv dqg yduldwlrq fdqqrw eh xvhg wr rewdlq d forvhg0irup h{suhv0 orjlf pdoixqfwlrq1 Wudglwlrqdoo| jdwh ghod| dqg furvvwdon kdyh ehhq vlrq ri wkh sursdjdwlrq ghod|1 Dgglwlrqdoo|/ rwkhu hhfwv wuhdwhg dv lqghshqghqw sureohpv dqg prghohg vhsd0 dv vkruw0flufxlw fxuuhqwv/ wkdw kdyh d vljqlfdqw lpsdfw udwho|1 Wkh lpsdfw ri furvvwdon rq jdwh ghod| iru vfdohg rq wkh sursdjdwlrq ghod| duh qrw frqvlghuhg1 Lq wklv zrun zh suhvhqw d jdwh ghod| prgho wkdw whfkqrorjlhv uhtxluhv d frpsdfw jdwh ghod| prgho wkdw lqfoxghv furvvwdon dqg dffrxqwv iru wkh pdlq hhfwv lqfrusrudwhv wklv hhfw iru dq rswlpl}hg dqdo|vlv1 lq ghhs0vxeplfurq whfkqrorjlhv dv wkh lq xhqfh ri wkh Wkh sursdjdwlrq ghod| ri FPRV lqyhuwhuv kdv ehhq lqsxw0rxwsxw frxsolqj fdsdflwdqfh/ wkh fduulhuv yhorflw| h{whqvlyho| vwxglhg lq wkh sdvw ^4`0^:` dv d uvw vwhs wr gh0 vdwxudwlrq dqg vkruw0flufxlw fxuuhqwv1 Wkh xvh ri w0 vfuleh pruh frpsoh{ jdwhv ^;/ <`1 Frffklql hw do1 ^6` re0 wlqj sdudphwhuv lv dyrlghg wr surylgh d frpsohwh sk|vl0 wdlqhg d slhfh0zlvh h{suhvvlrq iru wkh sursdjdwlrq ghod| fdo ghvfulswlrq1 Wkh ghod| lv frpsxwhg iurp wkh fkdujh edvhg rq wkh EVLP PRVIHW prgho ^43`1 Wkh prgho lq0 wkdw lv wudqvihuuhg iurp wkh vxsso| qrgh wr wkh rxwsxw foxghg ryhuvkrrwlqj hhfwv +gxh wr wkh lqsxw0wr0rxwsxw ri wkh jdwh +iru d orz0kljk rxwsxw wudqvlwlrq, ru iurp frxsolqj fdsdflwdqfh, zkloh vkruw0flufxlw fxuuhqwv zhuh wkh rxwsxw wr jurxqg +wkh kljk0orz rxwsxw wudqvlwlrq qhjohfwhg1 Lq ^5` dqg ^7` N1R Mhssvrq dqg O1 Elvgrxqlv suhvhqwhg d prgho iru wkh rxwsxw uhvsrqvh ri FPRV lq0 fdvh,1 Wklv dssurdfk idflolwdwhv wkh ghvfulswlrq ri frp0 yhuwhuv xvlqj d txdgudwlf fxuuhqw0yrowdjh ghshqghqfh iru soh{ hhfwv olnh furvvwdon zlwkrxw dq| nlqg ri shqdow| PRVIHW ghylfhv/ zklfk lv qrw orqjhu ydolg iru vxepl0 lq whupv ri frpsxwdwlrq wlph1 Frpsdulvrqv zlwk uh0 furq dqg ghhs0vxeplfurq ghylfhv1 Gdjd hw1 do1 ^8` re0 vshfw wr KVSLFH vlpxodwlrqv dqg rwkhu suhylrxvo| sxe0 wdlqhg d vlpsoh hpslulfdo h{suhvvlrq iru wkh sursdjdwlrq olvkhg prghov iru glhuhqw whfkqrorjlhv vkrz vljqlfdqw ghod| wdnlqj lqwr dffrxqw erwk ryhuvkrrwlqj dqg vkruw0 lpsuryhphqwv1 flufxlw fxuuhqwv1 Dowkrxjk wkh vlpsolflw| ri wkhlu prgho/ Wklv sdshu lv rujdql}hg dv iroorzv= Lq Vhfwlrq 5 wkh Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04) wkhuh lv d odfn ri sk|vlfdo phdqlqj gxh wr wkh xvh ri w0 FPRV lqyhuwhu vzlwfklqj fkdudfwhulvwlfv duh dqdo|}hg 1530-1591/04 $20.00 © 2004 IEEE VDD pMOS INPUT OUTPUT CM nMOS CL GND Iljxuh 4 Vwdwlf FPRV lqyhuwhu prgho1 dqg wkh PRVIHW prgho xvhg lv suhvhqwhg1 Wkh ghod| dqg wkh rxwsxw wudqvlwlrq wlph prghov duh ghyhorshg lq Vhfwlrq 6 dqg frpsduhg wr KVSLFH vlpxodwlrqv dqg rwkhu suhylrxvo| sxeolvkhg prghov iru glhuhqw whfkqror0 jlhv lq vhfwlrq 71 Ilqdoo| lq vhfwlrq 8 zh suhvhqw wkh frqfoxvlrqv1 LL1 txluh dq dgglwlrqdo glhuhqwldo htxdwlrq frxsohg wr +4,/ wkxv frpsolfdwlqj wkh dqdo|vlv pruh vhyhuho|1 Wkh qwk0srzhu odz PRVIHW prgho ^44` lv d zlgho| xvhg vkruw0fkdqqho gudlq fxuuhqw prgho/ dqg zloo eh xvhg lq wklv zrun wr ghulyh wkh sursdjdwlrq ghod| dqg wkh rxwsxw wudqvlwlrq wlph ri FPRV lqyhuwhuv1 Wkh gudlq fxuuhqw lv h{suhvvhg dv= ; +YJV _ YWK , ? 