Survey
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
* Your assessment is very important for improving the workof artificial intelligence, which forms the content of this project
522 CHAPTER 6 TRIGONOMETRIC IDENTITIES AND EQUATIONS In Exercises 57 to 64, compare the graphs of each side of the equation to predict whether the equation is an identity. 57. sin 2x = 2 sin x cos x 58. sin2 x + cos2 x = 1 59. sin x + cos x = 22 sin a x + p b 4 69. tan4 x - sec4 x = tan2 x + sec 2 x 70. 21 + tan2x = sec x In Exercises 71 to 76, verify the identity. 71. 1 - sin x + cos x cos x = 1 + sin x + cos x sin x + 1 60. cos 2x = 2 cos2 x - 1 72. 1 - tan x + sec x 1 + sec x = 1 + tan x - sec x tan x 61. cos ax + 73. p p p b = cos x cos - sin x sin 3 3 3 p p p + sin x sin 62. cos ax - b = cos x cos 4 4 4 2 sin2 x = 1 - 63. sin ax + p p p b = sin x sin + cos x cos 6 6 6 74. 64. sin ax - p p p b = sin x cos + cos x sin 3 3 3 75. In Exercises 65 to 70, verify that the equation is not an identity by finding an x value for which the left side of the equation is not equal to the right side. 2 sin4 x + 2 sin2 x cos 2 x - 3 sin2 x - 3 cos2 x 76. 3 csc 2 x 2 4 tan x sec 2 x - 4 tan x - sec 2 x + 1 4 tan3 x - tan2 x sin x1tan x + 12 - 2 tan x cos x sin x - cos x = tan x sin2 x cos x + cos3 x - sin3 x cos x - sin x cos3 x cos x = 1 + sin x 65. 1sin x + cos x22 = sin2 x + cos2 x 1 - sin2 x In Exercises 77 and 78, verify the identity by completing the square of the left side of the identity. 66. tan 2x = 2 tan x 67. cos1x + 30°2 = cos x + cos 30° 77. sin4 x + cos4 x = 1 - 2 sin2 x cos2 x 68. 21 - sin2 x = cos x 78. tan4 x + sec4 x = 1 + 2 tan2 x sec 2 x SECTION 6.2 b) Identities That Involve (a Cofunctions Additional Sum and Difference Identities Reduction Formulas = 1 Sum, Difference, and Cofunction Identities PREPARE FOR THIS SECTION Prepare for this section by completing the following exercises. The answers can be found on page A41. PS1. Compare cos1a - b2 and cos a cos b + sin a sin b for a = p p and b = . [5.2] 2 6 PS2. Compare sin1a + b2 and sin a cos b + cos a sin b for a = p p and b = . [5.2] 2 3 PS3. Compare sin190° - u2 and cos u for u = 30°, u = 45°, and u = 120°. [5.2] PS4. Compare tan a 4p p p p - ub and cot u for u = , u = , and u = . [5.2] 2 6 4 3 tan a - tan b p p PS5. Compare tan1a - b2 and for a = and b = . [5.2] 1 + tan a tan b 3 6 PS6. Find the value of sin312k + 12p4, where k is any arbitrary integer. [5.2] 6.2 SUM, DIFFERENCE, AND COFUNCTION IDENTITIES Identities That Involve (a 523 b) Each identity in Section 6.1 involved only one variable. We now consider identities that involve a trigonometric function of the sum or difference of two variables. Sum and Difference Identities cos1a - b2 = cos a cos b + sin a sin b cos1a + b2 = cos a cos b - sin a sin b sin1a - b2 = sin a cos b - cos a sin b sin1a + b2 = sin a cos b + cos a sin b tan1a + b2 = tan a + tan b 1 - tan a tan b tan1a - b2 = tan a - tan b 1 + tan a tan b Proof To establish the identity for cos1a - b2, we use the unit circle shown in Figure 6.2. The angles a and b are drawn in standard position, with OA and OB as the terminal sides of a and b , respectively. The coordinates of A are 1cos a, sin a2, and the coordinates of B are 1cos b, sin b2. The angle 1a - b2 is formed by the terminal sides of the angles a and b (angle AOB). y C(cos (␣ − β ), sin ( ␣ − β ) ) β B(cos β , sin β ) ␣ ␣− β ␣−β O D(1, 0) x A(cos ␣, sin ␣) Figure 6.2 An angle equal in measure to angle 1a - b2 is placed in standard position in the same