3 3 , YYGV LG +Y +5 YYGV 3 3 +6, LG @ GV ? YG3 3 , 3 G3 G3 = 3 3 +YGV YG3 , LG3 q Y Y JV WK 3 +7, LG3 @ LG3 zlwk YGG YWK zkhuh YJV /YGG > dqg YG3 3 duh wkh jdwh/ vxsso|/ dqg vdw0 xudwlrq yrowdjh uhvshfwlyho| dqg LG3 lv wkh gudlq fxuuhqw dw YJV @ YGV @ YGG = Wkh sdudphwhu q lv wkh yhorf0 lw| vdwxudwlrq lqgh{ wkdw udqjhv ehwzhhq 5 +orqj0fkdqqho ghylfhv, dqg 4 +vkruw0fkdqqho, ^44`1 Wkh vdwxudwlrq yrow0 djh YG3 3 lv jlyhq e|= p YJV YWK 3 +8, YG3 @ YG3 YGG YWK Wkh sdudphwhu YG3 lv wkh vdwxudwlrq yrowdjh dw YJV @ YGG / zkloh p dqg YWK duh hpslulfdo sdudphwhuv lq ^44`1 Wkhvh htxdwlrqv duh pdwkhpdwlfdoo| vlpsohu wkdq sk|vlfdoo|0edvhg PRVIHW prghov vxfk dv EVLP6y6 ru PP< zlwk wkh glvdgydqwdjh wkdw/ lq wkh ruljlqdo prgho ghyhorshg e| Vdnxudl dqg Qhzwrq/ wkh uhodwlrqvkls eh0 wzhhq wkh hpslulfdo dqg wkh surfhvv sdudphwhuv vxssolhg e| pdqxidfwxuhuv lv qrw surylghg1 Wkh yduldwlrq ri wkh qwk0srzhu odz prgho suhglfwlrqv zlwk nh| sdudphwhuv olnh wkh vxsso| yrowdjh ru whpshudwxuh lv qrw wdnhq lqwr dffrxqw lq wkh ruljlqdo irupxodwlrq shuiruphg e| Vdnx0 udl dqg Qhzwrq/ zkhuh hdfk sdudphwhu pxvw eh uhfrp0 sxwhg li wkh vxsso| yrowdjh/ wkh whpshudwxuh ri rshu0 dwlrq/ ru vrph ghylfh glphqvlrq duh fkdqjhg1 Lq wklv zrun zh xvh wkh sk|vlfdo irupxodwlrq iru wkh qwk0srzhu odz ghyhorshg suhylrxvo| ^48`1 Xvlqj wklv irupxodwlrq/ wkh hpslulfdo sdudphwhuv xvhg e| Vdnxudl hw1 do fdq eh uhodwhg wr sk|vlfdo sdudphwhuv olnh wkh vxsso| yrowdjh ru whpshudwxuh1 LLL1 Sursdjdwlrq Ghod| Prgho iru FPRV Lqyhuwhuv Zh frpsxwh wkh sursdjdwlrq ghod| zkhq wkh lqsxw yrow0 djh ulvhv +iru d idoolqj wudqvlwlrq wkh dqdo|vlv lv htxly0 dohqw,1 Wkh vkruw0flufxlw/ ryhuvkrrwlqj/ dqg furvvwdon hhfwv duh uvw qhjohfwhg dqg lqfrusrudwhg odwhu1 Dv0 vxplqj d olqhdu yduldwlrq ri wkh lqsxw yrowdjh zlwk ulvh wlph wlq dqg xvlqj wkh qwk0srzhu odz prgho wkh dqdo|wl0 fdo vroxwlrq iru wkh rxwsxw yrowdjh ydolg zkloh wkh qPRV lv vdwxudwhg +Yrxw A YG3 3q , lv= Dqdo|vlv ri wkh FPRV lqyhuwhu vzlwfklqj fkdudfwhulvwlfv Wkh g|qdplf ehkdylru ri d FPRV lqyhuwhu +vhh Ilj14, lv ghvfulehg e|= gYrxw gYlq @ Ls Lq . FP +4, +FO . FP , gw gw zkhuh FO lv wkh rxwsxw fdsdflwdqfh/ Yrxw dqg Ylq duh wkh rxwsxw dqg lqsxw yrowdjh uhvshfwlyho|/ zkloh Ls dqg Lq lv wkh fxuuhqw wkdw furvvhv wkh sPRV dqg wkh qPRV wudqvlvwru uhvshfwlyho|1 FP lv wkh lqsxw wr rxwsxw frx0 solqj fdsdflwdqfh zklfk lv yrowdjh ghshqghqw1 Wkh vwdwlf O , lv frpsxwhg ydoxh ri FP zkhq wkh lqsxw lv orz +FP frqvlghulqj wkh vlgh0zdoo fdsdflwdqfhv ri erwk wudqvlvwru gudlqv dqg wkh jdwh wr gudlq fdsdflwdqfh ri wkh sPRV wudqvlvwru wkdw rshudwhv lq wkh olqhdu uhjlrq dv= Zshii Oshii O . OGs Zshii . OGq Zqhii FP @ Fr{ 5 +5, zlwk Zshii dqg Zqhii ehlqj wkh hhfwlyh fkdqqho zlgwk ri sPRV dqg qPRV uhvshfwlyho|/ Oshii lv wkh hhfwlyh fkdqqho ohqjwk ri sPRV/ zkloh OGq dqg OGs duh wkh jdwh0gudlq xqghuglxvlrq iru wkh qPRV dqg sPRV wudq0 vlvwruv uhvshfwlyho|1 Iru d vwdwlf lqsxw kljk wkh fdsdf0 K lv rewdlqhg vlploduo|1 Lq wklv zrun d phdq lwdqfh FP ydoxh iru wkh fdsdflwdqfh gxulqj wkh wudqvlwlrq frxsolqj O . F K , lv xvhg1 +FP @ 3=8 FP P Wkh sursdjdwlrq ghod| +ghqhg dv wsKO iru d kljk wr orz rxwsxw wudqvlwlrq, lv w|slfdoo| ghqhg dv wkh wlph lq0 whuydo iurp wkh 83( YGG lqsxw yrowdjh wr wkh 83( YGG rxwsxw yrowdjh1 Wkh ghshqghqfh ri wkh sursdjdwlrq gh0 od| zlwk ghvljq sdudphwhuv lv qrq0olqhdu dqg gl!fxow wr qq .4 prgho jlyhq wkdw +4, fdq qrw eh vroyhg lq d forvhg irup LG3q wlq wq w wq +9, Yrxw @ YGG hyhq xvlqj wkh vlpsoh Vkrfnoh| PRVIHW prgho1 Pruh0 FO wlq wq qq . 4 ryhu fduulhu vdwxudwlrq hhfwv ehfrph lpsruwdqw zlwk whfkqrorj| vfdolqj dqg pruh frpsoh{ PRVIHW prghov zkhuh sdudphwhuv LG3q dqg qq duh wkh pd{lpxp vdwxud0 dffrxqwlqj iru vxfk hhfwv pxvw eh frqvlghuhg1 Wkh lq0 wlrq fxuuhqw dqg wkh yhorflw| vdwxudwlrq lqgh{ ri qPRV Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04) xhqfh ri d vzlwfklqj frxsohg olqh +furvvwdon,/ zrxog uh0 uhvshfwlyho|1 Sdudphwhu wq lv wkh wlph dw zklfk wkh 1530-1591/04 $20.00 © 2004 IEEE qPRV vwduwv wr frqgxfw1 Iurp +9, zh rewdlq wkh wlph dw zklfk wkh rxwsxw yrowdjh lv YGG @5= Wkhq wkh sursd0 jdwlrq ghod| zloo eh wklv wlph plqxv wkh wlph dw zklfk wkh lqsxw lv dovr dw YGG @5 +l1h1 wlq @5,= wsKO4 Ti +qq . 4, @ wq . LG3q 4.4q q qq wlq +wlq wq , qq .4 5 +:, zkhuh Ti @ FO YGG @5 lv wkh fkdujh wudqvihuuhg e| wkh qPRV wudqvlvwru zkhq wkh rxwsxw uhdfkhv YGG @51 Htxdwlrq +:, lv ydolg iru vorz lqsxwv +ghqhg zkhq wsKO wlq @5, vlqfh iru idvw lqsxwv wkh qPRV wudqvlv0 wru lv qrw vdwxudwhg zkhq wkh rxwsxw uhdfkhv YGG @51 Li Ti3 lv ghqhg dv wkh wrwdo fkdujh wudqvihuuhg wkurxjk wkh qPRV wudqvlvwru zkhq wsKO @ wlq @5 +wkh olplw eh0 wzhhq idvw dqg vorz lqsxw wudqvlwlrqv,/ wkhq +:, lv ydolg zkhq Ti Ti3 = Wkh ydoxh ri Ti3 lv rewdlqhg htxdwlqj wsKO4 @ wlq @5 dqg vroylqj iru Ti3 LG3q YWQ wlq 4 Ti3 @ +;, +qq . 4, YGG zkhuh YWQ lv wkh wkuhvkrog yrowdjh ri qPRV1 Iru idvw lqsxw wudqvlwlrqv/ wkh lqsxw uhdfkhv wkh vxsso| yrowdjh ehiruh wkh rxwsxw lv dw YGG @5 dqg wkhq Ti A Ti3 1 Iru wklv fdvh +:, lv qrw ydolg dqg wkh sursdjdwlrq ghod| lv rewdlqhg e| vroylqj +4, iru Lq @ LG3q +dovr qhjohfwlqj wkh vkruw0flufxlw dqg wkh ryhuvkrrwlqj fxuuhqwv dv d uvw dqdo|vlv, ohdglqj wr= wlq Ti Ti3 . +<, wsKO5 @ 5 LG3q Htxdwlrq +<, lv ydolg iru wkh lqwhuydo Ti A Ti3 +idvw lqsxw udqjh,1 Iru vlpsolflw|/ wkh sursrvhg prgho iru wkh sursdjdwlrq ghod| +htv1 +:, dqg +<,, grhv qrw wdnh lqwr dffrxqw wkh idfw wkdw wkh qPRV wudqvlvwru hqwhuv lq lwv olqhdu uhjlrq lq wkh lqwhuydo YGG @5 ? Yrxw ? YG3 3q iru wkrvh fdvhv lq zklfk YG3 3q A YGG @5= Wkh rxwsxw idoo wlph +wi ,/ ghqhg dv wkh :3( ri wkh rxwsxw yrowdjh vorsh dw YGG @5 ^;`/ lv rewdlqhg lq d vlp0 lodu zd| dv +:, dqg +<,1 Wkh rxwsxw yrowdjh vorsh wdnhv wkh irup= gYrxw @ ;gw YGG @5 L Y GG ? G3q T 5 i = LG3q YGG 5Ti Ti +qq .4, qqq.4 +wlq wq ,LG3q q +Ti ? Ti3 , +Ti A Ti3 , +43, Iru wkh hydoxdwlrq ri wkh rxwsxw idoo wlph zh xvh= YGG +44, wi @ gYrxw gw YGG @5 W n /W p =0.5 µ m/2 µ m HSPICE Model [3] 100 W n /W p =1 µ m/2 µ m 50 W n /W p =2 µ m/2 µ m tpHL (ps) Delay time vs. input rise time CL=Cmin (0.35um technology) 150 0 -50 W n /W p =4 µ m/2 µ m -100 -150 -200 0 200 100 300 400 t in (ps) 500 600 700 800 Iljxuh 5 Sursdjdwlrq ghod| yv1 lqsxw ulvh wlph iru glhuhqw ydoxhv ri wkh frqjxudwlrq udwlr= Vkruw0flufxlw fxuuhqwv duh qrw wdnhq lqwr dffrxqw lq ^6` +Ls zdv qhjohfwhg zkhq vroylqj +4,,1 Lq jhqhudo/ wkh lp0 sdfw ri wkh vkruw0flufxlw fxuuhqw rq wkh jdwh ghod| fdq eh frqvlghudeoh/ vshfldoo| iru odujh ydoxhv ri wkh lqsxw wlph1 Lq Ilj15 zh sorw wkh sursdjdwlrq ghod| wsKO yv1 wkh lqsxw wlph wlq iru glhuhqw ydoxhv ri wkh Zq @Zs ud0 wlr iru d 3=68p whfkqrorj|1 KVSLFH vlpxodwlrqv +grwv, duh frpsduhg wr d suhylrxv prgho ^6`1 Vkruw0flufxlw fxu0 uhqwv zhuh qrw wdnhq lqwr dffrxqw lq ^6`/ ohdglqj wr vhyhuh xqghuhvwlpdwlrqv ri wkh sursdjdwlrq ghod| iru odujh ydo0 xhv ri wlq 1 Wkh glhuhqfh ehwzhhq vlpxodwlrqv dqg wkh prgho ghyhorshg lq ^6` fdq eh dvvrfldwhg wr wkh ghod| lqfuhphqw gxh wr vkruw0flufxlw fxuuhqwv1 Lq wklv zrun/ wkh vkruw0flufxlw fxuuhqw frqwulexwlrq wr wkh jdwh ghod| lv prghohg dv dq dgglwlrqdo fkdujh wudqv0 ihuuhg wkurxjk wkh sxoo0grzq +sxoo0xs, wudqvlvwru gxu0 lqj dq rxwsxw idoolqj +ulvlqj, wudqvlwlrq1 Zh ghyhors dq dqdo|wlfdo h{suhvvlrq iru wkh vkruw0flufxlw fkdujh wudqv0 ihuuhg zkhq wkh rxwsxw fdsdflwdqfh lv qhjoljleoh +wkh fdvh zkhuh wkh lpsdfw ri vkruw0flufxlw fxuuhqw rq wkh sursdjdwlrq ghod| lv kljkhu,1 Lq wklv fdvh/ wkh flufxlw ehkdylru lv forvh wr wkh lqyhuwhu GF rshudwlrq vlqfh Ls * Lq 1 Dw wkh ehjlqqlqj ri wkh wudqvlwlrq/ wkh sPRV wudqvlvwru gulyhv d fxuuhqw htxdo wr wkh qPRV vdwxudwlrq fxuuhqw/ zkloh dw wkh hqg ri wkh wudqvlwlrq wkh sPRV lv vdwxudwhg1 Wkh wlph srlqw dw zklfk wkh pd{lpxp fxu0 3 @ L 3 1 Zh frpsxwh uhqw wdnhv sodfh lv vxfk wkdw LG 3s G3q wkh vkruw0flufxlw fkdujh wudqvihuuhg xqwlo wklv vzlwfk0 lqj srlqw1 Jlyhq wkdw YJV @ Ylq iru wkh qPRV dqg YJV @ YGG Ylq iru wkh sPRV/ wkh wlph dw zklfk wkh @3 vkruw0flufxlw lv pd{lpxp +ghqhg dv wFO pd{ , lv rewdlqhg vroylqj= # $qq FO@3 LG3q # YGG wpd{ wlq YWQ YGG YWQ @3 pd{ mYWS m YGG YGG wFO wlq YGG mYWS m $qs +45, @ LG3s Wkh ydoxh ri wkh rxwsxw idoo2ulvh wlph lv qhhghg iru wkh hydoxdwlrq ri wkh lqsxw idoo2ulvh wlph ri wkh jdwhv gulyhq e| wkh lqyhuwhu1 zkhuh LG3q dqg LG3s duh wkh sdudphwhuv LG3 ri wkh D1 Lqfoxglqj vkruw0flufxlw fxuuhqwv qPRV dqg wkh sPRV wudqvlvwru uhvshfwlyho|/ dqg YWS lv Wkh prgho ghyhorshg fdqqrw eh xvhg iru vwdwlf FPRV wkh wkuhvkrog yrowdjh ri wkh sPRV1 Zh rewdlqhg d jrrg Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04) jdwhv vlqfh wkh vkruw0flufxlw fxuuhqw zdv qrw frqvlghuhg dqdo|wlfdo dssur{lpdwlrq wr wkh vroxwlrq ri +45, dv= 1530-1591/04 $20.00 © 2004 IEEE O @3 wF pd{ WQ mYWS m 4 YYGG YGG @ wq . wlq 5 q .q 4.I s q +46, s zkhuh Is lv jlyhq e|= Is @ LG3q LG3s YVF YGG YWQ qq YGG mYWS m YVF qs +47, zkhuh YVF @ YGG YWQ mYWS m = Wkh vkruw0flufxlw fkdujh wudqvihuuhg xqwlo Yrxw @ YGG @5 lv frpsxwhg lqwh0 judwlqj wkh qPRV fxuuhqw iurp wkh wlph srlqw dw zklfk wkh qPRV vwduwv wr frqgxfw +wq , xqwlo wkh wlph srlqw dw zklfk wkh vkruw0flufxlw lv pd{lpxp +wFO pd{@3,1 Iurp wklv lqwhjudwlrq zh kdyh= i @ tvf # $ +48, YWQ mYWS m qq .4 qq LG3q wlq 4 YGG YGG YGG 5 4.qq YGG YWQ 4.Isqs.qq Ilqdoo|/ wkh ydoxh ri wkh fkdujh