figure (angle COD). From geometry, if two central angles of a circle have the same measure, then their chords are also equal in measure. Thus the chords AB and CD are equal in length. Using the distance formula, we can calculate the lengths of the chords AB and CD. d1A, B2 = 21cos a - cos b22 + 1sin a - sin b22 d1C, D2 = 23cos1a - b2 - 142 + 3sin1a - b2 - 042 Because d1A, B2 = d1C, D2, we have 21cos a - cos b22 + 1sin a - sin b22 = 23cos 1a - b2 - 142 + 3sin 1a - b242 524 CHAPTER 6 TRIGONOMETRIC IDENTITIES AND EQUATIONS Squaring each side of the equation and simplifying, we obtain 1cos a - cos b22 + 1sin a - sin b22 = 3cos1a - b2 - 142 + 3sin1a - b242 cos2 a - 2 cos a cos b + cos2 b + sin2 a - 2 sin a sin b + sin2 b = cos21a - b2 - 2 cos1a - b2 + 1 + sin21a - b2 cos2 a + sin2 a + cos2 b + sin2 b - 2 cos a cos b - 2 sin a sin b = cos21a - b2 + sin21a - b2 + 1 - 2 cos1a - b2 Simplifying by using sin2 u + cos2 u = 1, we have 2 - 2 sin a sin b - 2 cos a cos b = 2 - 2 cos1a - b2 Solving for cos1a - b2 gives us cos1a - b2 = cos a cos b + sin a sin b ◆ To derive an identity for cos1a + b2, write cos1a + b2 as cos3a - 1 - b24. cos1a + b2 = cos3a - 1 - b24 = cos a cos1- b2 + sin a sin1- b2 Recall that cos1 - b2 = cos b and sin1 - b2 = - sin b . Substituting into the previous equation, we obtain the identity cos1a + b2 = cos a cos b - sin a sin b EXAMPLE 1 Evaluate a Trigonometric Expression Use an identity to find the exact value of cos160° - 45°2. Solution Use the identity cos1a - b2 = cos a cos b + sin a sin b with a = 60° and b = 45°. cos160° - 45°2 = cos 60° cos 45° + sin 60° sin 45° 1 22 23 22 = a ba b + a ba b 2 2 2 2 = 26 22 + 4 4 = 22 + 26 4 • Substitute. • Evaluate each factor. • Simplify. Try Exercise 4, page 529 Cofunctions Any pair of trigonometric functions f and g for which f1x2 = g190° - x2 and g1x2 = f190° - x2 are said to be cofunctions. 6.2 Study tip To visualize the cofunction identities, consider the right triangle shown in the following figure. c 90° − θ SUM, DIFFERENCE, AND COFUNCTION IDENTITIES 525 Cofunction Identities sin190° - u2 = cos u cos190° - u2 = sin u tan190° - u2 = cot u cot190° - u2 = tan u sec190° - u2 = csc u csc190° - u2 = sec u b If u is in radian measure, replace 90° with θ a If u is the degree measure of one of the acute angles, then the degree measure of the other acute angle is 190° - u2. Using the definitions of the trigonometric functions gives us b = cos190° - u2 c b = cot190° - u2 tan u = a c = csc190° - u2 sec u = a sin u = These identities state that the value of a trigonometric function of u is equal to the cofunction of the complement of u. p . 2 To verify that the sine function and the cosine function are cofunctions, we use the identity for cos1a - b2. cos190° - b2 = cos 90° cos b + sin 90° sin b = 0 # cos b + 1 # sin b which gives cos190° - b2 = sin b Thus the sine of an angle is equal to the cosine of its complement. Using cos190° - b2 = sin b with b = 90° - a, we have cos a = cos390° - 190° - a24 = sin190° - a2 Therefore, cos a = sin190° - a2 We can use the ratio identities to show that the tangent and cotangent functions are cofunctions. tan190° - u2 = cot190° - u2 = sin190° - u2 cos190° - u2 cos190° - u2 sin190° - u2 = cos u = cot u sin u = sin u = tan u cos u The secant and cosecant functions are also cofunctions. EXAMPLE 2 Write an Equivalent Expression Use a cofunction identity to write an equivalent expression for sin 20°. Solution The value of a given trigonometric function of u, measured in degrees, is equal to