wudqvihuuhg wkurxjk wkh qPRV gxulqj wkh idoolqj rxwsxw wudqvlwlrq xvhg lq i= wkh ghod| prgho lv Ti @ FO YGG @5 . tvf i ? Ti 1 Iru odujh ydoxhv ri wkh rxwsxw Qrwh wkdw tvf 3 fdsdflwdqfh +FO , vxfk wkdw wkh wudqvlwlrqv lv lq wkh idvw lqsxw udqjh +Ti A Ti3 ,/ ht1 +48, lv qrw ydolg1 Wkh dgglwlrqdo fkdujh lq wkh idvw lqsxw udqjh gxh wr +48, lq Ti lv qhjoljleoh zlwk uhvshfw FO YGG @51 Iru wklv uhdvrq zh ghflgh wr xvh +48, iru doo fdvhv vlqfh zkhq +48, lv qrw i ydolg wkh lpsdfw rq wkh ghod| gxh wr wkh lqfoxvlrq ri tvf lq Ti lv qhjoljleoh dqg wkh wrwdo ghod| lv sudfwlfdoo| qrw dhfwhg1 E1 Prgholqj FPRV Jdwhv Frpsoh{ FPRV jdwhv duh prghohg wkurxjk d jdwh fro0 odsvlqj whfkqltxh1 Hdfk vwdfn ri wudqvlvwruv lv froodsvhg lqwr d vlqjoh htxlydohqw wudqvlvwru1 Wkh pd{lpxp fxu0 uhqw ri wklv vlqjoh htxlydohqw wudqvlvwru zrxog eh wkh pd{lpxp fxuuhqw ri wkh vwdfn1 Iru wkh fdvh ri d vwdfn ri k4>Q l qPRV wudqvlvwruv zh ghqh LG3q q dv wkh pd{lpxp fxu0 uhqw wkdw fdq eh gulyhq e| wkh vwdfn +prghohg dv d fkdlq ri Qq vhulhv0frqqhfwhg wudqvlvwruv, wkdw lv rewdlqhg iurp wkh wudqvlvwru froodsvlqj whfkqltxh ghyhorshg lq ^<`1 Iru wkh vlpsoh fdvh ri d fkdlq zlwk Qq lghqwlfdo wudqvlvwruv/ wkh froodsvlqj whfkqltxh surylghv d vlpsoh h{suhvvlrq iru k4>Q l LG3q q = LG3q k4>Q l +49, LG3q q @ 4 . +Qq 4, Nq zkhuh LG3q lv wkh pd{lpxp vdwxudwlrq fxuuhqw ri hdfk qPRV +gudlq fxuuhqw zkhq YJV @ YGV @ YGG ,1 Wkh sdudphwhu Nq lv d whfkqrorj|0ghshqghqw sdudphwhu jlyhq e|= Nq @ 6YG3q qq +4 . q , 8 +YGG YWQ , +4:, Iljxuh 6 Dq dgglwlrqdo ghod| lq wkh ylfwlp lv lqgxfhg e| wkh vzlwfklqj wudqvlwlrq ri Yrxw>d +furvvwdon lqgxfhg ghod|,1 F1 Lqfoxglqj ryhuvkrrwlqj dqg furvvwdon Vlploduo| wr vkruw0flufxlw fxuuhqw/ wkh lpsdfw ri wkh ryhu0 vkrrwlqj fxuuhqw rq wkh ghod| lv lqfoxghg dv dq dggl0 wlrqdo fkdujh wr eh wudqvihuuhg wkurxjk wkh qPRV wudq0 vlvwru1 Iru idvw lqsxwv/ wkh fkdujh lqmhfwhg wkurxjk wkh frxsolqj fdsdflwdqfh +FP , zkhq Yrxw @ YGG @5 lv Try @ FP YGG 1 Iru vlpsolflw| zh dvvxph wkh vdph ydoxh iru Try lq wkh vorz0lqsxw fdvh1 Wkhuhiruh/ wkh wrwdo fkdujh wr eh wudqvihuuhg wkurxjk wkh qPRV wudqvlvwru gxulqj d idoolqj rxwsxw wudqvlwlrq lv frpsxwhg dv= i Ti @ 3=8 ^+FO . 5FP , YGG ` . tvf +4;, Wkh furvvwdon lqgxfhg ghod| lv dovr frqvlghuhg dv dq dgglwlrqdo fkdujh wr eh wudqvihuuhg wkurxjk wkh fkdujlqj +glvfkdujlqj, wudqvlvwru1 Furvvwdon dhfwv ghod| zkhq wzr olqhv +wkh djjuhvvru dqg wkh ylfwlp, vzlwfk vlpxowd0 qhrxvo|1 Iru d ylfwlp qrgh idoolqj wudqvlwlrq/ wkh jdwh ghod| fdq eh uhgxfhg +wklv orzhu erxqg lv ghqhg dv wsKO>vx , ru lqfuhdvhg +ghqhg dv wsKO>vg , ghshqglqj rq li wkh djjuhvvru pdnhv d idoolqj ru d ulvlqj wudqvlwlrq uh0 vshfwlyho|1 Vlqfh odujh flufxlwv fdq kdqgoh kxqguhgv ri ploolrqv ri lqwhufrqqhfw olqhv rq d vlqjoh fkls/ vlpsoh dqg dffxudwh dqdo|wlfdo ghvfulswlrqv iru furvvwdon ghod| duh ri kljk lpsruwdqfh iru d idvw wlplqj yhulfdwlrq ri wkh zkroh fkls1 Frqvlghu wkh flufxlw lq Ilj16 zkhuh wkh dj0 juhvvru dqg wkh ylfwlp jdwhv gulyh dq rxwsxw fdsdflwdqfh FO>d dqg FO>y uhvshfwlyho|/ dqg wkhuh lv d frxsolqj fd0 sdflwdqfh Ff ehwzhhq Yrxw>d dqg Yrxw>y +wkdw fdxvhv wkh furvvwdon ehwzhhq wkh wzr olqhv,1 Wkh wrwdo fdsdflwdqfh dw wkh rxwsxw ri wkh ylfwlp jdwh wkdw pxvw eh fkdujhg dqg glvfkdujhg lv wkh dgglwlrq ri FO>y dqg Ff 1 Zh hv0 wlpdwh wkh furvvwdon ghod| erxqgv frqvlghulqj wkdw wkh zkroh djjuhvvru vzlwfklqj kdsshqv zlwklq wkh vzlwfk lq0 whuydo ri wkh ylfwlp olqh1 Iru wkh fdvh ri rssrvlwh +lghqwl0 fdo, wudqvlwlrqv lq erwk qhwv/ d fkdujh Ff YGG +Ff YGG , lv lqmhfwhg wkurxjk wkh frxsolqj fdsdflwdqfh iurp wkh djjuhvvru wr wkh ylfwlp olqh1 Zh dgg wkhvh dgglwlrqdo fkdujhv wr wkh fkdujh0edvhg ghod| prgho ghyhorshg wr rewdlq wkh furvvwdon ghod| erxqgv1 Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04) T i @ 3=8 ^+FO>y 1530-1591/04 © 2004 IEEE zkhuh $20.00 q lv wkh erg| hhfw sdudphwhu ri qPRV1 i Ff YGG +4<, . Ff . 5FP , YGG `.tvf 200 Delay time vs. input rise time (CL=Cmin Ln=Lp=0.18um Vdd=1.8V) Model HSPICE [6] [7] 80 HSPICE Model [6] [7] 160 tpLH (ps) 40 W p /W n =1 µ m/0.5 µ m 140 tpLH (ps) 60 180 W p /W n =1 µ m/0.28 µ m 20 W p /W n =1 µ m/1 µ m 0 120 100 80 -20 60 -40 -60 W p /W n =1 µ m/2 µ m 0 50 150 100 200 300 250 t in (ps) 350 400 450 40 Iljxuh 7 Sursdjdwlrq ghod| yv1 lqsxw ulvh wlph iru glhuhqw ydoxhv ri wkh frqjxudwlrq udwlr1 1.6 1.4 1.2 V DD (V) 1.8 Output slew vs. input rise time CL=10Cmin Vdd=1.8V L=0.18um 400 W p /W n =1 µ m/0.28 µ m 350 300 60 HSPICE Model 250 t f(ps) t d (ps) 1 Iljxuh 9 Sursdjdwlrq ghod| yv1 vxsso| yrowdjh iru d 3=4;p whfkqrorj|1 Delay time vs. Temp. Tin=0.2ns Wn/Wp=0.5um/1um CL=Cmin 80 HSPICE Model 70 V DD =0.9V 50 0.8 0.6 500 V DD =1.3V W p /W n =1 µ m/0.5 µ m 200 W p /W n =1 µ m/1 µ m 150 40 100 W p /W n =1 µ m/2 µ m 30 50 V DD =1.8V 20 -50 0 50 Temp (C) 100 150 Iljxuh 8 Sursdjdwlrq ghod| yv1 whpshudwxuh1 Glhu0 hqw ghod| wuhqgv yv1 whpshudwxuh fdq eh dssuhfldwhg dw glhuhqw vxsso| yrowdjhv1 0 0 100 300 200 400 500 t in (ps) Iljxuh : Lq wklv jxuh zh vkrz wkh rxwsxw idoo wlph ghshqghqfh zlwk wkh lqsxw ulvh wlph iru d 3=4;p whfk0 qrorj|1 Htxdwlrq +4<, pxvw eh xvhg lq htv1 +:,/ +<, dqg +44, wr surshuo| e| wkh sursrvhg prgho vlqfh zh duh xvlqj wkh hvwlpdwh wkh sursdjdwlrq ghod| dqg wkh wudqvlwlrq wlph sk|vlfdoo|0edvhg qwk0srzhu odz PRVIHW prgho ghyho0 rshg lq ^48` wkdw uhodwhv wkh qwk0srzhu odz sdudphwhuv wr ri wkh jdwh1 sk|vlfdo sdudphwhuv +wkdw duh whpshudwxuh0ghshqghqw, LY1 Uhvxowv dv wkh fduulhu prelolw|1 Iru d pruh ghwdlohg ghvfulswlrq Zh sorwwhg prgho uhvxowv yv1 KVSLFH vlpxodwlrqv iru ri wklv prgho wkh uhdghu lv uhihuuhg wr ^48`1 glhuhqw whfkqrorjlhv/ dqg surylgh wkh sursdjdwlrq gh0 Ilj19 lv d sorw ri KVSLFH vlpxodwlrqv +grwv, dqg od| iru glhuhqw ydoxhv ri wkh lqsxw wudqvlwlrq wlph wlq / prgho suhglfwlrqv ri wkh sursdjdwlrq ghod| yv1 wkh vxs0 wkh frqjxudwlrq udwlr Zs @Zq > dqg wkh vxsso| yrowdjh so| yrowdjh +furvvwdon lv qrw frqvlghuhg,1 Wkh prgho YGG 1 sursrvhg lq wklv zrun surylghv d ehwwhu wwlqj wkdq wkh Lq Ilj15 zh sorw wkh furvvwdon0iuhh sursdjdwlrq ghod| prghov lq ^9/ :`1 Wkh prgho lq ^:` suhvhqw glvfrqwlqxlwlhv wsKO yv1 wkh lqsxw wlph wlq iru glhuhqw ydoxhv ri wkh gxh wr wkh xvh ri glhuhqw h{suhvvlrqv iru wkh