its cofunction of 90° - u. Thus sin 20° = cos190° - 20°2 = cos 70° Try Exercise 20, page 529 526 CHAPTER 6 TRIGONOMETRIC IDENTITIES AND EQUATIONS Additional Sum and Difference Identities We can use the cofunction identities to verify the remaining sum and difference identities. To derive an identity for sin1a + b2, substitute a + b for u in the cofunction identity sin u = cos190° - u2. sin u = cos190° - u2 sin1a + b2 = cos390° - 1a + b24 • Replace u with a + b. = cos3190° - a2 - b4 • Rewrite as the difference of two angles. = cos190° - a2 cos b + sin190° - a2 sin b = sin a cos b + cos a sin b Therefore, sin1a + b2 = sin a cos b + cos a sin b We also can derive an identity for sin1a - b2 by rewriting 1a - b2 as 3a + 1- b24. sin1a - b2 = sin3a + 1 - b24 = sin a cos1- b2 + cos a sin1- b2 = sin a cos b - cos a sin b • cos1 - b2 = cos b sin1 - b2 = - sin b Thus sin1a - b2 = sin a cos b - cos a sin b The identity for tan1a + b2 is a result of the identity tan u = sin u and the identities cos u for sin1a + b2 and cos1a + b2. tan1a + b2 = sin1a + b2 cos1a + b2 = sin a cos b + cos a sin b cos a cos b - sin a sin b cos a sin b sin a cos b + cos a cos b cos a cos b = cos a cos b sin a sin b cos a cos b cos a cos b • Multiply both the numerator and the 1 denominator by and cos a cos b simplify. Therefore, tan1a + b2 = tan a + tan b 1 - tan a tan b The tangent function is an odd function, so tan1- u2 = - tan u. Rewriting 1a - b2 as 3a + 1- b24 enables us to derive an identity for tan1a - b2. tan1a - b2 = tan3a + 1 - b24 = tan a + tan1 - b2 1 - tan a tan1- b2 Therefore, tan1a - b2 = tan a - tan b 1 + tan a tan b 6.2 SUM, DIFFERENCE, AND COFUNCTION IDENTITIES 527 The sum and difference identities can be used to simplify some trigonometric expressions. EXAMPLE 3 Simplify Trigonometric Expressions Write each expression in terms of a single trigonometric function. a. sin 5x cos 3x - cos 5x sin 3x tan 4a + tan a 1 - tan 4a tan a b. Solution a. sin 5x cos 3x - cos 5x sin 3x = sin15x - 3x2 = sin 2x b. tan 4a + tan a = tan14a + a2 = tan 5a 1 - tan 4a tan a Try Exercise 26, page 529 EXAMPLE 4 Given tan a = - Evaluate a Trigonometric Function 4 5 for a in Quadrant II and tan b = for b in Quadrant IV, find 3 12 sin1a + b2. Solution y 4 = - and the terminal side of a is in Quadrant II, x 3 P11 -3, 42 is a point on the terminal side of a. Similarly, P2112, -52 is a point on the terminal side of b. See Figure 6.3. Because tan a = y y 4 β P1(−3, 4) O 5 6 P −4 12 x 13 α O 4 −6 x P2 (12, −5) Figure 6.3 Using the Pythagorean Theorem, we find that the length of the line segment OP1 is 5 and the length of OP2 is 13. sin1a + b2 = sin a cos b + cos a sin b = Try Exercise 38, page 530 -3 4 # 12 + 5 13 5 # 63 -5 48 15 = + = 13 65 65 65 528 CHAPTER 6 TRIGONOMETRIC IDENTITIES AND EQUATIONS EXAMPLE 5 Verify an Identity Verify the identity cos1p - u2 = - cos u. Solution cos1p - u2 = cos p cos u + sin p sin u Plot1 Plot2 Plot3 \Y1 = cos(π–x) \Y2 = -cos(x) • Use the identity for cos1a - b2. = - 1 # cos u + 0 # sin u = -cos u 1.5 Try Exercise 50, page 530 −2π 2π Figure 6.4 shows the graphs of Y1 = cos1p - u2 and Y2 = - cos u on the same coordinate axes. The fact that the graphs appear to be identical supports the verification in Example 5. Y1 = Y2 −1.5 Figure 6.4 EXAMPLE 6 Verify an Identity Verify the identity sin 4u cos 5u cos 4u = . sin u cos u sin u cos u Solution Subtract the fractions on the left side of the equation. sin 4u cos 4u cos u - sin 4u sin u cos 4u = sin u cos u sin u cos u = = cos14u + u2 sin u cos u • Use the identity for cos 1a + b2. cos 5u sin u cos u Try Exercise 62, page 531 cos 4u sin 4u cos 5u and the graph of Y2 = sin u cos u sin u cos u on the same coordinate axes. The fact that the graphs appear to be identical supports the verification in Example 6. Figure 6.5 shows the graph of Y1 = Plot1 Plot2 Plot3 \Y1 = (cos(4x))/sin(x)–(sin(4x) )/cos(x) \Y2 = (cos(5x))/(sin(x)cos(x)) 7 Reduction Formulas −2π 2π Y1 = Y2 −7 Figure 6.5 The sum or difference identities can be used to write expressions such as sin1u + kp2 sin1u + 2kp2 cos3u + 12k + 12p4 where k is an integer, as expressions involving only sin u or cos u. The resulting formulas are called reduction formulas. 6.2 EXAMPLE 7 SUM, DIFFERENCE, AND COFUNCTION IDENTITIES 529 Find Reduction Formulas Write as a function involving only sin u. sin3u + 12k + 12p4, where k is an integer Solution Applying the identity sin1a + b2 = sin a cos b + cos a sin b yields sin3u + 12k + 12p4 = sin u cos312k + 12p4 + cos u sin312k + 12p4 If k is an integer, then 2k + 1 is an odd integer. The cosine of any odd multiple of p equals -1, and the sine of any odd multiple of p is 0. This gives us sin3u + 12k + 12p4 = 1sin u21-12 + 1cos u2102 = - sin u Thus sin3u + 12k + 12p4 = - sin u for any integer k. Try Exercise 76, page 531 Question • Is sin1u + 2kp2 = sin u, where k is an integer, a reduction formula? EXERCISE SET 6.2 In Exercises 1 to 18, find (if possible) the exact value of the expression. 1. sin145° + 30°2 2. sin1330° + 45°2 16. cos p p p p cos - sin sin 12 4 12 4 p 7p - tan 12 4 17. 7p p 1 + tan tan 12 4 tan 3. cos145° - 30°2 4. cos1120° - 45°2 5. tan145° - 30°2 6. tan1240° - 45°2 7. sin a 8. sin a 5p p - b 4 6 3p p 9. cos a + b 4 6 11. tan a p p + b 6 4 p p 10. cos a - b 4 3 12. tan a 13. cos 212° cos 122° + sin 212° sin 122° 14. sin 167° cos 107° - cos 167° sin 107° 5p p 5p p 15. sin cos - cos sin 12 4 12 4 p 4p + b 3 4 p 11p - b 6 4 p p + tan 6 3 18. p p 1 - tan tan 6 3 tan In Exercises 19 to 24, use a cofunction identity to write an equivalent expression for the given value. 19. sin 42° 20. cos 80° 21. tan 15° 22. cot 2° 23. sec 25° 24. csc 84° In Exercises 25 to 36, write each expression in terms of a single trigonometric function. 25. sin 7x cos 2x - cos 7x sin 2x 26. sin x cos 3x + cos x sin 3x 27. cos x cos 2x + sin x sin 2x Answer • Yes. sin1u + 2kp2 = sin u cos12kp2 + cos u sin12kp2 = 1sin u2112 + 1cos u2102 = sin u 530 CHAPTER 6 TRIGONOMETRIC IDENTITIES AND EQUATIONS 29. sin 7x cos 3x - cos 7x sin 3x 8 7 , a in Quadrant IV, and cos b = , b 25 17 in Quadrant IV, find 30. cos x cos 5x - sin x sin 5x a. sin1a + b2 28. cos 4x cos 2x - sin 4x sin 2x 42. Given sin a = - 31. cos 4x cos1-2x2 - sin 4x sin1-2x2 3 15 , a in Quadrant I, and sin b = - , b in 17 5 Quadrant III, find a. sin1a + b2 2x x 2x x cos + cos sin 3 3 3 3 a. sin1a + b2 a. sin1a - b2 15 4 37. Given tan a = - , a in Quadrant II, and tan b = , b 3 8 in Quadrant III, find b. cos1a + b2 b. cos1a + b2 24 4 , a in Quadrant II, and cos b = - , b in 25 5 Quadrant III, find b. cos1a + b2 a. sin1a - b2 b. cos1a + b2 c. tan1a + b2 5 3 , a in Quadrant I, and tan b = , b in 5 12 Quadrant III, find 47. Given sin a = a. sin1a + b2 b. cos1a - b2 c. tan1a - b2 15 7 , a in Quadrant I, and tan b = - , b in 8 24 Quadrant IV, find 48. Given tan a = a. sin1a - b2 b. cos1a - b2 c. tan1a + b2 In Exercises 49 to 74, verify the identity. 