sursdjd0 Zq @Zs udwlr iru d 3=68p whfkqrorj|1 KVSLFH vlpx0 wlrq ghod|1 odwlrqv +grwv, duh frpsduhg wr wkh prgho sursrvhg re0 Lq Ilj1: zh sorw KVSLFH vlpxodwlrq ri wkh rxwsxw wdlqlqj d jrrg dffxudf|1 wudqvlwlrq wlph wi iru glhuhqw ydoxhv ri wkh lqsxw ulvh Ilj17 sorwv wkh furvvwdon0iuhh sursdjdwlrq ghod| yv1 wlph wlq dqg wkh frqjxudwlrq udwlr Zs @Zq 1 D pd{0 wkh lqsxw ulvh wlph iru d 3=4;p whfkqrorj|1 Zkhq lpxp uhodwlyh huuru ri 48( lv rewdlqhg ehwzhhq prgho wkh Zs @Zq udwlr lv vpdoo wkh sursdjdwlrq ghod| gh0 suhglfwlrqv dqg KVSLFH vlpxodwlrqv1 Lq jhqhudo d jrrg fuhdvhv zkhq lqfuhdvlqj wkh lqsxw ulvh wlph1 Wkh prgho djuhhphqw lv rewdlqhg zlwk wkh sursrvhg prgho1 sursrvhg lq wklv zrun +vrolg olqhv, dqg wkh suhylrxvo|0 Lq Ilj1; zh sorw wkh sursdjdwlrq ghod| olplw erxqgv sxeolvkhg lq ^9/ :` surylgh d jrrg dssur{lpdwlrq wr iru d 60QDQG jdwh iru glhuhqw ydoxhv ri wkh frxsolqj wr KVSLFH vlpxodwlrqv +grwv,1 ordg fdsdflwdqfh udwlr Ff @FO>y 1 Ilj1; vkrzv dq h{fhoohqw Lq Ilj18 zh vkrz wkh sursdjdwlrq ghod| yduldwlrq zlwk djuhhphqw ehwzhhq KVSLFH vlpxodwlrqv +grwv, dqg wkh whpshudwxuh iru wkuhh glhuhqw vxsso| yrowdjh ydoxhv1 sursrvhg furvvwdon ghod| prgho +olqhv,1 Glhuhqw wuhqgv duh revhuyhg iru hdfk vxsso| yrowdjh Y1 Frqfoxvlrqv ydoxh zkhq lqfuhdvlqj whpshudwxuh1 Wkh sursdjdwlrq ghod| lqfuhdvhv iru YGG @ 4=;Y zkloh iru YGG @ 3=<Y Zh kdyh ghyhorshg dq dffxudwh dqdo|wlfdo h{suhvvlrq wr Proceedings of the Design, Automation and Test in Europe Conference and Exhibition (DATE’04) wkh sursdjdwlrq ghod| ghfuhdvhv1 Wklv hhfw lv ghvfulehg frpsxwh wkh sursdjdwlrq ghod| dqg wkh rxwsxw wudq0 1530-1591/04 $20.00 © 2004 IEEE ^7` O1 Elvgrxqlv/ V1 Qlnrodlglv/ dqg R1 Nrxirsdyorx/ Surs0 1000 t pHL,sd 800 t pHL (ps) 600 t pHL ^8` 400 t pHL,su 200 ^9` 0 0 0.05 0.1 0.15 0.2 0.25 0.3 C C /C L,v 0.35 0.4 0.45 0.5 Iljxuh ; Sursdjdwlrq ghod| erxqgv yv1 frxsolqj fd0 sdflwdqfh1 Vrolg olqhv duh prgho suhglfwlrqv zkloh grwv duh KVSLFH vlpxodwlrqv1 vlwlrq wlph ri FPRV jdwhv lqfoxglqj furvvwdon hhfwv1 Wkh pdlq hhfwv suhvhqw lq fxuuhqw vxeplfurq FPRV whfkqrorjlhv olnh wkh lqsxw0rxwsxw frxsolqj fdsdflwdqfh/ fduulhuv yhorflw| vdwxudwlrq hhfwv dqg vkruw0flufxlw fxu0 uhqwv duh dovr wdnhq lqwr dffrxqw lq wkh dqdo|vlv1 Wkh prgho lv frpsduhg wr KVSLFH vlpxodwlrqv dqg rwkhu suhylrxvo| sxeolvkhg zrunv iru glhuhqw vxeplfurq whfk0 qrorjlhv uhsruwlqj yhu| kljk dffxudf|1 Wkh prgho suhvhqwv d vlpsoh zd| wr frpsxwh wkh furvvwdon lqgxfhg ghod| erxqgv vkrzlqj dq h{fhoohqw dffxudf| zlwk uhvshfw KVSLFH vlpxodwlrqv1 Wkh ixoo| dqdo|wlfdo ghvfulswlrq ri wkh ghod| doorzv d txlfn hvwlpdwlrq ri wklv pdjqlwxgh vlqfh qr qxphulfdo dqdo|vlv lv uhtxluhg1 Wklv surylghv d prgho wkdw fdq eh lqfrusrudwhg lq FDG wrrov dqg sur0 ylgh d txlfn hvwlpdwlrq ri wkh ghod|1 Wkh prgho lv dovr xvhixo wr lqyhvwljdwh wkh lpsdfw ri ghvljq sdudphwhuv rq wkh ghod|1 DFNQRZOHGJPHQWV Wklv zrun kdv ehhq sduwldoo| vxssruwhg e| wkh Vsdq0 lvk Plqlvwu| ri Vflhqfh dqg Whfkqrorj|/ wkh Uhjlrqdo Hxurshdq Ghyhorsphqw Ixqgv +IHGHU, iurp wkh HX surmhfw WLF533503456;/ dqg dq Lqwho Oderudwrulhv0FUO uhvhdufk judqw1 Uhihuhqfhv ^4` K1F1 Fkrz dqg Z1V1 Ihqj/ Dq dqdo|wlfdo FPRV ^:` ^;` ^<` djdwlrq ghod| dqg vkruw0flufxlw srzhu glvvlsdwlrq prg0 holqj ri wkh FPRV lqyhuwhu/ LHHH Wudqvdfwlrqv rq Flufxlwv dqg V|vwhpv L= Ixqgdphqwdo wkhru| dqg dssol0 fdwlrqv/ Yro 78/ qr16/ ss1 58<05:3/ Pdufk 4<<;1 M1 P1 Gdjd dqg G1 Dxyhujqh/ D frpsuhkhqvlyh gh0 od| pdfur prgholqj iru vxeplfurphwhu FPRV orjlfv/ LHHH Mrxuqdo ri Vrolg0Vwdwh Flufxlwv/ yro1 67/ qr14/ Mdqxdu| 4<<<1 D1 Kludwd/ K1 Rqrghud/ dqg N1 Wdpdux/ Hvwlpdwlrq ri sursdjdwlrq ghod| frqvlghulqj vkruw0flufxlw fxuuhqw iru vwdwlf FPRV jdwhv/ LHHH Wudqvdfwlrqv rq Flufxlwv dqg V|vwhpv L= Ixqgdphqwdo wkhru| dqg dssolfdwlrqv/ Yro1 78/ qr144/ ss1 44<7044<;/ Qry1 4<<;1 O1 Elvgrxqlv/ V1 Qlnrodlglv/ dqg R1 Nrxirsdyorx/ Dqd0 o|wlfdo wudqvlhqw uhvsrqvh dqg sursdjdwlrq ghod| hydox0 dwlrq ri wkh FPRV lqyhuwhu iru vkruw0fkdqqho ghylfhv/ LHHH Mrxuqdo ri Vrolg0Vwdwh Flufxlwv/ yro1 66/ qr1 5/ ss1 6350639/ Ihe1 4<<;1 W1 Vdnxudl dqg U1 Qhzwrq/ Ghod| dqdo|vlv ri vhulhv0 frqqhfwhg PRVIHW flufxlwv/ LHHH Mrxuqdo ri Vrolg0 Vwdwh Flufxlwv/ yro1 59/ qr15/ ss14550464/ Ihe 4<<41 M1O1Urvvhooö dqg M1 Vhjxud/ Srzhu0ghod| Prgholqj ri G|qdplf FPRV Jdwhv iru Flufxlw Rswlpl}dwlrq lq Surf1 ri Lqwhuqdwlrqdo Frqihuhqfh rq Frpsxwhu0Dlghg Ghvljq +LFFDG,/ Vdq Mrvì FD/ XVD/ ss1 7<707<</ Qry1 70;/ 5334 ^43` G1 Irw|/ PRVIHW Prgholqj zlwk VSLFH1 Sulqflsohv dqg sudfwlfh/ Suhqwlfh Kdoo/ 4<<:1 ^44` W1 Vdnxudl dqg U1 Qhzwrq/ D vlpsoh PRVIHW Prgho iru Flufxlw Dqdo|vlv/ LHHH Wudqvdfwlrqv rq Hohfwurq Ghylfhv/ yro1 6;/ ss1 ;;:0;<7/ Dsu1 4<<41 ^45` W1Vdnxudl dqg U1 Qhzwrq/ Doskd0srzhu odz PRVIHW prgho dqg lwv lpsolfdwlrqv wr FPRV lqyhuwhu ghod| dqg rwkhu irupxodv/ LHHH Mrxuqdo ri Vrolg0Vwdwh flufxlwv/ yro 58/ qr15/ ss1 8;708<7/ Dsulo 4<<31 ^46` S1G1Jurvv/ U1 Duxqdfkdodp/ N1Udmdjrsdo/ dqg O1W1Slohjjl/ Ghwhuplqdwlrq ri zruvw0fdvh djjuhvvru doljqphqw iru ghod| fdofxodwlrq/ lq Surf1 Lqw1 Frqi1 Frpsxwhu0Dlghg Ghvljq +LFFDG,/ 4<<;/ ss1 545054< ^47` Z1\1 Fkhq/ V1N1 Jxswd/ dqg P1D1 Euhxhu/ Dqdo|w0 lfdo Prghov iru Furvvwdon H{flwdwlrq dqg Sursdjdwlrq lq YOVL Flufxlwv/ LHHH Wudqvdfwlrqv rq Frpsxwhu0 Dlghg Ghvljq/ Yro 54/ qr 43/ ss1 444:04464/ Rfwrehu 5335 lqyhuwhu ghod| prgho lqfoxglqj fkdqqho0ohqjwk prgx0 ^48` M1O1Urvvhooö dqg M1 Vhjxud D Sk|vlfdoo|0Edvhg qwk odwlrqv/ LHHH M1 Vrolg0Vwdwh Flufxlwv/ yro 5:/ qr< Srzhu Odz Prgho iru H!flhqw FDG Lpsohphqwdwlrq ss1463604639/ Vhsw1 4<<51 lq Surf1 ri 4;wk Ghvljq ri Flufxlwv dqg Lqwhjudwhg V|v0 ^5` N1R1Mhssvrq Prgholqj wkh lq xhqfh ri wkh wudqvlvwru whpv Frqihuhqfh/ Flxgdg Uhdo/ Vsdlq/ Qry1 4<054/ 5336 jdlq udwlr dqg wkh lqsxw0wr0rxwsxw frxsolqj fdsdflwdqfh ss1 6;306;61 ri wkh FPRV lqyhuwhu ghod|/ LHHH Mrxuqdo ri Vrolg0 Vwdwh Flufxlwv/ yro1 5</ qr1 9/ ss1 9790987/ Mxqh 4<<71 ^6` S1 Frffklql/ J1 Slfflqlql/ dqg P1 ]dperql/ D frp0 suhkhqvlyh vxeplfurphwhu PRVW ghod| prgho dqg lwv dssolfdwlrq wr FPRV exhuv/ LHHH Mrxuqdo ri Vrolg0 ProceedingsVwdwh of the Flufxlwv/ Design, Automation in Europe Conference and Exhibition (DATE’04) Yro1 65/ and qr1 Test ;/ ss1 458704595/ Dxjxvw 1530-1591/04 $20.00 © 2004 IEEE 4<<:1