49. cos a p - ub = sin u 2 50. cos1u + p2 = - cos u c. tan1a + b2 12 4 41. Given sin a = - , a in Quadrant III, and cos b = , 5 13 b in Quadrant II, find a. sin1a - b2 8 24 , a in Quadrant IV, and sin b = , b 17 25 in Quadrant III, find 46. Given cos a = c. tan1a - b2 40. Given sin a = b. sin1a + b2 c. tan1a + b2 c. tan1a - b2 3 5 39. Given sin a = , a in Quadrant I, and cos b = - , b in 5 13 Quadrant II, find b. cos1a + b2 b. cos1a + b2 c. tan1a - b2 8 24 38. Given tan a = , a in Quadrant I, and sin b = - , b in 7 17 Quadrant III, find a. cos1b - a2 c. tan1a - b2 5 3 , a in Quadrant III, and sin b = , b 5 13 in Quadrant I, find In Exercises 37 to 48, find the exact value of the given functions. a. sin1a - b2 b. cos1a + b2 45. Given cos a = - tan 2x - tan 3x 36. 1 + tan 2x tan 3x a. sin1a + b2 c. tan1a - b2 12 7 , a in Quadrant II, and sin b = ,b 25 13 in Quadrant IV, find tan 3x + tan 4x 1 - tan 3x tan 4x a. sin1a - b2 b. cos1a - b2 44. Given cos a = - x 3x x 3x 34. cos cos + sin sin 4 4 4 4 35. c. tan1a + b2 43. Given cos a = 32. sin1 - x2 cos 3x - cos1 - x2 sin 3x 33. sin b. cos1a - b2 c. tan1a + b2 51. sin a u + p b = cos u 2 53. tan au + p 2 tan u tan u + 1 54. tan 2u = b = 4 1 - tan u 1 - tan2 u 52. sin1u + p2 = - sin u 6.2 55. cos a 57. cot a 3p - u b = - sin u 2 p - u b = tan u 2 56. sin a 58. cot1p + u2 = cot u 60. sec a 59. csc1p - u2 = csc u 3p + ub = - cos u 2 p - u b = csc u 2 61. sin 6x cos 2x - cos 6x sin 2x = 2 sin 2x cos 2x SUM, DIFFERENCE, AND COFUNCTION IDENTITIES 77. tan1u + p2 78. cos3u + 12k + 12p4 79. sin1u + 2kp2 80. sin1u - kp2 531 In Exercises 81 to 84, compare the graphs of each side of the equation to predict whether the equation is an identity. 81. sin a p - xb = cos x 2 82. cos1x + p2 = - cos x 83. sin 7x cos 2x - cos 7x sin 2x = sin 5x 62. cos 5x cos 3x + sin 5x sin 3x = cos2 x - sin2 x 84. sin 3x = 3 sin x - 4 sin3 x In Exercises 85 to 89, verify the identity. 63. cos1a + b2 + cos1a - b2 = 2 cos a cos b 85. sin1x - y2 # sin1x + y2 = sin2 x cos2 y - cos2 x sin2 y 64. cos1a - b2 - cos1a + b2 = 2 sin a sin b 86. sin1x + y + z2 = sin x cos y cos z + cos x sin y cos z + cos x cos y sin z - sin x sin y sin z 65. sin1a + b2 + sin1a - b2 = 2 sin a cos b 87. cos1x + y + z2 = cos x cos y cos z - sin x sin y cos z - 66. sin1a - b2 - sin1a + b2 = - 2 cos a sin b 67. 68. 69. 70. cos1a - b2 = cot a + tan b 1 + cot a tan b 88. = 1 + cot a tan b 1 - cot a tan b 89. sin1a + b2 sin1a + b2 sin1a - b2 sin1x + h2 - sin x h cos1x + h2 - cos x 71. sin a sin x cos y sin z - cos x sin y sin z h sin h + sin x h # = cos x = cos x # 1cos h - 12 h # 1cos h - 12 h - sin x # p + a - b b = cos a cos b + sin a sin b 2 72. cos a p + a + b b = - 1sin a cos b + cos a sin b2 2 73. sin 3x = 3 sin x - 4 sin3 x sin h h sin1x + y2 sin x sin y cos1x - y2 cos x sin y = cot x + cot y = cot y + tan x 90. Model Resistance The drag (resistance) on a fish when it is swimming is two to three times the drag when it is gliding. To compensate for this, some fish swim in a saw-tooth pattern, as shown in the accompanying figure. The ratio of the amount of energy the fish expends when swimming upward at angle b and then gliding down at angle a to the energy it expends swimming horizontally is given by ER = where k is a value such that 2 … k … 3, and k depends on the assumptions we make about the amount of drag experienced by the fish. Find ER for k = 2, a = 10°, and b = 20°. 74. cos 3x = 4 cos3 x - 3 cos x In Exercises 75 to 80, write the given expression as a function that involves only sin U, cos U, or tan U. (In Exercises 78 to 80, assume k is an integer.) 75. cos1u + 3p2 76. sin1u + 2p2 k sin a + sin b k sin1a + b2 α β